t

scalaz

# IsomorphismBitraverse 

#### trait IsomorphismBitraverse[F[_, _], G[_, _]] extends Bitraverse[F] with IsomorphismBifunctor[F, G] with IsomorphismBifoldable[F, G]

Ordering
1. Alphabetic
2. By Inheritance
Inherited
1. IsomorphismBitraverse
2. IsomorphismBifoldable
3. IsomorphismBifunctor
4. Bitraverse
5. Bifoldable
6. Bifunctor
7. BifunctorParent
8. AnyRef
9. Any
1. Hide All
2. Show All
Visibility
1. Public
2. All

### Type Members

1. trait BifoldableLaw extends AnyRef
Definition Classes
Bifoldable
2. class Bitraversal[G[_]] extends AnyRef
Definition Classes
Bitraverse

### Abstract Value Members

1. implicit abstract def G: Bitraverse[G]
2. abstract def iso: Isomorphism.<~~>[F, G]
Definition Classes
IsomorphismBifunctor

### Concrete Value Members

1. final def !=(arg0: Any)
Definition Classes
AnyRef → Any
2. final def ##(): Int
Definition Classes
AnyRef → Any
3. final def ==(arg0: Any)
Definition Classes
AnyRef → Any
4. final def asInstanceOf[T0]: T0
Definition Classes
Any
5. final def biNaturalTrans: ~~>[F, G]
Attributes
protected[this]
Definition Classes
IsomorphismBitraverseIsomorphismBifoldable
6. final def bifoldL[A, B, C](fa: F[A, B], z: C)(f: (C) ⇒ (A) ⇒ C)(g: (C) ⇒ (B) ⇒ C): C

Curried version of `bifoldLeft`

Curried version of `bifoldLeft`

Definition Classes
Bifoldable
7. def bifoldLShape[A, B, C](fa: F[A, B], z: C)(f: (C, A) ⇒ C)(g: (C, B) ⇒ C): (C, F[Unit, Unit])
Definition Classes
Bitraverse
8. final def bifoldLeft[A, B, C](fa: F[A, B], z: C)(f: (C, A) ⇒ C)(g: (C, B) ⇒ C): C

`bifoldRight`, but defined to run in the opposite direction.

`bifoldRight`, but defined to run in the opposite direction.

Definition Classes
IsomorphismBifoldableBifoldable
9. final def bifoldMap[A, B, M](fab: F[A, B])(f: (A) ⇒ M)(g: (B) ⇒ M)(implicit arg0: Monoid[M]): M

Accumulate `A`s and `B`s

Accumulate `A`s and `B`s

Definition Classes
IsomorphismBifoldableBifoldable
10. def bifoldMap1[A, B, M](fa: F[A, B])(f: (A) ⇒ M)(g: (B) ⇒ M)(implicit F: Semigroup[M]): Option[M]
Definition Classes
Bifoldable
11. final def bifoldR[A, B, C](fa: F[A, B], z: ⇒ C)(f: (A) ⇒ (⇒ C) ⇒ C)(g: (B) ⇒ (⇒ C) ⇒ C): C

Curried version of `bifoldRight`

Curried version of `bifoldRight`

Definition Classes
Bifoldable
12. final def bifoldRight[A, B, C](fab: F[A, B], z: ⇒ C)(f: (A, ⇒ C) ⇒ C)(g: (B, ⇒ C) ⇒ C): C

Accumulate to `C` starting at the "right".

Accumulate to `C` starting at the "right". `f` and `g` may be interleaved.

Definition Classes
IsomorphismBifoldableBifoldable
13. def bifoldableLaw
Definition Classes
Bifoldable
14. val bifoldableSyntax: BifoldableSyntax[F]
Definition Classes
Bifoldable
15. val bifunctorSyntax: BifunctorSyntax[F]
Definition Classes
Bifunctor
16. def bimap[A, B, C, D](fab: F[A, B])(f: (A) ⇒ C, g: (B) ⇒ D): F[C, D]

`map` over both type parameters.

`map` over both type parameters.

Definition Classes
IsomorphismBifunctorBifunctor
17. def bisequence[G[_], A, B](x: F[G[A], G[B]])(implicit arg0: Applicative[G]): G[F[A, B]]
Definition Classes
Bitraverse
18. def bitraversal[G[_]](implicit arg0: Applicative[G]): Bitraversal[G]
Definition Classes
Bitraverse
19. def bitraversalS[S]: Bitraversal[[β\$2\$]IndexedStateT[[X]X, S, S, β\$2\$]]
Definition Classes
Bitraverse
20. def bitraverse[G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ G[C])(g: (B) ⇒ G[D])(implicit arg0: Applicative[G]): G[F[C, D]]
Definition Classes
Bitraverse
21. def bitraverseF[G[_], A, B, C, D](f: (A) ⇒ G[C], g: (B) ⇒ G[D])(implicit arg0: Applicative[G]): (F[A, B]) ⇒ G[F[C, D]]

Flipped `bitraverse`.

Flipped `bitraverse`.

