Class FrozenLayer
- java.lang.Object
-
- org.deeplearning4j.nn.conf.layers.Layer
-
- org.deeplearning4j.nn.conf.layers.misc.FrozenLayer
-
- All Implemented Interfaces:
Serializable,Cloneable,TrainingConfig
public class FrozenLayer extends Layer
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classFrozenLayer.Builder
-
Constructor Summary
Constructors Constructor Description FrozenLayer(Layer layer)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Layerclone()GradientNormalizationgetGradientNormalization()doublegetGradientNormalizationThreshold()NeuralNetConfigurationgetInnerConf(NeuralNetConfiguration conf)LayerMemoryReportgetMemoryReport(InputType inputType)This is a report of the estimated memory consumption for the given layerInputTypegetOutputType(int layerIndex, InputType inputType)For a given type of input to this layer, what is the type of the output?InputPreProcessorgetPreProcessorForInputType(InputType inputType)For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessorList<Regularization>getRegularizationByParam(String param)Get the regularization types (l1/l2/weight decay) for the given parameter.IUpdatergetUpdaterByParam(String paramName)Get the updater for the given parameter.ParamInitializerinitializer()Layerinstantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)booleanisPretrainParam(String paramName)Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop.
Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs.voidsetConstraints(List<LayerConstraint> constraints)voidsetLayerName(String layerName)voidsetNIn(InputType inputType, boolean override)Set the nIn value (number of inputs, or input channels for CNNs) based on the given input type-
Methods inherited from class org.deeplearning4j.nn.conf.layers.Layer
initializeConstraints, resetLayerDefaultConfig, setDataType
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.deeplearning4j.nn.api.TrainingConfig
getLayerName
-
-
-
-
Field Detail
-
layer
protected Layer layer
-
-
Constructor Detail
-
FrozenLayer
public FrozenLayer(Layer layer)
-
-
Method Detail
-
getInnerConf
public NeuralNetConfiguration getInnerConf(NeuralNetConfiguration conf)
-
instantiate
public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)
- Specified by:
instantiatein classLayer
-
initializer
public ParamInitializer initializer()
- Specified by:
initializerin classLayer- Returns:
- The parameter initializer for this model
-
getOutputType
public InputType getOutputType(int layerIndex, InputType inputType)
Description copied from class:LayerFor a given type of input to this layer, what is the type of the output?- Specified by:
getOutputTypein classLayer- Parameters:
layerIndex- Index of the layerinputType- Type of input for the layer- Returns:
- Type of output from the layer
-
setNIn
public void setNIn(InputType inputType, boolean override)
Description copied from class:LayerSet the nIn value (number of inputs, or input channels for CNNs) based on the given input type
-
getPreProcessorForInputType
public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Description copied from class:LayerFor the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessor- Specified by:
getPreProcessorForInputTypein classLayer- Parameters:
inputType- InputType to this layer- Returns:
- Null if no preprocessor is required, otherwise the type of preprocessor necessary for this layer/input combination
-
getRegularizationByParam
public List<Regularization> getRegularizationByParam(String param)
Description copied from class:LayerGet the regularization types (l1/l2/weight decay) for the given parameter. Different parameters may have different regularization types.- Specified by:
getRegularizationByParamin interfaceTrainingConfig- Specified by:
getRegularizationByParamin classLayer- Parameters:
param- Parameter name ("W", "b" etc)- Returns:
- Regularization types (if any) for the specified parameter
-
isPretrainParam
public boolean isPretrainParam(String paramName)
Description copied from class:LayerIs the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop.
Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs.- Specified by:
isPretrainParamin interfaceTrainingConfig- Specified by:
isPretrainParamin classLayer- Parameters:
paramName- Parameter name/key- Returns:
- True if the parameter is for layerwise pretraining only, false otherwise
-
getUpdaterByParam
public IUpdater getUpdaterByParam(String paramName)
Description copied from class:LayerGet the updater for the given parameter. Typically the same updater will be used for all updaters, but this is not necessarily the case- Specified by:
getUpdaterByParamin interfaceTrainingConfig- Overrides:
getUpdaterByParamin classLayer- Parameters:
paramName- Parameter name- Returns:
- IUpdater for the parameter
-
getGradientNormalization
public GradientNormalization getGradientNormalization()
- Returns:
- The gradient normalization configuration
-
getGradientNormalizationThreshold
public double getGradientNormalizationThreshold()
- Returns:
- The gradient normalization threshold
-
getMemoryReport
public LayerMemoryReport getMemoryReport(InputType inputType)
Description copied from class:LayerThis is a report of the estimated memory consumption for the given layer- Specified by:
getMemoryReportin classLayer- Parameters:
inputType- Input type to the layer. Memory consumption is often a function of the input type- Returns:
- Memory report for the layer
-
setLayerName
public void setLayerName(String layerName)
-
setConstraints
public void setConstraints(List<LayerConstraint> constraints)
-
-