Class FeedForwardLayer
- java.lang.Object
-
- org.deeplearning4j.nn.conf.layers.Layer
-
- org.deeplearning4j.nn.conf.layers.BaseLayer
-
- org.deeplearning4j.nn.conf.layers.FeedForwardLayer
-
- All Implemented Interfaces:
Serializable,Cloneable,TrainingConfig
- Direct Known Subclasses:
BaseOutputLayer,BasePretrainNetwork,BaseRecurrentLayer,BatchNormalization,Cnn3DLossLayer,CnnLossLayer,ConvolutionLayer,DenseLayer,DropoutLayer,ElementWiseMultiplicationLayer,EmbeddingLayer,EmbeddingSequenceLayer,LossLayer,RepeatVector,RnnLossLayer
public abstract class FeedForwardLayer extends BaseLayer
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classFeedForwardLayer.Builder<T extends FeedForwardLayer.Builder<T>>
-
Field Summary
Fields Modifier and Type Field Description protected longnInprotected longnOutprotected DataFormattimeDistributedFormat-
Fields inherited from class org.deeplearning4j.nn.conf.layers.BaseLayer
activationFn, biasInit, biasUpdater, gainInit, gradientNormalization, gradientNormalizationThreshold, iUpdater, regularization, regularizationBias, weightInitFn, weightNoise
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.Layer
constraints, iDropout, layerName
-
-
Constructor Summary
Constructors Constructor Description FeedForwardLayer(FeedForwardLayer.Builder builder)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description InputTypegetOutputType(int layerIndex, InputType inputType)For a given type of input to this layer, what is the type of the output?InputPreProcessorgetPreProcessorForInputType(InputType inputType)For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessorbooleanisPretrainParam(String paramName)Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop.
Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs.voidsetNIn(InputType inputType, boolean override)Set the nIn value (number of inputs, or input channels for CNNs) based on the given input type-
Methods inherited from class org.deeplearning4j.nn.conf.layers.BaseLayer
clone, getGradientNormalization, getRegularizationByParam, getUpdaterByParam, resetLayerDefaultConfig
-
Methods inherited from class org.deeplearning4j.nn.conf.layers.Layer
getMemoryReport, initializeConstraints, initializer, instantiate, setDataType
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.deeplearning4j.nn.api.TrainingConfig
getGradientNormalizationThreshold, getLayerName
-
-
-
-
Field Detail
-
nIn
protected long nIn
-
nOut
protected long nOut
-
timeDistributedFormat
protected DataFormat timeDistributedFormat
-
-
Constructor Detail
-
FeedForwardLayer
public FeedForwardLayer(FeedForwardLayer.Builder builder)
-
-
Method Detail
-
getOutputType
public InputType getOutputType(int layerIndex, InputType inputType)
Description copied from class:LayerFor a given type of input to this layer, what is the type of the output?- Specified by:
getOutputTypein classLayer- Parameters:
layerIndex- Index of the layerinputType- Type of input for the layer- Returns:
- Type of output from the layer
-
setNIn
public void setNIn(InputType inputType, boolean override)
Description copied from class:LayerSet the nIn value (number of inputs, or input channels for CNNs) based on the given input type
-
getPreProcessorForInputType
public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Description copied from class:LayerFor the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessor- Specified by:
getPreProcessorForInputTypein classLayer- Parameters:
inputType- InputType to this layer- Returns:
- Null if no preprocessor is required, otherwise the type of preprocessor necessary for this layer/input combination
-
isPretrainParam
public boolean isPretrainParam(String paramName)
Description copied from class:LayerIs the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop.
Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs.- Specified by:
isPretrainParamin interfaceTrainingConfig- Specified by:
isPretrainParamin classLayer- Parameters:
paramName- Parameter name/key- Returns:
- True if the parameter is for layerwise pretraining only, false otherwise
-
-