Uses of Class
org.deeplearning4j.nn.conf.layers.Convolution3D.DataFormat
-
Packages that use Convolution3D.DataFormat Package Description org.deeplearning4j.nn.conf.inputs org.deeplearning4j.nn.conf.layers org.deeplearning4j.nn.conf.preprocessor org.deeplearning4j.util -
-
Uses of Convolution3D.DataFormat in org.deeplearning4j.nn.conf.inputs
Methods in org.deeplearning4j.nn.conf.inputs with parameters of type Convolution3D.DataFormat Modifier and Type Method Description static InputTypeInputType. convolutional3D(Convolution3D.DataFormat dataFormat, long depth, long height, long width, long channels)Input type for 3D convolutional (CNN3D) 5d data:
If NDHWC format [miniBatchSize, depth, height, width, channels]
If NDCWHConstructors in org.deeplearning4j.nn.conf.inputs with parameters of type Convolution3D.DataFormat Constructor Description InputTypeConvolutional3D(Convolution3D.DataFormat dataFormat, long depth, long height, long width, long channels) -
Uses of Convolution3D.DataFormat in org.deeplearning4j.nn.conf.layers
Fields in org.deeplearning4j.nn.conf.layers declared as Convolution3D.DataFormat Modifier and Type Field Description protected Convolution3D.DataFormatCnn3DLossLayer.Builder. dataFormatFormat of the input/output data.protected Convolution3D.DataFormatCnn3DLossLayer. dataFormatprotected Convolution3D.DataFormatConvolution3D. dataFormatprotected Convolution3D.DataFormatSubsampling3DLayer.Builder. dataFormatThe data format for input and output activations.
NCDHW: activations (in/out) should have shape [minibatch, channels, depth, height, width]
NDHWC: activations (in/out) should have shape [minibatch, depth, height, width, channels]protected Convolution3D.DataFormatSubsampling3DLayer. dataFormatprotected Convolution3D.DataFormatUpsampling3D.Builder. dataFormatprotected Convolution3D.DataFormatUpsampling3D. dataFormatMethods in org.deeplearning4j.nn.conf.layers that return Convolution3D.DataFormat Modifier and Type Method Description static Convolution3D.DataFormatConvolution3D.DataFormat. valueOf(String name)Returns the enum constant of this type with the specified name.static Convolution3D.DataFormat[]Convolution3D.DataFormat. values()Returns an array containing the constants of this enum type, in the order they are declared.Methods in org.deeplearning4j.nn.conf.layers with parameters of type Convolution3D.DataFormat Modifier and Type Method Description Convolution3D.BuilderConvolution3D.Builder. dataFormat(Convolution3D.DataFormat dataFormat)The data format for input and output activations.
NCDHW: activations (in/out) should have shape [minibatch, channels, depth, height, width]
NDHWC: activations (in/out) should have shape [minibatch, depth, height, width, channels]Deconvolution3D.BuilderDeconvolution3D.Builder. dataFormat(Convolution3D.DataFormat dataFormat)Subsampling3DLayer.BuilderSubsampling3DLayer.Builder. dataFormat(Convolution3D.DataFormat dataFormat)The data format for input and output activations.
NCDHW: activations (in/out) should have shape [minibatch, channels, depth, height, width]
NDHWC: activations (in/out) should have shape [minibatch, depth, height, width, channels]Upsampling3D.BuilderUpsampling3D.Builder. dataFormat(Convolution3D.DataFormat dataFormat)Sets the DataFormat.static InputTypeInputTypeUtil. getOutputTypeCnn3DLayers(InputType inputType, Convolution3D.DataFormat dataFormat, int[] kernelSize, int[] stride, int[] padding, int[] dilation, ConvolutionMode convolutionMode, long outputChannels, long layerIdx, String layerName, Class<?> layerClass)static InputTypeInputTypeUtil. getOutputTypeDeconv3dLayer(InputType inputType, int[] kernelSize, int[] stride, int[] padding, int[] dilation, ConvolutionMode convolutionMode, Convolution3D.DataFormat dataFormat, long outputDepth, long layerIdx, String layerName, Class<?> layerClass)Constructors in org.deeplearning4j.nn.conf.layers with parameters of type Convolution3D.DataFormat Constructor Description Builder(Convolution3D.DataFormat format)Builder(Convolution3D.DataFormat dataFormat, int size) -
Uses of Convolution3D.DataFormat in org.deeplearning4j.nn.conf.preprocessor
Constructors in org.deeplearning4j.nn.conf.preprocessor with parameters of type Convolution3D.DataFormat Constructor Description Cnn3DToFeedForwardPreProcessor(int inputDepth, int inputHeight, int inputWidth, int numChannels, Convolution3D.DataFormat dataFormat) -
Uses of Convolution3D.DataFormat in org.deeplearning4j.util
Methods in org.deeplearning4j.util that return Convolution3D.DataFormat Modifier and Type Method Description static Convolution3D.DataFormatConvolution3DUtils. getFormatForLayer(Layer inputLayer)Returns theConvolution3D.DataFormatfor the associated layer.Methods in org.deeplearning4j.util with parameters of type Convolution3D.DataFormat Modifier and Type Method Description static long[]ConvolutionUtils. getDeconvolution3DOutputSize(INDArray inputData, int[] kernel, int[] strides, int[] padding, int[] dilation, ConvolutionMode convolutionMode, Convolution3D.DataFormat dataFormat)Get the output size of a deconvolution operation for given input data.static INDArrayConvolutionUtils. reshape2dTo5d(Convolution3D.DataFormat format, INDArray in2d, long n, long d, long h, long w, long ch, LayerWorkspaceMgr workspaceMgr, ArrayType type)static INDArrayConvolutionUtils. reshape5dTo2d(Convolution3D.DataFormat format, INDArray in, LayerWorkspaceMgr workspaceMgr, ArrayType type)static INDArrayConvolutionUtils. reshapeCnn3dMask(Convolution3D.DataFormat format, INDArray mask, INDArray label, LayerWorkspaceMgr workspaceMgr, ArrayType type)
-