Class Cropping2D
- java.lang.Object
-
- org.deeplearning4j.nn.conf.layers.Layer
-
- org.deeplearning4j.nn.conf.layers.NoParamLayer
-
- org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D
-
- All Implemented Interfaces:
Serializable,Cloneable,TrainingConfig
public class Cropping2D extends NoParamLayer
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classCropping2D.Builder
-
Field Summary
-
Fields inherited from class org.deeplearning4j.nn.conf.layers.Layer
constraints, iDropout, layerName
-
-
Constructor Summary
Constructors Modifier Constructor Description Cropping2D(int[] cropping)Cropping2D(int cropTopBottom, int cropLeftRight)Cropping2D(int cropTop, int cropBottom, int cropLeft, int cropRight)Cropping2D(CNN2DFormat dataFormat, int cropTopBottom, int cropLeftRight)Cropping2D(CNN2DFormat format, int cropTop, int cropBottom, int cropLeft, int cropRight)protectedCropping2D(Cropping2D.Builder builder)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description LayerMemoryReportgetMemoryReport(InputType inputType)This is a report of the estimated memory consumption for the given layerInputTypegetOutputType(int layerIndex, InputType inputType)For a given type of input to this layer, what is the type of the output?InputPreProcessorgetPreProcessorForInputType(InputType inputType)For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessorLayerinstantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)voidsetNIn(InputType inputType, boolean override)Set the nIn value (number of inputs, or input channels for CNNs) based on the given input type-
Methods inherited from class org.deeplearning4j.nn.conf.layers.NoParamLayer
getGradientNormalization, getGradientNormalizationThreshold, getRegularizationByParam, initializer, isPretrainParam
-
Methods inherited from class org.deeplearning4j.nn.conf.layers.Layer
clone, getUpdaterByParam, initializeConstraints, resetLayerDefaultConfig, setDataType
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.deeplearning4j.nn.api.TrainingConfig
getLayerName
-
-
-
-
Constructor Detail
-
Cropping2D
public Cropping2D(int cropTopBottom, int cropLeftRight)- Parameters:
cropTopBottom- Amount of cropping to apply to both the top and the bottom of the input activationscropLeftRight- Amount of cropping to apply to both the left and the right of the input activations
-
Cropping2D
public Cropping2D(CNN2DFormat dataFormat, int cropTopBottom, int cropLeftRight)
-
Cropping2D
public Cropping2D(int cropTop, int cropBottom, int cropLeft, int cropRight)- Parameters:
cropTop- Amount of cropping to apply to the top of the input activationscropBottom- Amount of cropping to apply to the bottom of the input activationscropLeft- Amount of cropping to apply to the left of the input activationscropRight- Amount of cropping to apply to the right of the input activations
-
Cropping2D
public Cropping2D(CNN2DFormat format, int cropTop, int cropBottom, int cropLeft, int cropRight)
-
Cropping2D
public Cropping2D(int[] cropping)
- Parameters:
cropping- Cropping as either a length 2 array, with values[cropTopBottom, cropLeftRight], or as a length 4 array, with values[cropTop, cropBottom, cropLeft, cropRight]
-
Cropping2D
protected Cropping2D(Cropping2D.Builder builder)
-
-
Method Detail
-
instantiate
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)
- Specified by:
instantiatein classLayer
-
getOutputType
public InputType getOutputType(int layerIndex, InputType inputType)
Description copied from class:LayerFor a given type of input to this layer, what is the type of the output?- Specified by:
getOutputTypein classLayer- Parameters:
layerIndex- Index of the layerinputType- Type of input for the layer- Returns:
- Type of output from the layer
-
getPreProcessorForInputType
public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Description copied from class:LayerFor the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessor- Specified by:
getPreProcessorForInputTypein classLayer- Parameters:
inputType- InputType to this layer- Returns:
- Null if no preprocessor is required, otherwise the type of preprocessor necessary for this layer/input combination
-
getMemoryReport
public LayerMemoryReport getMemoryReport(InputType inputType)
Description copied from class:LayerThis is a report of the estimated memory consumption for the given layer- Specified by:
getMemoryReportin classLayer- Parameters:
inputType- Input type to the layer. Memory consumption is often a function of the input type- Returns:
- Memory report for the layer
-
setNIn
public void setNIn(InputType inputType, boolean override)
Description copied from class:LayerSet the nIn value (number of inputs, or input channels for CNNs) based on the given input type- Overrides:
setNInin classNoParamLayer- Parameters:
inputType- Input type for this layeroverride- If false: only set the nIn value if it's not already set. If true: set it regardless of whether it's already set or not.
-
-