Trait/Object

scalaz

MonadReader

Related Docs: object MonadReader | package scalaz

Permalink

trait MonadReader[F[_], S] extends Monad[F]

Self Type
MonadReader[F, S]
Source
MonadReader.scala
Linear Supertypes
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MonadReader
  2. Monad
  3. Bind
  4. Applicative
  5. InvariantApplicative
  6. Apply
  7. Functor
  8. InvariantFunctor
  9. AnyRef
  10. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait ApplicativeLaw extends ApplyLaw

    Permalink
    Definition Classes
    Applicative
  2. trait ApplyLaw extends FunctorLaw

    Permalink
    Definition Classes
    Apply
  3. trait BindLaw extends ApplyLaw

    Permalink
    Definition Classes
    Bind
  4. trait FlippedApply extends Apply[F]

    Permalink
    Attributes
    protected[this]
    Definition Classes
    Apply
  5. trait FunctorLaw extends InvariantFunctorLaw

    Permalink
    Definition Classes
    Functor
  6. trait InvariantFunctorLaw extends AnyRef

    Permalink
    Definition Classes
    InvariantFunctor
  7. trait MonadLaw extends ApplicativeLaw with BindLaw

    Permalink
    Definition Classes
    Monad
  8. trait MonadReaderLaw extends MonadLaw

    Permalink

Abstract Value Members

  1. abstract def ask: F[S]

    Permalink
  2. abstract def bind[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[B]

    Permalink

    Equivalent to join(map(fa)(f)).

    Equivalent to join(map(fa)(f)).

    Definition Classes
    Bind
  3. abstract def local[A](f: (S) ⇒ S)(fa: F[A]): F[A]

    Permalink
  4. abstract def point[A](a: ⇒ A): F[A]

    Permalink
    Definition Classes
    Applicative

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def ap[A, B](fa: ⇒ F[A])(f: ⇒ F[(A) ⇒ B]): F[B]

    Permalink

    Sequence f, then fa, combining their results by function application.

    Sequence f, then fa, combining their results by function application.

    NB: with respect to apply2 and all other combinators, as well as scalaz.Bind, the f action appears to the *left*. So f should be the "first" F-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first".

    Definition Classes
    BindApply
  5. def ap2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: F[(A, B) ⇒ C]): F[C]

    Permalink
    Definition Classes
    Apply
  6. def ap3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: F[(A, B, C) ⇒ D]): F[D]

    Permalink
    Definition Classes
    Apply
  7. def ap4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: F[(A, B, C, D) ⇒ E]): F[E]

    Permalink
    Definition Classes
    Apply
  8. def ap5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: F[(A, B, C, D, E) ⇒ R]): F[R]

    Permalink
    Definition Classes
    Apply
  9. def ap6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: F[(A, B, C, D, E, FF) ⇒ R]): F[R]

    Permalink
    Definition Classes
    Apply
  10. def ap7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: F[(A, B, C, D, E, FF, G) ⇒ R]): F[R]

    Permalink
    Definition Classes
    Apply
  11. def ap8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: F[(A, B, C, D, E, FF, G, H) ⇒ R]): F[R]

    Permalink
    Definition Classes
    Apply
  12. def apF[A, B](f: ⇒ F[(A) ⇒ B]): (F[A]) ⇒ F[B]

    Permalink

    Flipped variant of ap.

    Flipped variant of ap.

    Definition Classes
    Apply
  13. def applicativeLaw: ApplicativeLaw

    Permalink
    Definition Classes
    Applicative
  14. val applicativeSyntax: ApplicativeSyntax[F]

    Permalink
    Definition Classes
    Applicative
  15. def apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Permalink

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  16. def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J])(f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  17. def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K])(f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  18. def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I], fj: ⇒ F[J], fk: ⇒ F[K], fl: ⇒ F[L])(f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  19. def apply2[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (A, B) ⇒ C): F[C]

    Permalink
    Definition Classes
    BindApply
  20. def apply3[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C])(f: (A, B, C) ⇒ D): F[D]

    Permalink
    Definition Classes
    Apply
  21. def apply4[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D])(f: (A, B, C, D) ⇒ E): F[E]

    Permalink
    Definition Classes
    Apply
  22. def apply5[A, B, C, D, E, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E])(f: (A, B, C, D, E) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  23. def apply6[A, B, C, D, E, FF, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF])(f: (A, B, C, D, E, FF) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  24. def apply7[A, B, C, D, E, FF, G, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G])(f: (A, B, C, D, E, FF, G) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  25. def apply8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H])(f: (A, B, C, D, E, FF, G, H) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  26. def apply9[A, B, C, D, E, FF, G, H, I, R](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E], ff: ⇒ F[FF], fg: ⇒ F[G], fh: ⇒ F[H], fi: ⇒ F[I])(f: (A, B, C, D, E, FF, G, H, I) ⇒ R): F[R]

    Permalink
    Definition Classes
    Apply
  27. def applyApplicative: Applicative[[α]\/[F[α], α]]

    Permalink

    Add a unit to any Apply to form an Applicative.

