Class AbstractSameDiffLayer
- java.lang.Object
-
- org.deeplearning4j.nn.conf.layers.Layer
-
- org.deeplearning4j.nn.conf.layers.samediff.AbstractSameDiffLayer
-
- All Implemented Interfaces:
Serializable,Cloneable,TrainingConfig
- Direct Known Subclasses:
SameDiffLayer,SameDiffOutputLayer
public abstract class AbstractSameDiffLayer extends Layer
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classAbstractSameDiffLayer.Builder<T extends AbstractSameDiffLayer.Builder<T>>
-
Field Summary
Fields Modifier and Type Field Description protected IUpdaterbiasUpdaterprotected GradientNormalizationgradientNormalizationprotected doublegradientNormalizationThresholdprotected List<Regularization>regularizationprotected List<Regularization>regularizationBiasprotected IUpdaterupdater-
Fields inherited from class org.deeplearning4j.nn.conf.layers.Layer
constraints, iDropout, layerName
-
-
Constructor Summary
Constructors Modifier Constructor Description protectedAbstractSameDiffLayer()protectedAbstractSameDiffLayer(AbstractSameDiffLayer.Builder builder)
-
Method Summary
All Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description voidapplyGlobalConfig(NeuralNetConfiguration.Builder b)voidapplyGlobalConfigToLayer(NeuralNetConfiguration.Builder globalConfig)abstract voiddefineParameters(SDLayerParams params)Define the parameters for the network.SDLayerParamsgetLayerParams()LayerMemoryReportgetMemoryReport(InputType inputType)This is a report of the estimated memory consumption for the given layerInputPreProcessorgetPreProcessorForInputType(InputType inputType)For the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessorList<Regularization>getRegularizationByParam(String paramName)Get the regularization types (l1/l2/weight decay) for the given parameter.IUpdatergetUpdaterByParam(String paramName)Get the updater for the given parameter.abstract voidinitializeParameters(Map<String,INDArray> params)Set the initial parameter values for this layer, if requiredParamInitializerinitializer()protected voidinitWeights(int fanIn, int fanOut, WeightInit weightInit, INDArray array)abstract Layerinstantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)booleanisPretrainParam(String paramName)Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop.
Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs.INDArrayonesMaskForInput(INDArray input)This method generates an "all ones" mask array for use in the SameDiff model when none is provided.charparamReshapeOrder(String param)Returns the memory layout ('c' or 'f' order - i.e., row/column major) of the parameters.voidsetNIn(InputType inputType, boolean override)Set the nIn value (number of inputs, or input channels for CNNs) based on the given input type-
Methods inherited from class org.deeplearning4j.nn.conf.layers.Layer
clone, getOutputType, initializeConstraints, resetLayerDefaultConfig, setDataType
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.deeplearning4j.nn.api.TrainingConfig
getGradientNormalization, getGradientNormalizationThreshold, getLayerName
-
-
-
-
Field Detail
-
regularization
protected List<Regularization> regularization
-
regularizationBias
protected List<Regularization> regularizationBias
-
updater
protected IUpdater updater
-
biasUpdater
protected IUpdater biasUpdater
-
gradientNormalization
protected GradientNormalization gradientNormalization
-
gradientNormalizationThreshold
protected double gradientNormalizationThreshold
-
-
Constructor Detail
-
AbstractSameDiffLayer
protected AbstractSameDiffLayer(AbstractSameDiffLayer.Builder builder)
-
AbstractSameDiffLayer
protected AbstractSameDiffLayer()
-
-
Method Detail
-
getRegularizationByParam
public List<Regularization> getRegularizationByParam(String paramName)
Description copied from class:LayerGet the regularization types (l1/l2/weight decay) for the given parameter. Different parameters may have different regularization types.- Specified by:
getRegularizationByParamin interfaceTrainingConfig- Specified by:
getRegularizationByParamin classLayer- Parameters:
paramName- Parameter name ("W", "b" etc)- Returns:
- Regularization types (if any) for the specified parameter
-
getLayerParams
public SDLayerParams getLayerParams()
-
setNIn
public void setNIn(InputType inputType, boolean override)
Description copied from class:LayerSet the nIn value (number of inputs, or input channels for CNNs) based on the given input type
-
getPreProcessorForInputType
public InputPreProcessor getPreProcessorForInputType(InputType inputType)
Description copied from class:LayerFor the given type of input to this layer, what preprocessor (if any) is required?
Returns null if no preprocessor is required, otherwise returns an appropriateInputPreProcessorfor this layer, such as aCnnToFeedForwardPreProcessor- Specified by:
getPreProcessorForInputTypein classLayer- Parameters:
inputType- InputType to this layer- Returns:
- Null if no preprocessor is required, otherwise the type of preprocessor necessary for this layer/input combination
-
applyGlobalConfigToLayer
public void applyGlobalConfigToLayer(NeuralNetConfiguration.Builder globalConfig)
-
defineParameters
public abstract void defineParameters(SDLayerParams params)
Define the parameters for the network. UseSDLayerParams.addWeightParam(String, long...)andSDLayerParams.addBiasParam(String, long...)- Parameters:
params- Object used to set parameters for this layer
-
initializeParameters
public abstract void initializeParameters(Map<String,INDArray> params)
Set the initial parameter values for this layer, if required- Parameters:
params- Parameter arrays that may be initialized
-
instantiate
public abstract Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)
- Specified by:
instantiatein classLayer
-
initializer
public ParamInitializer initializer()
- Specified by:
initializerin classLayer- Returns:
- The parameter initializer for this model
-
getUpdaterByParam
public IUpdater getUpdaterByParam(String paramName)
Description copied from class:LayerGet the updater for the given parameter. Typically the same updater will be used for all updaters, but this is not necessarily the case- Specified by:
getUpdaterByParamin interfaceTrainingConfig- Overrides:
getUpdaterByParamin classLayer- Parameters:
paramName- Parameter name- Returns:
- IUpdater for the parameter
-
isPretrainParam
public boolean isPretrainParam(String paramName)
Description copied from class:LayerIs the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop.
Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs.- Specified by:
isPretrainParamin interfaceTrainingConfig- Specified by:
isPretrainParamin classLayer- Parameters:
paramName- Parameter name/key- Returns:
- True if the parameter is for layerwise pretraining only, false otherwise
-
getMemoryReport
public LayerMemoryReport getMemoryReport(InputType inputType)
Description copied from class:LayerThis is a report of the estimated memory consumption for the given layer- Specified by:
getMemoryReportin classLayer- Parameters:
inputType- Input type to the layer. Memory consumption is often a function of the input type- Returns:
- Memory report for the layer
-
paramReshapeOrder
public char paramReshapeOrder(String param)
Returns the memory layout ('c' or 'f' order - i.e., row/column major) of the parameters. In most cases, this can/should be left- Parameters:
param- Name of the parameter- Returns:
- Memory layout ('c' or 'f') of the parameter
-
initWeights
protected void initWeights(int fanIn, int fanOut, WeightInit weightInit, INDArray array)
-
applyGlobalConfig
public void applyGlobalConfig(NeuralNetConfiguration.Builder b)
-
-