Class that supports the registration of a “subject” being specified and tested via the
instance referenced from FixtureAsyncFlatSpec
's behavior
field.
Class that supports the registration of a “subject” being specified and tested via the
instance referenced from FixtureAsyncFlatSpec
's behavior
field.
This field enables syntax such as the following subject registration:
behavior of "A Stack" ^
For more information and examples of the use of the behavior
field, see the main documentation
for trait AnyFlatSpec
.
Class that supports registration of ignored tests via the IgnoreWord
instance referenced
from FixtureAsyncFlatSpec
's ignore
field.
Class that supports registration of ignored tests via the IgnoreWord
instance referenced
from FixtureAsyncFlatSpec
's ignore
field.
This class enables syntax such as the following registration of an ignored test:
ignore should "pop values in last-in-first-out order" in { ... } ^
In addition, it enables syntax such as the following registration of an ignored, pending test:
ignore should "pop values in last-in-first-out order" is (pending) ^
Note: the is
method is provided for completeness and design symmetry, given there's no way
to prevent changing is
to ignore
and marking a pending test as ignored that way.
Although it isn't clear why someone would want to mark a pending test as ignored, it can be done.
And finally, it also enables syntax such as the following ignored, tagged test registration:
ignore should "pop values in last-in-first-out order" taggedAs(SlowTest) in { ... } ^
For more information and examples of the use of the ignore
field, see the Ignored tests section
in the main documentation for trait AnyFlatSpec
.
Class that supports registration of ignored, tagged tests via the IgnoreWord
instance referenced
from FixtureAsyncFlatSpec
's ignore
field.
Class that supports registration of ignored, tagged tests via the IgnoreWord
instance referenced
from FixtureAsyncFlatSpec
's ignore
field.
This class enables syntax such as the following registration of an ignored, tagged test:
ignore should "pop values in last-in-first-out order" taggedAs(SlowTest) in { ... } ^
In addition, it enables syntax such as the following registration of an ignored, tagged, pending test:
ignore should "pop values in last-in-first-out order" taggedAs(SlowTest) is (pending) ^
Note: the is
method is provided for completeness and design symmetry, given there's no way
to prevent changing is
to ignore
and marking a pending test as ignored that way.
Although it isn't clear why someone would want to mark a pending test as ignored, it can be done.
For more information and examples of the use of the ignore
field, see
the Ignored tests section
in the main documentation for trait AnyFlatSpec
. For examples of tagged test registration, see
the Tagging tests section in the main documentation for trait AnyFlatSpec
.
Class that supports registration of ignored tests via the instance referenced from FixtureAsyncFlatSpec
's ignore
field.
Class that supports registration of ignored tests via the instance referenced from FixtureAsyncFlatSpec
's ignore
field.
This class enables syntax such as the following registration of an ignored test:
ignore should "pop values in last-in-first-out order" in { ... } ^
For more information and examples of the use of the ignore
field, see Ignored tests section
in the main documentation for this trait.
Class that supports test registration in shorthand form.
Class that supports test registration in shorthand form.
For example, this class enables syntax such as the following test registration in shorthand form:
"A Stack (when empty)" should "be empty" in { ... } ^
This class also enables syntax such as the following ignored test registration in shorthand form:
"A Stack (when empty)" should "be empty" ignore { ... } ^
This class is used via an implicit conversion (named convertToInAndIgnoreMethods
)
from ResultOfStringPassedToVerb
. The ResultOfStringPassedToVerb
class
does not declare any methods named in
, because the
type passed to in
differs in a AsyncFlatSpec
and a org.scalatest.flatspec.FixtureAsyncFlatSpec
.
A org.scalatest.flatspec.FixtureAsyncFlatSpec
needs two in
methods, one that takes a no-arg
test function and another that takes a one-arg test function (a test that takes a
FixtureParam
as its parameter). By constrast, a AsyncFlatSpec
needs
only one in
method that takes a by-name parameter. As a result,
AsyncFlatSpec
and org.scalatest.flatspec.FixtureAsyncFlatSpec
each provide an implicit conversion
from ResultOfStringPassedToVerb
to a type that provides the appropriate
in
methods.
