scalaz

IsomorphismBitraverse

trait IsomorphismBitraverse[F[_, _], G[_, _]] extends Bitraverse[F] with IsomorphismBifunctor[F, G] with IsomorphismBifoldable[F, G]

Source
Isomorphism.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. IsomorphismBitraverse
  2. IsomorphismBifoldable
  3. IsomorphismBifunctor
  4. Bitraverse
  5. Bifoldable
  6. Bifunctor
  7. BifunctorParent
  8. AnyRef
  9. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Type Members

  1. trait BifoldableLaw extends AnyRef

    Definition Classes
    Bifoldable
  2. class Bitraversal[G[_]] extends AnyRef

    Definition Classes
    Bitraverse

Abstract Value Members

  1. implicit abstract def G: Bitraverse[G]

  2. abstract def iso: Isomorphism.<~~>[F, G]

    Definition Classes
    IsomorphismBifunctor

Concrete Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. final def biNaturalTrans: ~~>[F, G]

    Attributes
    protected[this]
    Definition Classes
    IsomorphismBitraverseIsomorphismBifoldable
  8. final def bifoldL[A, B, C](fa: F[A, B], z: C)(f: (C) ⇒ (A) ⇒ C)(g: (C) ⇒ (B) ⇒ C): C

    Curried version of bifoldLeft

    Curried version of bifoldLeft

    Definition Classes
    Bifoldable
  9. def bifoldLShape[A, B, C](fa: F[A, B], z: C)(f: (C, A) ⇒ C)(g: (C, B) ⇒ C): (C, F[Unit, Unit])

    Definition Classes
    Bitraverse
  10. final def bifoldLeft[A, B, C](fa: F[A, B], z: C)(f: (C, A) ⇒ C)(g: (C, B) ⇒ C): C

    bifoldRight, but defined to run in the opposite direction.

    bifoldRight, but defined to run in the opposite direction.

    Definition Classes
    IsomorphismBifoldableBifoldable
  11. final def bifoldMap[A, B, M](fab: F[A, B])(f: (A) ⇒ M)(g: (B) ⇒ M)(implicit arg0: Monoid[M]): M

    Accumulate As and Bs

    Accumulate As and Bs

    Definition Classes
    IsomorphismBifoldableBifoldable
  12. def bifoldMap1[A, B, M](fa: F[A, B])(f: (A) ⇒ M)(g: (B) ⇒ M)(implicit F: Semigroup[M]): Option[M]

    Definition Classes
    Bifoldable
  13. final def bifoldR[A, B, C](fa: F[A, B], z: ⇒ C)(f: (A) ⇒ (⇒ C) ⇒ C)(g: (B) ⇒ (⇒ C) ⇒ C): C

    Curried version of bifoldRight

    Curried version of bifoldRight

    Definition Classes
    Bifoldable
  14. final def bifoldRight[A, B, C](fab: F[A, B], z: ⇒ C)(f: (A, ⇒ C) ⇒ C)(g: (B, ⇒ C) ⇒ C): C

    Accumulate to C starting at the "right".

    Accumulate to C starting at the "right". f and g may be interleaved.

    Definition Classes
    IsomorphismBifoldableBifoldable
  15. def bifoldableLaw: BifoldableLaw

    Definition Classes
    Bifoldable
  16. val bifoldableSyntax: BifoldableSyntax[F]

    Definition Classes
    Bifoldable
  17. val bifunctorSyntax: BifunctorSyntax[F]

    Definition Classes
    Bifunctor
  18. def bimap[A, B, C, D](fab: F[A, B])(f: (A) ⇒ C, g: (B) ⇒ D): F[C, D]

    map over both type parameters.

    map over both type parameters.

    Definition Classes
    IsomorphismBifunctorBifunctor
  19. def bisequence[G[_], A, B](x: F[G[A], G[B]])(implicit arg0: Applicative[G]): G[F[A, B]]

    Definition Classes
    Bitraverse
  20. def bitraversal[G[_]](implicit arg0: Applicative[G]): Bitraversal[G]

    Definition Classes
    Bitraverse
  21. def bitraversalS[S]: Bitraversal[[β$2$]IndexedStateT[[X]X, S, S, β$2$]]

    Definition Classes
    Bitraverse
  22. def bitraverse[G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ G[C])(g: (B) ⇒ G[D])(implicit arg0: Applicative[G]): G[F[C, D]]

    Definition Classes
    Bitraverse
  23. def bitraverseF[G[_], A, B, C, D](f: (A) ⇒ G[C], g: (B) ⇒ G[D])(implicit arg0: Applicative[G]): (F[A, B]) ⇒ G[F[C, D]]

    Flipped bitraverse.

    Flipped bitraverse.

