Class OCNNOutputLayer
- java.lang.Object
-
- org.deeplearning4j.nn.layers.AbstractLayer<LayerConfT>
-
- org.deeplearning4j.nn.layers.BaseLayer<LayerConfT>
-
- org.deeplearning4j.nn.layers.BaseOutputLayer<OCNNOutputLayer>
-
- org.deeplearning4j.nn.layers.ocnn.OCNNOutputLayer
-
- All Implemented Interfaces:
Serializable,Cloneable,Classifier,Layer,IOutputLayer,Model,Trainable
public class OCNNOutputLayer extends BaseOutputLayer<OCNNOutputLayer>
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description classOCNNOutputLayer.OCNNLossFunction-
Nested classes/interfaces inherited from interface org.deeplearning4j.nn.api.Layer
Layer.TrainingMode, Layer.Type
-
-
Field Summary
-
Fields inherited from class org.deeplearning4j.nn.layers.BaseOutputLayer
inputMaskArray, inputMaskArrayState, labels
-
Fields inherited from class org.deeplearning4j.nn.layers.BaseLayer
gradient, gradientsFlattened, gradientViews, optimizer, params, paramsFlattened, score, weightNoiseParams
-
Fields inherited from class org.deeplearning4j.nn.layers.AbstractLayer
cacheMode, conf, dataType, dropoutApplied, epochCount, index, input, inputModificationAllowed, iterationCount, maskArray, maskState, preOutput, trainingListeners
-
-
Constructor Summary
Constructors Constructor Description OCNNOutputLayer(NeuralNetConfiguration conf, DataType dataType)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description INDArrayactivate(boolean training, LayerWorkspaceMgr workspaceMgr)Perform forward pass and return the activations array with the last set inputINDArrayactivate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)Perform forward pass and return the activations array with the specified inputPair<Gradient,INDArray>backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)Calculate the gradient relative to the error in the next layerdoublecomputeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)Compute score after labels and input have been set.INDArraycomputeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)Compute the score for each example individually, after labels and input have been set.doublef1Score(INDArray examples, INDArray labels)Returns the f1 score for the given examples.protected INDArraygetLabels2d(LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)booleanneedsLabels()Returns true if labels are required for this output layerprotected INDArraypreOutput2d(boolean training, LayerWorkspaceMgr workspaceMgr)voidsetLabels(INDArray labels)Set the labels array for this output layerLayer.Typetype()Returns the layer type-
Methods inherited from class org.deeplearning4j.nn.layers.BaseOutputLayer
applyMask, clear, computeGradientAndScore, f1Score, fit, fit, fit, fit, fit, getLabels, gradient, gradientAndScore, hasBias, isPretrainLayer, numLabels, predict, predict, setScoreWithZ
-
Methods inherited from class org.deeplearning4j.nn.layers.BaseLayer
calcRegularizationScore, clearNoiseWeightParams, clone, fit, getGradientsViewArray, getOptimizer, getParam, getParamWithNoise, hasLayerNorm, layerConf, numParams, params, paramTable, paramTable, preOutput, preOutputWithPreNorm, score, setBackpropGradientsViewArray, setParam, setParams, setParams, setParamsViewArray, setParamTable, toString, update, update
-
Methods inherited from class org.deeplearning4j.nn.layers.AbstractLayer
addListeners, allowInputModification, applyConstraints, applyDropOutIfNecessary, assertInputSet, backpropDropOutIfPresent, batchSize, close, conf, feedForwardMaskArray, getConfig, getEpochCount, getHelper, getIndex, getInput, getInputMiniBatchSize, getListeners, getMaskArray, init, input, layerId, numParams, setCacheMode, setConf, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setListeners, setListeners, setMaskArray, updaterDivideByMinibatch
-
Methods inherited from class java.lang.Object
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface org.deeplearning4j.nn.api.Layer
allowInputModification, calcRegularizationScore, clearNoiseWeightParams, feedForwardMaskArray, getEpochCount, getHelper, getIndex, getInputMiniBatchSize, getIterationCount, getListeners, getMaskArray, setCacheMode, setEpochCount, setIndex, setInput, setInputMiniBatchSize, setIterationCount, setListeners, setListeners, setMaskArray
-
Methods inherited from interface org.deeplearning4j.nn.api.Model
addListeners, applyConstraints, batchSize, close, conf, fit, getGradientsViewArray, getOptimizer, getParam, init, input, numParams, numParams, params, paramTable, paramTable, score, setBackpropGradientsViewArray, setConf, setParam, setParams, setParamsViewArray, setParamTable, update, update
-
Methods inherited from interface org.deeplearning4j.nn.api.Trainable
getConfig, getGradientsViewArray, numParams, params, paramTable, updaterDivideByMinibatch