Class that supports tagged test registration in shorthand form.
Class that supports tagged test registration in shorthand form.
For example, this class enables syntax such as the following tagged test registration in shorthand form:
"A Stack (when empty)" should "be empty" taggedAs() in { ... } ^
This class also enables syntax such as the following tagged, ignored test registration in shorthand form:
"A Stack (when empty)" should "be empty" taggedAs(SlowTest) ignore { ... } ^
This class is used via an implicit conversion (named convertToInAndIgnoreMethodsAfterTaggedAs
)
from ResultOfTaggedAsInvocation
. The ResultOfTaggedAsInvocation
class
does not declare any methods named in
, because the
type passed to in
differs in a AsyncFlatSpec
and a FixtureAsyncFlatSpec
.
A FixtureAsyncFlatSpec
needs two in
methods, one that takes a no-arg
test function and another that takes a one-arg test function (a test that takes a
FixtureParam
as its parameter). By constrast, a AsyncFlatSpec
needs
only one in
method that takes a by-name parameter. As a result,
AsyncFlatSpec
and FixtureAsyncFlatSpec
each provide an implicit conversion
from ResultOfTaggedAsInvocation
to a type that provides the appropriate
in
methods.
Class that supports test registration via the instance referenced from FixtureAnyFlatSpec
's it
field.
Class that supports test registration via the instance referenced from FixtureAnyFlatSpec
's it
field.
This class enables syntax such as the following test registration:
it should "pop values in last-in-first-out order" in { ... } ^
It also enables syntax such as the following registration of an ignored test:
it should "pop values in last-in-first-out order" ignore { ... } ^
In addition, it enables syntax such as the following registration of a pending test:
it should "pop values in last-in-first-out order" is (pending) ^
And finally, it also enables syntax such as the following tagged test registration:
it should "pop values in last-in-first-out order" taggedAs(SlowTest) in { ... } ^
For more information and examples of the use of the it
field, see the main documentation
for trait AnyFlatSpec
.
Class that supports the registration of tagged tests via the ItWord
instance
referenced from FixtureAsyncFlatSpec
's it
field.
Class that supports the registration of tagged tests via the ItWord
instance
referenced from FixtureAsyncFlatSpec
's it
field.
This class enables syntax such as the following tagged test registration:
it should "pop values in last-in-first-out order" taggedAs(SlowTest) in { ... } ^
It also enables syntax such as the following registration of an ignored, tagged test:
it should "pop values in last-in-first-out order" taggedAs(SlowTest) ignore { ... } ^
In addition, it enables syntax such as the following registration of a pending, tagged test:
it should "pop values in last-in-first-out order" taggedAs(SlowTest) is (pending) ^
For more information and examples of the use of the it
field to register tagged tests, see
the Tagging tests section in the main documentation for trait AnyFlatSpec
.
Class that supports test (and shared test) registration via the instance referenced from FixtureAsyncFlatSpec
's it
field.
Class that supports test (and shared test) registration via the instance referenced from FixtureAsyncFlatSpec
's it
field.
This class enables syntax such as the following test registration:
it should "pop values in last-in-first-out order" in { ... } ^
It also enables syntax such as the following shared test registration:
it should behave like nonEmptyStack(lastItemPushed) ^
For more information and examples of the use of the it
field, see the main documentation
for trait AnyFlatSpec
.
Class that supports test registration via the instance referenced from FixtureAsyncFlatSpec
's it
field.
Class that supports test registration via the instance referenced from FixtureAsyncFlatSpec
's it
field.
This class enables syntax such as the following test registration:
they should "pop values in last-in-first-out order" in { ... } ^
It also enables syntax such as the following registration of an ignored test:
they should "pop values in last-in-first-out order" ignore { ... } ^
In addition, it enables syntax such as the following registration of a pending test:
they should "pop values in last-in-first-out order" is (pending) ^
And finally, it also enables syntax such as the following tagged test registration:
they should "pop values in last-in-first-out order" taggedAs(SlowTest) in { ... } ^
For more information and examples of the use of the it
field, see the main documentation
for trait AnyFlatSpec
.
