Trait

scalaz

IsomorphismBitraverse

Related Doc: package scalaz

Permalink

trait IsomorphismBitraverse[F[_, _], G[_, _]] extends Bitraverse[F] with IsomorphismBifunctor[F, G] with IsomorphismBifoldable[F, G]

Source
Isomorphism.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. IsomorphismBitraverse
  2. IsomorphismBifoldable
  3. IsomorphismBifunctor
  4. Bitraverse
  5. Bifoldable
  6. Bifunctor
  7. BifunctorParent
  8. AnyRef
  9. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait BifoldableLaw extends AnyRef

    Permalink
    Definition Classes
    Bifoldable
  2. class Bitraversal[G[_]] extends AnyRef

    Permalink
    Definition Classes
    Bitraverse

Abstract Value Members

  1. implicit abstract def G: Bitraverse[G]

    Permalink
  2. abstract def iso: Isomorphism.<~~>[F, G]

    Permalink
    Definition Classes
    IsomorphismBifunctor

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. final def biNaturalTrans: ~~>[F, G]

    Permalink
    Attributes
    protected[this]
    Definition Classes
    IsomorphismBitraverseIsomorphismBifoldable
  6. final def bifoldL[A, B, C](fa: F[A, B], z: C)(f: (C) ⇒ (A) ⇒ C)(g: (C) ⇒ (B) ⇒ C): C

    Permalink

    Curried version of bifoldLeft

    Curried version of bifoldLeft

    Definition Classes
    Bifoldable
  7. def bifoldLShape[A, B, C](fa: F[A, B], z: C)(f: (C, A) ⇒ C)(g: (C, B) ⇒ C): (C, F[Unit, Unit])

    Permalink
    Definition Classes
    Bitraverse
  8. final def bifoldLeft[A, B, C](fa: F[A, B], z: C)(f: (C, A) ⇒ C)(g: (C, B) ⇒ C): C

    Permalink

    bifoldRight, but defined to run in the opposite direction.

    bifoldRight, but defined to run in the opposite direction.

    Definition Classes
    IsomorphismBifoldableBifoldable
  9. final def bifoldMap[A, B, M](fab: F[A, B])(f: (A) ⇒ M)(g: (B) ⇒ M)(implicit arg0: Monoid[M]): M

    Permalink

    Accumulate As and Bs

    Accumulate As and Bs

    Definition Classes
    IsomorphismBifoldableBifoldable
  10. def bifoldMap1[A, B, M](fa: F[A, B])(f: (A) ⇒ M)(g: (B) ⇒ M)(implicit F: Semigroup[M]): Option[M]

    Permalink
    Definition Classes
    Bifoldable
  11. final def bifoldR[A, B, C](fa: F[A, B], z: ⇒ C)(f: (A) ⇒ (⇒ C) ⇒ C)(g: (B) ⇒ (⇒ C) ⇒ C): C

    Permalink

    Curried version of bifoldRight

    Curried version of bifoldRight

    Definition Classes
    Bifoldable
  12. final def bifoldRight[A, B, C](fab: F[A, B], z: ⇒ C)(f: (A, ⇒ C) ⇒ C)(g: (B, ⇒ C) ⇒ C): C

    Permalink

    Accumulate to C starting at the "right".

    Accumulate to C starting at the "right". f and g may be interleaved.

    Definition Classes
    IsomorphismBifoldableBifoldable
  13. def bifoldableLaw: BifoldableLaw

    Permalink
    Definition Classes
    Bifoldable
  14. val bifoldableSyntax: BifoldableSyntax[F]

    Permalink
    Definition Classes
    Bifoldable
  15. val bifunctorSyntax: BifunctorSyntax[F]

    Permalink
    Definition Classes
    Bifunctor
  16. def bimap[A, B, C, D](fab: F[A, B])(f: (A) ⇒ C, g: (B) ⇒ D): F[C, D]

    Permalink

    map over both type parameters.

    map over both type parameters.

    Definition Classes
    IsomorphismBifunctorBifunctor
  17. def bisequence[G[_], A, B](x: F[G[A], G[B]])(implicit arg0: Applicative[G]): G[F[A, B]]

    Permalink
    Definition Classes
    Bitraverse
  18. def bitraversal[G[_]](implicit arg0: Applicative[G]): Bitraversal[G]

    Permalink
    Definition Classes
    Bitraverse
  19. def bitraversalS[S]: Bitraversal[[β$2$]IndexedStateT[[X]X, S, S, β$2$]]

    Permalink
    Definition Classes
    Bitraverse
  20. def bitraverse[G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ G[C])(g: (B) ⇒ G[D])(implicit arg0: Applicative[G]): G[F[C, D]]

    Permalink
    Definition Classes
    Bitraverse
  21. def bitraverseF[G[_], A, B, C, D](f: (A) ⇒ G[C], g: (B) ⇒ G[D])(implicit arg0: Applicative[G]): (F[A, B]) ⇒ G[F[C, D]]

    Permalink

    Flipped bitraverse.