    Add a unit to any Apply to form an Applicative.

    Definition Classes
    Apply
  28. def applyLaw: ApplyLaw

    Permalink
    Definition Classes
    Apply
  29. val applySyntax: ApplySyntax[F]

    Permalink
    Definition Classes
    Apply
  30. final def applying1[Z, A1](f: (A1) ⇒ Z)(implicit a1: F[A1]): F[Z]

    Permalink
    Definition Classes
    Apply
  31. final def applying2[Z, A1, A2](f: (A1, A2) ⇒ Z)(implicit a1: F[A1], a2: F[A2]): F[Z]

    Permalink
    Definition Classes
    Apply
  32. final def applying3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]

    Permalink
    Definition Classes
    Apply
  33. final def applying4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z)(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]

    Permalink
    Definition Classes
    Apply
  34. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  35. def asks[A](f: (S) ⇒ A): F[A]

    Permalink
  36. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

    Permalink

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  37. def bindLaw: BindLaw

    Permalink
    Definition Classes
    Bind
  38. val bindSyntax: BindSyntax[F]

    Permalink
    Definition Classes
    Bind
  39. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  40. def compose[G[_]](implicit G0: Applicative[G]): Applicative[[α]F[G[α]]]

    Permalink

    The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

    The composition of Applicatives F and G, [x]F[G[x]], is an Applicative

    Definition Classes
    Applicative
  41. def compose[G[_]](implicit G0: Apply[G]): Apply[[α]F[G[α]]]

    Permalink

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    Definition Classes
    Apply
  42. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

    Permalink

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  43. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]

    Permalink
    Definition Classes
    Functor
  44. def discardLeft[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[B]

    Permalink

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Definition Classes
    Apply
  45. def discardRight[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[A]

    Permalink

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Definition Classes
    Apply
  46. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  47. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  48. def filterM[A](l: IList[A])(f: (A) ⇒ F[Boolean]): F[IList[A]]

    Permalink

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  49. def filterM[A](l: List[A])(f: (A) ⇒ F[Boolean]): F[List[A]]

    Permalink

    Filter l according to an applicative predicate.

    Filter l according to an applicative predicate.

    Definition Classes
    Applicative
  50. def filterM[A, B](map: ==>>[A, B])(f: (B) ⇒ F[Boolean])(implicit O: Order[A]): F[==>>[A, B]]

    Permalink

    Filter map according to an applicative predicate.

    Filter map according to an applicative predicate. *

    Definition Classes
    Applicative
  51. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  52. def flip: Applicative[F]

    Permalink

    An Applicative for F in which effects happen in the opposite order.

    An Applicative for F in which effects happen in the opposite order.

    Definition Classes
    ApplicativeApply
  53. def forever[A, B](fa: F[A]): F[B]

    Permalink

    Repeats an applicative action infinitely

    Repeats an applicative action infinitely

    Definition Classes
    Apply
  54. def fpair[A](fa: F[A]): F[(A, A)]

    Permalink

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  55. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

    Permalink

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  56. def functorLaw: FunctorLaw

    Permalink
    Definition Classes
    Functor
  57. val functorSyntax: FunctorSyntax[F]

    Permalink
    Definition Classes
    Functor
  58. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  59. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  60. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

    Permalink

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  61. def ifM[B](value: F[Boolean], ifTrue: ⇒ F[B], ifFalse: ⇒ F[B]): F[B]

    Permalink

    if lifted into a binding.

    if lifted into a binding. Unlike lift3((t,c,a)=>if(t)c else a), this will only include context from the chosen of ifTrue and ifFalse, not the other.

    Definition Classes
    Bind
  62. val invariantApplicativeSyntax: InvariantApplicativeSyntax[F]

    Permalink
    Definition Classes
    InvariantApplicative
  63. def invariantFunctorLaw: InvariantFunctorLaw

    Permalink
    Definition Classes
    InvariantFunctor
  64. val invariantFunctorSyntax: InvariantFunctorSyntax[F]

    Permalink
    Definition Classes
    InvariantFunctor
  65. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  66. def iterateUntil[A](f: F[A])(p: (A) ⇒ Boolean): F[A]

    Permalink

    Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

    Execute an action repeatedly until its result satisfies the given predicate and return that result, discarding all others.