Class that supports the registration of tagged tests via the TheyWord
instance
referenced from FixtureAsyncFlatSpec
's they
field.
Class that supports the registration of tagged tests via the TheyWord
instance
referenced from FixtureAsyncFlatSpec
's they
field.
This class enables syntax such as the following tagged test registration:
they should "pop values in last-in-first-out order" taggedAs(SlowTest) in { ... } ^
It also enables syntax such as the following registration of an ignored, tagged test:
they should "pop values in last-in-first-out order" taggedAs(SlowTest) ignore { ... } ^
In addition, it enables syntax such as the following registration of a pending, tagged test:
they should "pop values in last-in-first-out order" taggedAs(SlowTest) is (pending) ^
For more information and examples of the use of the it
field to register tagged tests, see
the Tagging tests section in the main documentation for trait AnyFlatSpec
.
Class that supports test (and shared test) registration via the instance referenced from FixtureAsyncFlatSpec
's they
field.
Class that supports test (and shared test) registration via the instance referenced from FixtureAsyncFlatSpec
's they
field.
This class enables syntax such as the following test registration:
they should "pop values in last-in-first-out order" in { ... } ^
It also enables syntax such as the following shared test registration:
they should behave like nonEmptyStack(lastItemPushed) ^
For more information and examples of the use of the it
field, see the main documentation
for trait AnyFlatSpec
.
Returns an Alerter
that during test execution will forward strings (and other objects) passed to its
apply
method to the current reporter.
Returns an Alerter
that during test execution will forward strings (and other objects) passed to its
apply
method to the current reporter. If invoked in a constructor, it
will register the passed string for forwarding later during test execution. If invoked while this
FixtureAsyncFlatSpec
is being executed, such as from inside a test function, it will forward the information to
the current reporter immediately. If invoked at any other time, it will
print to the standard output. This method can be called safely by any thread.
Supports shared test registration in FixtureAsyncFlatSpec
s.
Supports shared test registration in FixtureAsyncFlatSpec
s.
This field supports syntax such as the following:
it should behave like nonFullStack(stackWithOneItem) ^
For more information and examples of the use of behave
, see the Shared tests section
in the main documentation for trait AnyFlatSpec
.
Supports the registration of a “subject” being specified and tested.
Supports the registration of a “subject” being specified and tested.
This field enables syntax such as the following subject registration:
behavior of "A Stack" ^
For more information and examples of the use of the behavior
field, see the main documentation
for trait AnyFlatSpec
.
Implicitly converts an object of type ResultOfStringPassedToVerb
to an
InAndIgnoreMethods
, to enable in
and ignore
methods to be invokable on that object.
Implicitly converts an object of type ResultOfStringPassedToVerb
to an
InAndIgnoreMethods
, to enable in
and ignore
methods to be invokable on that object.
an ResultOfStringPassedToVerb
instance
Implicitly converts an object of type ResultOfTaggedAsInvocation
to an
InAndIgnoreMethodsAfterTaggedAs
, to enable in
and ignore
methods to be invokable on that object.
Implicitly converts an object of type ResultOfTaggedAsInvocation
to an
InAndIgnoreMethodsAfterTaggedAs
, to enable in
and ignore
methods to be invokable on that object.
an ResultOfTaggedAsInvocation
instance
Supports registration of ignored tests in FixtureAsyncFlatSpec
s.
Supports registration of ignored tests in FixtureAsyncFlatSpec
s.
This field enables syntax such as the following registration of an ignored test:
ignore should "pop values in last-in-first-out order" in { ... } ^
For more information and examples of the use of the ignore
field, see the
Ignored tests section in the main documentation for trait AnyFlatSpec
.
Returns an Informer
that during test execution will forward strings passed to its
apply
method to the current reporter.
Returns an Informer
that during test execution will forward strings passed to its
apply
method to the current reporter. If invoked in a constructor, it
will register the passed string for forwarding later during test execution. If invoked from inside a scope,
it will forward the information to the current reporter immediately. If invoked from inside a test function,
it will record the information and forward it to the current reporter only after the test completed, as recordedEvents
of the test completed event, such as TestSucceeded
. If invoked at any other time, it will print to the standard output.