-
-
-
-
Constructor Detail
-
OCNNOutputLayer
public OCNNOutputLayer(NeuralNetConfiguration conf, DataType dataType)
-
-
Method Detail
-
setLabels
public void setLabels(INDArray labels)
Description copied from interface:IOutputLayerSet the labels array for this output layer- Specified by:
setLabelsin interfaceIOutputLayer- Overrides:
setLabelsin classBaseOutputLayer<OCNNOutputLayer>- Parameters:
labels- Labels array to set
-
computeScore
public double computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr)Compute score after labels and input have been set.- Specified by:
computeScorein interfaceIOutputLayer- Overrides:
computeScorein classBaseOutputLayer<OCNNOutputLayer>- Parameters:
fullNetRegTerm- Regularization score term for the entire networktraining- whether score should be calculated at train or test time (this affects things like application of dropout, etc)- Returns:
- score (loss function)
-
needsLabels
public boolean needsLabels()
Description copied from interface:IOutputLayerReturns true if labels are required for this output layer- Specified by:
needsLabelsin interfaceIOutputLayer- Overrides:
needsLabelsin classBaseOutputLayer<OCNNOutputLayer>- Returns:
- true if this output layer needs labels or not
-
backpropGradient
public Pair<Gradient,INDArray> backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr)
Description copied from interface:LayerCalculate the gradient relative to the error in the next layer- Specified by:
backpropGradientin interfaceLayer- Overrides:
backpropGradientin classBaseOutputLayer<OCNNOutputLayer>- Parameters:
epsilon- w^(L+1)*delta^(L+1). Or, equiv: dC/da, i.e., (dC/dz)*(dz/da) = dC/da, where C is cost function a=sigma(z) is activation.workspaceMgr- Workspace manager- Returns:
- Pair
where Gradient is gradient for this layer, INDArray is epsilon (activation gradient) needed by next layer, but before element-wise multiply by sigmaPrime(z). So for standard feed-forward layer, if this layer is L, then return.getSecond() == dL/dIn = (w^(L)*(delta^(L))^T)^T. Note that the returned array should be placed in the ArrayType.ACTIVATION_GRADworkspace via the workspace manager
-
activate
public INDArray activate(INDArray input, boolean training, LayerWorkspaceMgr workspaceMgr)
Description copied from interface:LayerPerform forward pass and return the activations array with the specified input- Specified by:
activatein interfaceLayer- Overrides:
activatein classBaseOutputLayer<OCNNOutputLayer>- Parameters:
input- the input to usetraining- train or test modeworkspaceMgr- Workspace manager.- Returns:
- Activations array. Note that the returned array should be placed in the
ArrayType.ACTIVATIONSworkspace via the workspace manager
-
f1Score
public double f1Score(INDArray examples, INDArray labels)
Returns the f1 score for the given examples.- Specified by:
f1Scorein interfaceClassifier- Overrides:
f1Scorein classBaseOutputLayer<OCNNOutputLayer>- Parameters:
examples- te the examples to classify (one example in each row)labels- the true labels- Returns:
- the scores for each ndarray
-
type
public Layer.Type type()
Description copied from interface:LayerReturns the layer type- Specified by:
typein interfaceLayer- Overrides:
typein classAbstractLayer<OCNNOutputLayer>- Returns:
-
preOutput2d
protected INDArray preOutput2d(boolean training, LayerWorkspaceMgr workspaceMgr)
- Overrides:
preOutput2din classBaseOutputLayer<OCNNOutputLayer>
-
getLabels2d
protected INDArray getLabels2d(LayerWorkspaceMgr workspaceMgr, ArrayType arrayType)
- Specified by:
getLabels2din classBaseOutputLayer<OCNNOutputLayer>
-
activate
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr)
Description copied from interface:LayerPerform forward pass and return the activations array with the last set input- Specified by:
activatein interfaceLayer- Overrides:
activatein classBaseLayer<OCNNOutputLayer>- Parameters:
training- training or test modeworkspaceMgr- Workspace manager- Returns:
- the activation (layer output) of the last specified input. Note that the returned array should be placed
in the
ArrayType.ACTIVATIONSworkspace via the workspace manager
-
computeScoreForExamples
public INDArray computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr)
Compute the score for each example individually, after labels and input have been set.- Specified by:
computeScoreForExamplesin interfaceIOutputLayer- Overrides:
computeScoreForExamplesin classBaseOutputLayer<OCNNOutputLayer>- Parameters:
fullNetRegTerm- Regularization score term for the entire network (or, 0.0 to not include regularization)- Returns:
- A column INDArray of shape [numExamples,1], where entry i is the score of the ith example
-
-