Class TinyImageNetDataSetIterator
- java.lang.Object
-
- org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator
-
- org.deeplearning4j.datasets.iterator.impl.TinyImageNetDataSetIterator
-
- All Implemented Interfaces:
Serializable,Iterator<org.nd4j.linalg.dataset.DataSet>,org.nd4j.linalg.dataset.api.iterator.DataSetIterator
public class TinyImageNetDataSetIterator extends RecordReaderDataSetIterator
- See Also:
- Serialized Form
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from class org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator
RecordReaderDataSetIterator.Builder
-
-
Field Summary
Fields Modifier and Type Field Description protected org.nd4j.linalg.dataset.api.DataSetPreProcessorpreProcessor-
Fields inherited from class org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator
batchNum, batchSize, converter, labelIndex, labelIndexTo, last, maxNumBatches, numPossibleLabels, recordReader, regression, sequenceIter, useCurrent
-
-
Constructor Summary
Constructors Constructor Description TinyImageNetDataSetIterator(int batchSize)Create an iterator for the training set, with random iteration order (RNG seed fixed to 123)TinyImageNetDataSetIterator(int batchSize, int[] imgDim, DataSetType set)Get the Tiny ImageNet iterator with specified train/test set, with random iteration order (RNG seed fixed to 123)TinyImageNetDataSetIterator(int batchSize, int[] imgDim, DataSetType set, ImageTransform imageTransform, long rngSeed)Get the Tiny ImageNet iterator with specified train/test set and (optional) custom transform.TinyImageNetDataSetIterator(int batchSize, DataSetType set)* Create an iterator for the training or test set, with random iteration order (RNG seed fixed to 123)
-
Method Summary
All Methods Static Methods Concrete Methods Modifier and Type Method Description static List<String>getLabels(boolean categories)Get the labels - either in "categories" (imagenet synsets format, "n01910747" or similar) or human-readable format, such as "jellyfish"-
Methods inherited from class org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator
asyncSupported, batch, getLabels, getPreProcessor, getRecordReader, hasNext, inputColumns, isCollectMetaData, loadFromMetaData, loadFromMetaData, next, next, remove, reset, resetSupported, setCollectMetaData, setPreProcessor, totalOutcomes
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface java.util.Iterator
forEachRemaining
-
-
-
-
Constructor Detail
-
TinyImageNetDataSetIterator
public TinyImageNetDataSetIterator(int batchSize)
Create an iterator for the training set, with random iteration order (RNG seed fixed to 123)- Parameters:
batchSize- Minibatch size for the iterator
-
TinyImageNetDataSetIterator
public TinyImageNetDataSetIterator(int batchSize, DataSetType set)* Create an iterator for the training or test set, with random iteration order (RNG seed fixed to 123)- Parameters:
batchSize- Minibatch size for the iteratorset- The dataset (train or test)
-
TinyImageNetDataSetIterator
public TinyImageNetDataSetIterator(int batchSize, int[] imgDim, DataSetType set)Get the Tiny ImageNet iterator with specified train/test set, with random iteration order (RNG seed fixed to 123)- Parameters:
batchSize- Size of each patchimgDim- Dimensions of desired output - for example, {64, 64}set- Train, test, or validation
-
TinyImageNetDataSetIterator
public TinyImageNetDataSetIterator(int batchSize, int[] imgDim, DataSetType set, ImageTransform imageTransform, long rngSeed)Get the Tiny ImageNet iterator with specified train/test set and (optional) custom transform.- Parameters:
batchSize- Size of each patchimgDim- Dimensions of desired output - for example, {64, 64}set- Train, test, or validationimageTransform- Additional image transform for outputrngSeed- random number generator seed to use when shuffling examples
-
-
Method Detail
-
getLabels
public static List<String> getLabels(boolean categories)
Get the labels - either in "categories" (imagenet synsets format, "n01910747" or similar) or human-readable format, such as "jellyfish"- Parameters:
categories- If true: return category/synset format; false: return "human readable" label format- Returns:
- Labels
-
-