This method can be called safely by any thread.
Supports test (and shared test) registration in FixtureAsyncFlatSpec
s.
Supports test (and shared test) registration in FixtureAsyncFlatSpec
s.
This field enables syntax such as the following test registration:
it should "pop values in last-in-first-out order" in { ... } ^
It also enables syntax such as the following shared test registration:
it should behave like nonEmptyStack(lastItemPushed) ^
For more information and examples of the use of the it
field, see the main documentation
for trait AnyFlatSpec
.
Returns a Documenter
that during test execution will forward strings passed to its
apply
method to the current reporter.
Returns a Documenter
that during test execution will forward strings passed to its
apply
method to the current reporter. If invoked in a constructor, it
will register the passed string for forwarding later during test execution. If invoked from inside a scope,
it will forward the information to the current reporter immediately. If invoked from inside a test function,
it will record the information and forward it to the current reporter only after the test completed, as recordedEvents
of the test completed event, such as TestSucceeded
. If invoked at any other time, it will print to the standard output.
This method can be called safely by any thread.
Returns a Notifier
that during test execution will forward strings (and other objects) passed to its
apply
method to the current reporter.
Returns a Notifier
that during test execution will forward strings (and other objects) passed to its
apply
method to the current reporter. If invoked in a constructor, it
will register the passed string for forwarding later during test execution. If invoked while this
FixtureAsyncFlatSpec
is being executed, such as from inside a test function, it will forward the information to
the current reporter immediately. If invoked at any other time, it will
print to the standard output. This method can be called safely by any thread.
Run a test.
Run a test. This trait's implementation runs the test registered with the name specified by
testName
. Each test's name is a concatenation of the text of all describers surrounding a test,
from outside in, and the test's spec text, with one space placed between each item. (See the documenation
for testNames
for an example.)
the name of one test to execute.
the Args
for this test
a Status
object that indicates when the test started by this method has completed, and whether or not it failed .
NullArgumentException
if testName
or args
is null
.
Run zero to many of this FixtureAsyncFlatSpec
's tests.
Run zero to many of this FixtureAsyncFlatSpec
's tests.
This method takes a testName
parameter that optionally specifies a test to invoke.
If testName
is Some
, this trait's implementation of this method
invokes runTest
on this object with passed args
.
This method takes an args
that contains a Set
of tag names that should be included (tagsToInclude
), and a Set
that should be excluded (tagsToExclude
), when deciding which of this Suite
's tests to execute.
If tagsToInclude
is empty, all tests will be executed
except those those belonging to tags listed in the tagsToExclude
Set
. If tagsToInclude
is non-empty, only tests
belonging to tags mentioned in tagsToInclude
, and not mentioned in tagsToExclude
will be executed. However, if testName
is Some
, tagsToInclude
and tagsToExclude
are essentially ignored.
Only if testName
is None
will tagsToInclude
and tagsToExclude
be consulted to
determine which of the tests named in the testNames
Set
should be run. For more information on trait tags, see the main documentation for this trait.
If testName
is None
, this trait's implementation of this method
invokes testNames
on this Suite
to get a Set
of names of tests to potentially execute.
(A testNames
value of None
essentially acts as a wildcard that means all tests in
this Suite
that are selected by tagsToInclude
and tagsToExclude
should be executed.)
For each test in the testName
Set
, in the order
they appear in the iterator obtained by invoking the elements
method on the Set
, this trait's implementation
of this method checks whether the test should be run based on the tagsToInclude
and tagsToExclude
Set
s.
If so, this implementation invokes runTest
with the passed args
.
an optional name of one test to execute. If None
, all relevant tests should be executed.
I.e., None
acts like a wildcard that means execute all relevant tests in this FixtureAsyncFlatSpecLike
.
the Args
for this run
a Status
object that indicates when all tests started by this method have completed, and whether or not a failure occurred.
NullArgumentException
if any of testName
or args
is null
.
Supports the shorthand form of shared test registration.
Supports the shorthand form of shared test registration.
