001 /* -*- Mode: java; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- 002 * 003 * The contents of this file are subject to the Netscape Public 004 * License Version 1.1 (the "License"); you may not use this file 005 * except in compliance with the License. You may obtain a copy of 006 * the License at http://www.mozilla.org/NPL/ 007 * 008 * Software distributed under the License is distributed on an "AS 009 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or 010 * implied. See the License for the specific language governing 011 * rights and limitations under the License. 012 * 013 * The Original Code is Rhino code, released 014 * May 6, 1999. 015 * 016 * The Initial Developer of the Original Code is Netscape 017 * Communications Corporation. Portions created by Netscape are 018 * Copyright (C) 1997-2000 Netscape Communications Corporation. All 019 * Rights Reserved. 020 * 021 * Contributor(s): 022 * Patrick Beard 023 * Norris Boyd 024 * Igor Bukanov 025 * Roger Lawrence 026 * Frank Mitchell 027 * Andrew Wason 028 * 029 * Alternatively, the contents of this file may be used under the 030 * terms of the GNU Public License (the "GPL"), in which case the 031 * provisions of the GPL are applicable instead of those above. 032 * If you wish to allow use of your version of this file only 033 * under the terms of the GPL and not to allow others to use your 034 * version of this file under the NPL, indicate your decision by 035 * deleting the provisions above and replace them with the notice 036 * and other provisions required by the GPL. If you do not delete 037 * the provisions above, a recipient may use your version of this 038 * file under either the NPL or the GPL. 039 */ 040 // Modified by Google 041 042 package com.google.gwt.dev.js.rhino; 043 044 /** 045 * This is the class that implements the runtime. 046 */ 047 048 public class ScriptRuntime { 049 050 public static double NaN = 0.0d / 0.0; 051 052 /* 053 * Helper function for toNumber, parseInt, and TokenStream.getToken. 054 */ 055 static double stringToNumber(String s, int start, int radix) { 056 char digitMax = '9'; 057 char lowerCaseBound = 'a'; 058 char upperCaseBound = 'A'; 059 int len = s.length(); 060 if (radix < 10) { 061 digitMax = (char) ('0' + radix - 1); 062 } 063 if (radix > 10) { 064 lowerCaseBound = (char) ('a' + radix - 10); 065 upperCaseBound = (char) ('A' + radix - 10); 066 } 067 int end; 068 double sum = 0.0; 069 for (end=start; end < len; end++) { 070 char c = s.charAt(end); 071 int newDigit; 072 if ('0' <= c && c <= digitMax) 073 newDigit = c - '0'; 074 else if ('a' <= c && c < lowerCaseBound) 075 newDigit = c - 'a' + 10; 076 else if ('A' <= c && c < upperCaseBound) 077 newDigit = c - 'A' + 10; 078 else 079 break; 080 sum = sum*radix + newDigit; 081 } 082 if (start == end) { 083 return NaN; 084 } 085 if (sum >= 9007199254740992.0) { 086 if (radix == 10) { 087 /* If we're accumulating a decimal number and the number 088 * is >= 2^53, then the result from the repeated multiply-add 089 * above may be inaccurate. Call Java to get the correct 090 * answer. 091 */ 092 try { 093 return Double.valueOf(s.substring(start, end)).doubleValue(); 094 } catch (NumberFormatException nfe) { 095 return NaN; 096 } 097 } else if (radix == 2 || radix == 4 || radix == 8 || 098 radix == 16 || radix == 32) 099 { 100 /* The number may also be inaccurate for one of these bases. 101 * This happens if the addition in value*radix + digit causes 102 * a round-down to an even least significant mantissa bit 103 * when the first dropped bit is a one. If any of the 104 * following digits in the number (which haven't been added 105 * in yet) are nonzero then the correct action would have 106 * been to round up instead of down. An example of this 107 * occurs when reading the number 0x1000000000000081, which 108 * rounds to 0x1000000000000000 instead of 0x1000000000000100. 109 */ 110 BinaryDigitReader bdr = new BinaryDigitReader(radix, s, start, end); 111 int bit; 112 sum = 0.0; 113 114 /* Skip leading zeros. */ 115 do { 116 bit = bdr.getNextBinaryDigit(); 117 } while (bit == 0); 118 119 if (bit == 1) { 120 /* Gather the 53 significant bits (including the leading 1) */ 121 sum = 1.0; 122 for (int j = 52; j != 0; j--) { 123 bit = bdr.getNextBinaryDigit(); 124 if (bit < 0) 125 return sum; 126 sum = sum*2 + bit; 127 } 128 /* bit54 is the 54th bit (the first dropped from the mantissa) */ 129 int bit54 = bdr.getNextBinaryDigit(); 130 if (bit54 >= 0) { 131 double factor = 2.0; 132 int sticky = 0; /* sticky is 1 if any bit beyond the 54th is 1 */ 133 int bit3; 134 135 while ((bit3 = bdr.getNextBinaryDigit()) >= 0) { 136 sticky |= bit3; 137 factor *= 2; 138 } 139 sum += bit54 & (bit | sticky); 140 sum *= factor; 141 } 142 } 143 } 144 /* We don't worry about inaccurate numbers for any other base. */ 145 } 146 return sum; 147 } 148 149 }