public class RepeatVector extends FeedForwardLayer
| Modifier and Type | Class and Description |
|---|---|
static class |
RepeatVector.Builder<T extends RepeatVector.Builder<T>> |
nIn, nOut, timeDistributedFormatactivationFn, biasInit, biasUpdater, gainInit, gradientNormalization, gradientNormalizationThreshold, iUpdater, regularization, regularizationBias, weightInitFn, weightNoiseconstraints, iDropout, layerName| Modifier | Constructor and Description |
|---|---|
protected |
RepeatVector(RepeatVector.Builder builder) |
| Modifier and Type | Method and Description |
|---|---|
RepeatVector |
clone() |
LayerMemoryReport |
getMemoryReport(InputType inputType)
This is a report of the estimated memory consumption for the given layer
|
InputType |
getOutputType(int layerIndex,
InputType inputType)
For a given type of input to this layer, what is the type of the output?
|
ParamInitializer |
initializer() |
Layer |
instantiate(NeuralNetConfiguration conf,
Collection<TrainingListener> trainingListeners,
int layerIndex,
INDArray layerParamsView,
boolean initializeParams,
DataType networkDataType) |
boolean |
isPretrainParam(String paramName)
Is the specified parameter a layerwise pretraining only parameter?
For example, visible bias params in an autoencoder (or, decoder params in a variational autoencoder) aren't used during supervised backprop. Layers (like DenseLayer, etc) with no pretrainable parameters will return false for all (valid) inputs. |
getPreProcessorForInputType, setNIngetGradientNormalization, getRegularizationByParam, getUpdaterByParam, resetLayerDefaultConfiginitializeConstraints, setDataTypeequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetGradientNormalizationThreshold, getLayerNameprotected RepeatVector(RepeatVector.Builder builder)
public RepeatVector clone()
public ParamInitializer initializer()
initializer in class Layerpublic Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType)
instantiate in class Layerpublic InputType getOutputType(int layerIndex, InputType inputType)
LayergetOutputType in class FeedForwardLayerlayerIndex - Index of the layerinputType - Type of input for the layerpublic LayerMemoryReport getMemoryReport(InputType inputType)
LayergetMemoryReport in class LayerinputType - Input type to the layer. Memory consumption is often a function of the input
typepublic boolean isPretrainParam(String paramName)
LayerisPretrainParam in interface TrainingConfigisPretrainParam in class FeedForwardLayerparamName - Parameter name/keyCopyright © 2020. All rights reserved.