For example, this method enables syntax such as the following:
"A Stack (with one item)" should behave like nonEmptyStack(stackWithOneItem, lastValuePushed) ^
This function is passed as an implicit parameter to a should
method
provided in ShouldVerb
, a must
method
provided in MustVerb
, and a can
method
provided in CanVerb
. When invoked, this function registers the
subject description (the parameter to the function) and returns a BehaveWord
.
Supports the shorthand form of test registration.
Supports the shorthand form of test registration.
For example, this method enables syntax such as the following:
"A Stack (when empty)" should "be empty" in { ... } ^
This function is passed as an implicit parameter to a should
method
provided in ShouldVerb
, a must
method
provided in MustVerb
, and a can
method
provided in CanVerb
. When invoked, this function registers the
subject description (the first parameter to the function) and returns a ResultOfStringPassedToVerb
initialized with the verb and rest parameters (the second and third parameters to
the function, respectively).
A Map
whose keys are String
tag names to which tests in this FixtureAsyncFlatSpec
belong, and values
the Set
of test names that belong to each tag.
A Map
whose keys are String
tag names to which tests in this FixtureAsyncFlatSpec
belong, and values
the Set
of test names that belong to each tag. If this FixtureAsyncFlatSpec
contains no tags, this method returns an empty Map
.
This trait's implementation returns tags that were passed as strings contained in Tag
objects passed to
methods test
and ignore
.
In addition, this trait's implementation will also auto-tag tests with class level annotations. For example, if you annotate @Ignore at the class level, all test methods in the class will be auto-annotated with @Ignore.
An immutable Set
of test names.
An immutable Set
of test names. If this FixtureAsyncFlatSpec
contains no tests, this method returns an
empty Set
.
This trait's implementation of this method will return a set that contains the names of all registered tests. The set's iterator will return those names in the order in which the tests were registered. Each test's name is composed of the concatenation of the text of each surrounding describer, in order from outside in, and the text of the example itself, with all components separated by a space.
the Set
of test names
Supports test (and shared test) registration in FixtureAsyncFlatSpec
s.
Supports test (and shared test) registration in FixtureAsyncFlatSpec
s.
This field enables syntax such as the following test registration:
they should "pop values in last-in-first-out order" in { ... } ^
It also enables syntax such as the following shared test registration:
they should behave like nonEmptyStack(lastItemPushed) ^
For more information and examples of the use of the it
field, see the main documentation
for trait AnyFlatSpec
.
Returns a user friendly string for this suite, composed of the
simple name of the class (possibly simplified further by removing dollar signs if added by the Scala interpeter) and, if this suite
contains nested suites, the result of invoking toString
on each
of the nested suites, separated by commas and surrounded by parentheses.
Returns a user friendly string for this suite, composed of the
simple name of the class (possibly simplified further by removing dollar signs if added by the Scala interpeter) and, if this suite
contains nested suites, the result of invoking toString
on each
of the nested suites, separated by commas and surrounded by parentheses.
a user-friendly string for this suite
(Since version 3.1.0) The conversionCheckedConstraint method has been deprecated and will be removed in a future version of ScalaTest. It is no longer needed now that the deprecation period of ConversionCheckedTripleEquals has expired. It will not be replaced.
(Since version 3.1.0) The convertEquivalenceToAToBConversionConstraint method has been deprecated and will be removed in a future version of ScalaTest. It is no longer needed now that the deprecation period of ConversionCheckedTripleEquals has expired. It will not be replaced.
(Since version 3.1.0) The convertEquivalenceToBToAConversionConstraint method has been deprecated and will be removed in a future version of ScalaTest. It is no longer needed now that the deprecation period of ConversionCheckedTripleEquals has expired. It will not be replaced.
(Since version 3.1.0) The lowPriorityConversionCheckedConstraint method has been deprecated and will be removed in a future version of ScalaTest. It is no longer needed now that the deprecation period of ConversionCheckedTripleEquals has expired. It will not be replaced.