    Definition Classes
    Monad
  67. def iterateWhile[A](f: F[A])(p: (A) ⇒ Boolean): F[A]

    Permalink

    Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

    Execute an action repeatedly until its result fails to satisfy the given predicate and return that result, discarding all others.

    Definition Classes
    Monad
  68. def join[A](ffa: F[F[A]]): F[A]

    Permalink

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Sequence the inner F of FFA after the outer F, forming a single F[A].

    Definition Classes
    Bind
  69. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

    Permalink

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  70. def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  71. def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  72. def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I], F[J], F[K], F[L]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  73. def lift2[A, B, C](f: (A, B) ⇒ C): (F[A], F[B]) ⇒ F[C]

    Permalink
    Definition Classes
    Apply
  74. def lift3[A, B, C, D](f: (A, B, C) ⇒ D): (F[A], F[B], F[C]) ⇒ F[D]

    Permalink
    Definition Classes
    Apply
  75. def lift4[A, B, C, D, E](f: (A, B, C, D) ⇒ E): (F[A], F[B], F[C], F[D]) ⇒ F[E]

    Permalink
    Definition Classes
    Apply
  76. def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) ⇒ R): (F[A], F[B], F[C], F[D], F[E]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  77. def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  78. def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  79. def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  80. def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) ⇒ R): (F[A], F[B], F[C], F[D], F[E], F[FF], F[G], F[H], F[I]) ⇒ F[R]

    Permalink
    Definition Classes
    Apply
  81. def liftReducer[A, B](implicit r: Reducer[A, B]): Reducer[F[A], F[B]]

    Permalink
    Definition Classes
    Apply
  82. def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Permalink

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    MonadApplicativeFunctor
  83. def mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]

    Permalink

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  84. def monadLaw: MonadLaw

    Permalink
    Definition Classes
    Monad
  85. def monadReaderLaw: MonadReaderLaw

    Permalink
  86. val monadSyntax: MonadSyntax[F]

    Permalink
    Definition Classes
    Monad
  87. def mproduct[A, B](fa: F[A])(f: (A) ⇒ F[B]): F[(A, B)]

    Permalink

    Pair A with the result of function application.

    Pair A with the result of function application.

    Definition Classes
    Bind
  88. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  89. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  90. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  91. def par: Par[F]

    Permalink

    A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g.

    A lawful implementation of this that is isomorphic up to the methods defined on Applicative allowing for optimised parallel implementations that would otherwise violate laws of more specific typeclasses (e.g. Monad).

    Definition Classes
    Applicative
  92. def plusA[A](x: ⇒ F[A], y: ⇒ F[A])(implicit sa: Semigroup[A]): F[A]

    Permalink

    Semigroups can be added within an Applicative

    Semigroups can be added within an Applicative

    Definition Classes
    Applicative
  93. def product[G[_]](implicit G0: Monad[G]): Monad[[α](F[α], G[α])]

    Permalink

    The product of Monad F and G, [x](F[x], G[x]]), is a Monad

    The product of Monad F and G, [x](F[x], G[x]]), is a Monad

    Definition Classes
    Monad
  94. def product[G[_]](implicit G0: Bind[G]): Bind[[α](F[α], G[α])]

    Permalink

    The product of Bind F and G, [x](F[x], G[x]]), is a Bind

    The product of Bind F and G, [x](F[x], G[x]]), is a Bind

    Definition Classes
    Bind
  95. def product[G[_]](implicit G0: Applicative[G]): Applicative[[α](F[α], G[α])]

    Permalink

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    The product of Applicatives F and G, [x](F[x], G[x]]), is an Applicative

    Definition Classes
    Applicative
  96. def product[G[_]](implicit G0: Apply[G]): Apply[[α](F[α], G[α])]

    Permalink

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    Definition Classes
    Apply
  97. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

    Permalink

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  98. final def pure[A](a: ⇒ A): F[A]

    Permalink
    Definition Classes
    Applicative
  99. def replicateM[A](n: Int, fa: F[A]): F[IList[A]]

    Permalink

    Performs the action n times, returning the list of results.

    Performs the action n times, returning the list of results.

    Definition Classes
    Applicative
  100. def replicateM_[A](n: Int, fa: F[A]): F[Unit]

    Permalink

    Performs the action n times, returning nothing.

    Performs the action n times, returning nothing.