Definition Classes
Bitraverse
22. def bitraverseImpl[H[_], A, B, C, D](fab: F[A, B])(f: (A) ⇒ H[C], g: (B) ⇒ H[D])(implicit arg0: Applicative[H]): H[F[C, D]]

Collect `G`s while applying `f` and `g` in some order.

Collect `G`s while applying `f` and `g` in some order.

Definition Classes
IsomorphismBitraverseBitraverse
23. def bitraverseKTrampoline[S, G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ Kleisli[G, S, C])(g: (B) ⇒ Kleisli[G, S, D])(implicit arg0: Applicative[G]): Kleisli[G, S, F[C, D]]

Bitraverse `fa` with a `Kleisli[G, S, C]` and `Kleisli[G, S, D]`, internally using a `Trampoline` to avoid stack overflow.

Bitraverse `fa` with a `Kleisli[G, S, C]` and `Kleisli[G, S, D]`, internally using a `Trampoline` to avoid stack overflow.

Definition Classes
Bitraverse
24. def bitraverseS[S, A, B, C, D](fa: F[A, B])(f: (A) ⇒ State[S, C])(g: (B) ⇒ State[S, D]): State[S, F[C, D]]
Definition Classes
Bitraverse
25. val bitraverseSyntax: BitraverseSyntax[F]
Definition Classes
Bitraverse
26. def clone()
Attributes
protected[lang]
Definition Classes
AnyRef
Annotations
@throws( ... ) @native()
27. def compose[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[[α, β]F[G[α, β], G[α, β]]]

The composition of Bitraverses `F` and `G`, `[x,y]F[G[x,y],G[x,y]]`, is a Bitraverse

The composition of Bitraverses `F` and `G`, `[x,y]F[G[x,y],G[x,y]]`, is a Bitraverse

Definition Classes
Bitraverse
28. def compose[G[_, _]](implicit G0: Bifoldable[G]): Bifoldable[[α, β]F[G[α, β], G[α, β]]]

The composition of Bifoldables `F` and `G`, `[x,y]F[G[x,y],G[x,y]]`, is a Bifoldable

The composition of Bifoldables `F` and `G`, `[x,y]F[G[x,y],G[x,y]]`, is a Bifoldable

Definition Classes
Bifoldable
29. def compose[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β], G[α, β]]]

The composition of Bifunctors `F` and `G`, `[x,y]F[G[x,y],G[x,y]]`, is a Bifunctor

The composition of Bifunctors `F` and `G`, `[x,y]F[G[x,y],G[x,y]]`, is a Bifunctor

Definition Classes
Bifunctor
30. def embed[G[_], H[_]](implicit G0: Traverse[G], H0: Traverse[H]): Bitraverse[[α, β]F[G[α], H[β]]]

Embed a Traverse on each side of this Bitraverse .

Embed a Traverse on each side of this Bitraverse .

Definition Classes
Bitraverse
31. def embed[G[_], H[_]](implicit G0: Foldable[G], H0: Foldable[H]): Bifoldable[[α, β]F[G[α], H[β]]]

Embed one Foldable at each side of this Bifoldable

Embed one Foldable at each side of this Bifoldable

Definition Classes
Bifoldable
32. def embed[G[_], H[_]](implicit G0: Functor[G], H0: Functor[H]): Bifunctor[[α, β]F[G[α], H[β]]]

Embed two Functors , one on each side

Embed two Functors , one on each side

Definition Classes
Bifunctor
33. def embedLeft[G[_]](implicit G0: Traverse[G]): Bitraverse[[α, β]F[G[α], β]]

Embed a Traverse on the left side of this Bitraverse .

Embed a Traverse on the left side of this Bitraverse .

Definition Classes
Bitraverse
34. def embedLeft[G[_]](implicit G0: Foldable[G]): Bifoldable[[α, β]F[G[α], β]]

Embed one Foldable to the left of this Bifoldable .

Embed one Foldable to the left of this Bifoldable .

Definition Classes
Bifoldable
35. def embedLeft[G[_]](implicit G0: Functor[G]): Bifunctor[[α, β]F[G[α], β]]

Embed one Functor to the left

Embed one Functor to the left

Definition Classes
Bifunctor
36. def embedRight[H[_]](implicit H0: Traverse[H]): Bitraverse[[α, β]F[α, H[β]]]

Embed a Traverse on the right side of this Bitraverse .

Embed a Traverse on the right side of this Bitraverse .

Definition Classes
Bitraverse
37. def embedRight[H[_]](implicit H0: Foldable[H]): Bifoldable[[α, β]F[α, H[β]]]

Embed one Foldable to the right of this Bifoldable .

Embed one Foldable to the right of this Bifoldable .

Definition Classes
Bifoldable
38. def embedRight[H[_]](implicit H0: Functor[H]): Bifunctor[[α, β]F[α, H[β]]]

Embed one Functor to the right

Embed one Functor to the right

Definition Classes
Bifunctor
39. final def eq(arg0: AnyRef)
Definition Classes
AnyRef
40. def equals(arg0: Any)
Definition Classes
AnyRef → Any
41. def finalize(): Unit
Attributes
protected[lang]
Definition Classes
AnyRef
Annotations
@throws( classOf[java.lang.Throwable] )
42. final def getClass(): Class[_]
Definition Classes
AnyRef → Any
Annotations
@native()
43. def hashCode(): Int
Definition Classes
AnyRef → Any
Annotations
@native()
44. final def isInstanceOf[T0]
Definition Classes
Any
45. def leftFoldable[X]: Foldable[[α\$0\$]F[α\$0\$, X]]

Extract the Foldable on the first parameter.