    Flipped bitraverse.

    Definition Classes
    Bitraverse
  22. def bitraverseImpl[H[_], A, B, C, D](fab: F[A, B])(f: (A) ⇒ H[C], g: (B) ⇒ H[D])(implicit arg0: Applicative[H]): H[F[C, D]]

    Permalink

    Collect Gs while applying f and g in some order.

    Collect Gs while applying f and g in some order.

    Definition Classes
    IsomorphismBitraverseBitraverse
  23. def bitraverseKTrampoline[S, G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ Kleisli[G, S, C])(g: (B) ⇒ Kleisli[G, S, D])(implicit arg0: Applicative[G]): Kleisli[G, S, F[C, D]]

    Permalink

    Bitraverse fa with a Kleisli[G, S, C] and Kleisli[G, S, D], internally using a Trampoline to avoid stack overflow.

    Bitraverse fa with a Kleisli[G, S, C] and Kleisli[G, S, D], internally using a Trampoline to avoid stack overflow.

    Definition Classes
    Bitraverse
  24. def bitraverseS[S, A, B, C, D](fa: F[A, B])(f: (A) ⇒ State[S, C])(g: (B) ⇒ State[S, D]): State[S, F[C, D]]

    Permalink
    Definition Classes
    Bitraverse
  25. val bitraverseSyntax: BitraverseSyntax[F]

    Permalink
    Definition Classes
    Bitraverse
  26. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. def compose[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[[α, β]F[G[α, β], G[α, β]]]

    Permalink

    The composition of Bitraverses F and G, [x,y]F[G[x,y],G[x,y]], is a Bitraverse

    The composition of Bitraverses F and G, [x,y]F[G[x,y],G[x,y]], is a Bitraverse

    Definition Classes
    Bitraverse
  28. def compose[G[_, _]](implicit G0: Bifoldable[G]): Bifoldable[[α, β]F[G[α, β], G[α, β]]]

    Permalink

    The composition of Bifoldables F and G, [x,y]F[G[x,y],G[x,y]], is a Bifoldable

    The composition of Bifoldables F and G, [x,y]F[G[x,y],G[x,y]], is a Bifoldable

    Definition Classes
    Bifoldable
  29. def compose[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β], G[α, β]]]

    Permalink

    The composition of Bifunctors F and G, [x,y]F[G[x,y],G[x,y]], is a Bifunctor

    The composition of Bifunctors F and G, [x,y]F[G[x,y],G[x,y]], is a Bifunctor

    Definition Classes
    Bifunctor
  30. def embed[G[_], H[_]](implicit G0: Traverse[G], H0: Traverse[H]): Bitraverse[[α, β]F[G[α], H[β]]]

    Permalink

    Embed a Traverse on each side of this Bitraverse .

    Embed a Traverse on each side of this Bitraverse .

    Definition Classes
    Bitraverse
  31. def embed[G[_], H[_]](implicit G0: Foldable[G], H0: Foldable[H]): Bifoldable[[α, β]F[G[α], H[β]]]

    Permalink

    Embed one Foldable at each side of this Bifoldable

    Embed one Foldable at each side of this Bifoldable

    Definition Classes
    Bifoldable
  32. def embed[G[_], H[_]](implicit G0: Functor[G], H0: Functor[H]): Bifunctor[[α, β]F[G[α], H[β]]]

    Permalink

    Embed two Functors , one on each side

    Embed two Functors , one on each side

    Definition Classes
    Bifunctor
  33. def embedLeft[G[_]](implicit G0: Traverse[G]): Bitraverse[[α, β]F[G[α], β]]

    Permalink

    Embed a Traverse on the left side of this Bitraverse .

    Embed a Traverse on the left side of this Bitraverse .

    Definition Classes
    Bitraverse
  34. def embedLeft[G[_]](implicit G0: Foldable[G]): Bifoldable[[α, β]F[G[α], β]]

    Permalink

    Embed one Foldable to the left of this Bifoldable .

    Embed one Foldable to the left of this Bifoldable .

    Definition Classes
    Bifoldable
  35. def embedLeft[G[_]](implicit G0: Functor[G]): Bifunctor[[α, β]F[G[α], β]]

    Permalink

    Embed one Functor to the left

    Embed one Functor to the left

    Definition Classes
    Bifunctor
  36. def embedRight[H[_]](implicit H0: Traverse[H]): Bitraverse[[α, β]F[α, H[β]]]

    Permalink

    Embed a Traverse on the right side of this Bitraverse .

    Embed a Traverse on the right side of this Bitraverse .

    Definition Classes
    Bitraverse
  37. def embedRight[H[_]](implicit H0: Foldable[H]): Bifoldable[[α, β]F[α, H[β]]]

    Permalink

    Embed one Foldable to the right of this Bifoldable .

    Embed one Foldable to the right of this Bifoldable .