    Definition Classes
    Applicative
  101. def scope[A](k: S)(fa: F[A]): F[A]

    Permalink
  102. def sequence[A, G[_]](as: G[F[A]])(implicit arg0: Traverse[G]): F[G[A]]

    Permalink
    Definition Classes
    Applicative
  103. def sequence1[A, G[_]](as: G[F[A]])(implicit arg0: Traverse1[G]): F[G[A]]

    Permalink
    Definition Classes
    Apply
  104. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

    Permalink

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  105. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

    Permalink

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  106. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  107. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  108. def traverse[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse[G]): F[G[B]]

    Permalink
    Definition Classes
    Applicative
  109. def traverse1[A, G[_], B](value: G[A])(f: (A) ⇒ F[B])(implicit G: Traverse1[G]): F[G[B]]

    Permalink
    Definition Classes
    Apply
  110. def tuple2[A, B](fa: ⇒ F[A], fb: ⇒ F[B]): F[(A, B)]

    Permalink
    Definition Classes
    Apply
  111. def tuple3[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C]): F[(A, B, C)]

    Permalink
    Definition Classes
    Apply
  112. def tuple4[A, B, C, D](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D]): F[(A, B, C, D)]

    Permalink
    Definition Classes
    Apply
  113. def tuple5[A, B, C, D, E](fa: ⇒ F[A], fb: ⇒ F[B], fc: ⇒ F[C], fd: ⇒ F[D], fe: ⇒ F[E]): F[(A, B, C, D, E)]

    Permalink
    Definition Classes
    Apply
  114. def unfoldrOpt[S, A, B](seed: S)(f: (S) ⇒ Maybe[(F[A], S)])(implicit R: Reducer[A, B]): Maybe[F[B]]

    Permalink

    Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values.

    Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values. Implementations may override this method to not unfold more than is necessary to determine the result.

    Definition Classes
    Apply
  115. def unlessM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]

    Permalink

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Returns the given argument if cond is false, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  116. def untilM[G[_], A](f: F[A], cond: ⇒ F[Boolean])(implicit G: MonadPlus[G]): F[G[A]]

    Permalink

    Execute an action repeatedly until the Boolean condition returns true.

    Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Collects results into an arbitrary MonadPlus value, such as a List.

    Definition Classes
    Monad
  117. def untilM_[A](f: F[A], cond: ⇒ F[Boolean]): F[Unit]

    Permalink

    Execute an action repeatedly until the Boolean condition returns true.

    Execute an action repeatedly until the Boolean condition returns true. The condition is evaluated after the loop body. Discards results.

    Definition Classes
    Monad
  118. def void[A](fa: F[A]): F[Unit]

    Permalink

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  119. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  120. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  121. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  122. def whenM[A](cond: Boolean)(f: ⇒ F[A]): F[Unit]

    Permalink

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Returns the given argument if cond is true, otherwise, unit lifted into F.

    Definition Classes
    Applicative
  123. def whileM[G[_], A](p: F[Boolean], body: ⇒ F[A])(implicit G: MonadPlus[G]): F[G[A]]

    Permalink

    Execute an action repeatedly as long as the given Boolean expression returns true.

    Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Collects the results into an arbitrary MonadPlus value, such as a List.

    Definition Classes
    Monad
  124. def whileM_[A](p: F[Boolean], body: ⇒ F[A]): F[Unit]

    Permalink

    Execute an action repeatedly as long as the given Boolean expression returns true.

    Execute an action repeatedly as long as the given Boolean expression returns true. The condition is evaluated before the loop body. Discards results.

    Definition Classes
    Monad
  125. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

    Permalink

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  126. final def xderiving0[Z](z: ⇒ Z): F[Z]

    Permalink
    Definition Classes
    InvariantApplicative
  127. final def xderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]

    Permalink
    Definition Classes
    InvariantApplicative
  128. final def xderiving2[Z, A1, A2](f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]

    Permalink
    Definition Classes
    InvariantApplicative
  129. final def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]

    Permalink
    Definition Classes
    InvariantApplicative
  130. final def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]

    Permalink
    Definition Classes
    InvariantApplicative
  131. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    FunctorInvariantFunctor
  132. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  133. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor
  134. def xproduct0[Z](z: ⇒ Z): F[Z]

    Permalink
    Definition Classes
    ApplicativeInvariantApplicative
  135. def xproduct1[Z, A1](a1: ⇒ F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]

    Permalink
    Definition Classes
    ApplicativeInvariantApplicative
  136. def xproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2)): F[Z]

    Permalink
    Definition Classes
    ApplicativeInvariantApplicative
  137. def xproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3)): F[Z]

    Permalink
    Definition Classes
    ApplicativeInvariantApplicative
  138. def xproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4)): F[Z]

    Permalink
    Definition Classes
    ApplicativeInvariantApplicative

Inherited from Monad[F]

Inherited from Bind[F]

Inherited from Applicative[F]

Inherited from InvariantApplicative[F]

Inherited from Apply[F]

Inherited from Functor[F]

Inherited from InvariantFunctor[F]

Inherited from AnyRef

Inherited from Any

Ungrouped