Extract the Foldable on the first parameter.

Definition Classes
Bifoldable
46. def leftFunctor[X]: Functor[[α\$0\$]F[α\$0\$, X]]

Extract the Functor on the first param.

Extract the Functor on the first param.

Definition Classes
Bifunctor
47. def leftMap[A, B, C](fab: F[A, B])(f: (A) ⇒ C): F[C, B]
Definition Classes
Bifunctor
48. def leftTraverse[X]: Traverse[[α\$0\$]F[α\$0\$, X]]

Extract the Traverse on the first param.

Extract the Traverse on the first param.

Definition Classes
Bitraverse
49. final def ne(arg0: AnyRef)
Definition Classes
AnyRef
50. final def notify(): Unit
Definition Classes
AnyRef
Annotations
@native()
51. final def notifyAll(): Unit
Definition Classes
AnyRef
Annotations
@native()
52. def product[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[[α, β](F[α, β], G[α, β])]

The product of Bitraverses `F` and `G`, `[x,y](F[x,y], G[x,y])`, is a Bitraverse

The product of Bitraverses `F` and `G`, `[x,y](F[x,y], G[x,y])`, is a Bitraverse

Definition Classes
Bitraverse
53. def product[G[_, _]](implicit G0: Bifoldable[G]): Bifoldable[[α, β](F[α, β], G[α, β])]

The product of Bifoldables `F` and `G`, `[x,y](F[x,y], G[x,y])`, is a Bifoldable

The product of Bifoldables `F` and `G`, `[x,y](F[x,y], G[x,y])`, is a Bifoldable

Definition Classes
Bifoldable
54. def product[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β](F[α, β], G[α, β])]

The product of Bifunctors `F` and `G`, `[x,y](F[x,y], G[x,y])`, is a Bifunctor

The product of Bifunctors `F` and `G`, `[x,y](F[x,y], G[x,y])`, is a Bifunctor

Definition Classes
Bifunctor
55. def rightFoldable[X]: Foldable[[β\$1\$]F[X, β\$1\$]]

Extract the Foldable on the second parameter.

Extract the Foldable on the second parameter.

Definition Classes
Bifoldable
56. def rightFunctor[X]: Functor[[β\$1\$]F[X, β\$1\$]]

Extract the Functor on the second param.

Extract the Functor on the second param.

Definition Classes
Bifunctor
57. def rightMap[A, B, D](fab: F[A, B])(g: (B) ⇒ D): F[A, D]
Definition Classes
Bifunctor
58. def rightTraverse[X]: Traverse[[β\$1\$]F[X, β\$1\$]]

Extract the Traverse on the second param.

Extract the Traverse on the second param.

Definition Classes
Bitraverse
59. def runBitraverseS[S, A, B, C, D](fa: F[A, B], s: S)(f: (A) ⇒ State[S, C])(g: (B) ⇒ State[S, D]): (S, F[C, D])
Definition Classes
Bitraverse
60. final def synchronized[T0](arg0: ⇒ T0): T0
Definition Classes
AnyRef
61. def toString()
Definition Classes
AnyRef → Any
62. def traverseSTrampoline[S, G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ State[S, G[C]])(g: (B) ⇒ State[S, G[D]])(implicit arg0: Applicative[G]): State[S, G[F[C, D]]]

Bitraverse `fa` with a `State[S, G[C]]` and `State[S, G[D]]`, internally using a `Trampoline` to avoid stack overflow.

Bitraverse `fa` with a `State[S, G[C]]` and `State[S, G[D]]`, internally using a `Trampoline` to avoid stack overflow.

Definition Classes
Bitraverse
63. def uFoldable: Foldable[[α]F[α, α]]

Unify the foldable over both params.

Unify the foldable over both params.

Definition Classes
Bifoldable
64. def uFunctor: Functor[[α]F[α, α]]

Unify the functor over both params.

Unify the functor over both params.

Definition Classes
Bifunctor
65. def uTraverse: Traverse[[α]F[α, α]]

Unify the traverse over both params.

Unify the traverse over both params.

Definition Classes
Bitraverse
66. def umap[A, B](faa: F[A, A])(f: (A) ⇒ B): F[B, B]
Definition Classes
Bifunctor
67. final def wait(): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
68. final def wait(arg0: Long, arg1: Int): Unit
Definition Classes
AnyRef
Annotations
@throws( ... )
69. final def wait(arg0: Long): Unit
Definition Classes
AnyRef
Annotations
@throws( ... ) @native()
70. def widen[A, B, C >: A, D >: B](fab: F[A, B]): F[C, D]

Bifunctors are covariant by nature

Bifunctors are covariant by nature

Definition Classes
BifunctorParent