A sister class to
org.scalatest.flatspec.AsyncFlatSpec
that can pass a fixture object into its tests.FixtureAsyncFlatSpec
in situations for whichAsyncFlatSpec
would be a good choice, when all or most tests need the same fixture objects that must be cleaned up afterwards. Note:FixtureAsyncFlatSpec
is intended for use in special situations, with classAsyncFlatSpec
used for general needs. For more insight into whereFixtureAsyncFlatSpec
fits in the big picture, see thewithFixture(OneArgAsyncTest)
subsection of the Shared fixtures section in the documentation for classAsyncFlatSpec
.Class
FixtureAsyncFlatSpec
behaves similarly to classorg.scalatest.flatspec.AsyncFlatSpec
, except that tests may have a fixture parameter. The type of the fixture parameter is defined by the abstractFixtureParam
type, which is a member of this class. This class also contains an abstractwithFixture
method. ThiswithFixture
method takes aOneArgAsyncTest
, which is a nested trait defined as a member of this class.OneArgAsyncTest
has anapply
method that takes aFixtureParam
. Thisapply
method is responsible for running a test. This class'srunTest
method delegates the actual running of each test towithFixture(OneArgAsyncTest)
, passing in the test code to run via theOneArgAsyncTest
argument. ThewithFixture(OneArgAsyncTest)
method (abstract in this class) is responsible for creating the fixture argument and passing it to the test function.Subclasses of this class must, therefore, do three things differently from a plain old
org.scalatest.flatspec.AsyncFlatSpec
:FixtureParam
withFixture(OneArgAsyncTest)
methodIf the fixture you want to pass into your tests consists of multiple objects, you will need to combine them into one object to use this class. One good approach to passing multiple fixture objects is to encapsulate them in a case class. Here's an example:
To enable the stacking of traits that define
withFixture(NoArgAsyncTest)
, it is a good idea to letwithFixture(NoArgAsyncTest)
invoke the test function instead of invoking the test function directly. To do so, you'll need to convert theOneArgAsyncTest
to aNoArgAsyncTest
. You can do that by passing the fixture object to thetoNoArgAsyncTest
method ofOneArgAsyncTest
. In other words, instead of writing “test(theFixture)
”, you'd delegate responsibility for invoking the test function to thewithFixture(NoArgAsyncTest)
method of the same instance by writing:Here's a complete example:
If a test fails, the future returned by the
OneArgAsyncTest
function will result in an org.scalatest.Failed wrapping the exception describing the failure. To ensure clean up happens even if a test fails, you should invoke the test function and do the cleanup usingcomplete
-lastly
, as shown in the previous example. Thecomplete
-lastly
syntax, defined inCompleteLastly
, which is extended byAsyncTestSuite
, ensures the second, cleanup block of code is executed, whether the the first block throws an exception or returns a future. If it returns a future, the cleanup will be executed when the future completes.Sharing fixtures across classes
If multiple test classes need the same fixture, you can define the
FixtureParam
andwithFixture(OneArgAsyncTest)
implementations in a trait, then mix that trait into the test classes that need it. For example, if your application requires a database and your integration tests use that database, you will likely have many test classes that need a database fixture. You can create a "database fixture" trait that creates a database with a unique name, passes the connector into the test, then removes the database once the test completes. This is shown in the following example:Often when you create fixtures in a trait like
DbFixture
, you'll still need to enable individual test classes to "setup" a newly created fixture before it gets passed into the tests. A good way to accomplish this is to pass the newly created fixture into a setup method, likepopulateDb
in the previous example, before passing it to the test function. Classes that need to perform such setup can override the method, as doesExampleSuite
.If a test doesn't need the fixture, you can indicate that by providing a no-arg instead of a one-arg function, as is done in the third test in the previous example, “
test code should be clear
”. In other words, instead of starting your function literal with something like “db =>
”, you'd start it with “() =>
”. For such tests,runTest
will not invokewithFixture(OneArgAsyncTest)
. It will instead directly invokewithFixture(NoArgAsyncTest)
.Both examples shown above demonstrate the technique of giving each test its own "fixture sandbox" to play in. When your fixtures involve external side-effects, like creating files or databases, it is a good idea to give each file or database a unique name as is done in these examples. This keeps tests completely isolated, allowing you to run them in parallel if desired. You could mix
ParallelTestExecution
into either of theseExampleSuite
classes, and the tests would run in parallel just fine.