    Definition Classes
    Bifoldable
  38. def embedRight[H[_]](implicit H0: Functor[H]): Bifunctor[[α, β]F[α, H[β]]]

    Permalink

    Embed one Functor to the right

    Embed one Functor to the right

    Definition Classes
    Bifunctor
  39. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  40. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  41. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  42. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  43. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  44. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  45. def leftFoldable[X]: Foldable[[α$0$]F[α$0$, X]]

    Permalink

    Extract the Foldable on the first parameter.

    Extract the Foldable on the first parameter.

    Definition Classes
    Bifoldable
  46. def leftFunctor[X]: Functor[[α$0$]F[α$0$, X]]

    Permalink

    Extract the Functor on the first param.

    Extract the Functor on the first param.

    Definition Classes
    Bifunctor
  47. def leftMap[A, B, C](fab: F[A, B])(f: (A) ⇒ C): F[C, B]

    Permalink
    Definition Classes
    Bifunctor
  48. def leftTraverse[X]: Traverse[[α$0$]F[α$0$, X]]

    Permalink

    Extract the Traverse on the first param.

    Extract the Traverse on the first param.

    Definition Classes
    Bitraverse
  49. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  50. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  51. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  52. def product[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[[α, β](F[α, β], G[α, β])]

    Permalink

    The product of Bitraverses F and G, [x,y](F[x,y], G[x,y]), is a Bitraverse

    The product of Bitraverses F and G, [x,y](F[x,y], G[x,y]), is a Bitraverse

    Definition Classes
    Bitraverse
  53. def product[G[_, _]](implicit G0: Bifoldable[G]): Bifoldable[[α, β](F[α, β], G[α, β])]

    Permalink

    The product of Bifoldables F and G, [x,y](F[x,y], G[x,y]), is a Bifoldable

    The product of Bifoldables F and G, [x,y](F[x,y], G[x,y]), is a Bifoldable

    Definition Classes
    Bifoldable
  54. def product[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β](F[α, β], G[α, β])]

    Permalink

    The product of Bifunctors F and G, [x,y](F[x,y], G[x,y]), is a Bifunctor

    The product of Bifunctors F and G, [x,y](F[x,y], G[x,y]), is a Bifunctor

    Definition Classes
    Bifunctor
  55. def rightFoldable[X]: Foldable[[β$1$]F[X, β$1$]]

    Permalink

    Extract the Foldable on the second parameter.

    Extract the Foldable on the second parameter.

    Definition Classes
    Bifoldable
  56. def rightFunctor[X]: Functor[[β$1$]F[X, β$1$]]

    Permalink

    Extract the Functor on the second param.

    Extract the Functor on the second param.

    Definition Classes
    Bifunctor
  57. def rightMap[A, B, D](fab: F[A, B])(g: (B) ⇒ D): F[A, D]

    Permalink
    Definition Classes
    Bifunctor
  58. def rightTraverse[X]: Traverse[[β$1$]F[X, β$1$]]

    Permalink

    Extract the Traverse on the second param.

    Extract the Traverse on the second param.

    Definition Classes
    Bitraverse
  59. def runBitraverseS[S, A, B, C, D](fa: F[A, B], s: S)(f: (A) ⇒ State[S, C])(g: (B) ⇒ State[S, D]): (S, F[C, D])

    Permalink
    Definition Classes
    Bitraverse
  60. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  61. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  62. def traverseSTrampoline[S, G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ State[S, G[C]])(g: (B) ⇒ State[S, G[D]])(implicit arg0: Applicative[G]): State[S, G[F[C, D]]]

    Permalink

    Bitraverse fa with a State[S, G[C]] and State[S, G[D]], internally using a Trampoline to avoid stack overflow.

    Bitraverse fa with a State[S, G[C]] and State[S, G[D]], internally using a Trampoline to avoid stack overflow.

    Definition Classes
    Bitraverse
  63. def uFoldable: Foldable[[α]F[α, α]]

    Permalink

    Unify the foldable over both params.

    Unify the foldable over both params.

    Definition Classes
    Bifoldable
  64. def uFunctor: Functor[[α]F[α, α]]

    Permalink

    Unify the functor over both params.

    Unify the functor over both params.

    Definition Classes
    Bifunctor
  65. def uTraverse: Traverse[[α]F[α, α]]

    Permalink

    Unify the traverse over both params.

    Unify the traverse over both params.

    Definition Classes
    Bitraverse
  66. def umap[A, B](faa: F[A, A])(f: (A) ⇒ B): F[B, B]

    Permalink
    Definition Classes
    Bifunctor
  67. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  68. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  69. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from IsomorphismBifoldable[F, G]

Inherited from IsomorphismBifunctor[F, G]

Inherited from Bitraverse[F]

Inherited from Bifoldable[F]

Inherited from Bifunctor[F]

Inherited from BifunctorParent[F]

Inherited from AnyRef

Inherited from Any

Ungrouped