    Definition Classes
    Bitraverse
  24. def bitraverseImpl[H[_], A, B, C, D](fab: F[A, B])(f: (A) ⇒ H[C], g: (B) ⇒ H[D])(implicit arg0: Applicative[H]): H[F[C, D]]

    Collect Gs while applying f and g in some order.

    Collect Gs while applying f and g in some order.

    Definition Classes
    IsomorphismBitraverseBitraverse
  25. def bitraverseKTrampoline[S, G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ Kleisli[G, S, C])(g: (B) ⇒ Kleisli[G, S, D])(implicit arg0: Applicative[G]): Kleisli[G, S, F[C, D]]

    Bitraverse fa with a Kleisli[G, S, C] and Kleisli[G, S, D], internally using a Trampoline to avoid stack overflow.

    Bitraverse fa with a Kleisli[G, S, C] and Kleisli[G, S, D], internally using a Trampoline to avoid stack overflow.

    Definition Classes
    Bitraverse
  26. def bitraverseS[S, A, B, C, D](fa: F[A, B])(f: (A) ⇒ State[S, C])(g: (B) ⇒ State[S, D]): State[S, F[C, D]]

    Definition Classes
    Bitraverse
  27. val bitraverseSyntax: BitraverseSyntax[F]

    Definition Classes
    Bitraverse
  28. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. def compose[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[[α, β]F[G[α, β], G[α, β]]]

    The composition of Bitraverses F and G, [x,y]F[G[x,y],G[x,y]], is a Bitraverse

    The composition of Bitraverses F and G, [x,y]F[G[x,y],G[x,y]], is a Bitraverse

    Definition Classes
    Bitraverse
  30. def compose[G[_, _]](implicit G0: Bifoldable[G]): Bifoldable[[α, β]F[G[α, β], G[α, β]]]

    The composition of Bifoldables F and G, [x,y]F[G[x,y],G[x,y]], is a Bifoldable

    The composition of Bifoldables F and G, [x,y]F[G[x,y],G[x,y]], is a Bifoldable

    Definition Classes
    Bifoldable
  31. def compose[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β], G[α, β]]]

    The composition of Bifunctors F and G, [x,y]F[G[x,y],G[x,y]], is a Bifunctor

    The composition of Bifunctors F and G, [x,y]F[G[x,y],G[x,y]], is a Bifunctor

    Definition Classes
    Bifunctor
  32. def embed[G[_], H[_]](implicit G0: Traverse[G], H0: Traverse[H]): Bitraverse[[α, β]F[G[α], H[β]]]

    Embed a Traverse on each side of this Bitraverse .

    Embed a Traverse on each side of this Bitraverse .

    Definition Classes
    Bitraverse
  33. def embed[G[_], H[_]](implicit G0: Foldable[G], H0: Foldable[H]): Bifoldable[[α, β]F[G[α], H[β]]]

    Embed one Foldable at each side of this Bifoldable

    Embed one Foldable at each side of this Bifoldable

    Definition Classes
    Bifoldable
  34. def embed[G[_], H[_]](implicit G0: Functor[G], H0: Functor[H]): Bifunctor[[α, β]F[G[α], H[β]]]

    Embed two Functors , one on each side

    Embed two Functors , one on each side

    Definition Classes
    Bifunctor
  35. def embedLeft[G[_]](implicit G0: Traverse[G]): Bitraverse[[α, β]F[G[α], β]]

    Embed a Traverse on the left side of this Bitraverse .

    Embed a Traverse on the left side of this Bitraverse .

    Definition Classes
    Bitraverse
  36. def embedLeft[G[_]](implicit G0: Foldable[G]): Bifoldable[[α, β]F[G[α], β]]

    Embed one Foldable to the left of this Bifoldable .

    Embed one Foldable to the left of this Bifoldable .

    Definition Classes
    Bifoldable
  37. def embedLeft[G[_]](implicit G0: Functor[G]): Bifunctor[[α, β]F[G[α], β]]

    Embed one Functor to the left

    Embed one Functor to the left

    Definition Classes
    Bifunctor
  38. def embedRight[H[_]](implicit H0: Traverse[H]): Bitraverse[[α, β]F[α, H[β]]]

    Embed a Traverse on the right side of this Bitraverse .

    Embed a Traverse on the right side of this Bitraverse .

    Definition Classes
    Bitraverse
  39. def embedRight[H[_]](implicit H0: Foldable[H]): Bifoldable[[α, β]F[α, H[β]]]

    Embed one Foldable to the right of this Bifoldable .

    Embed one Foldable to the right of this Bifoldable .

    Definition Classes
    Bifoldable
  40. def embedRight[H[_]](implicit H0: Functor[H]): Bifunctor[[α, β]F[α, H[β]]]

    Embed one Functor to the right

    Embed one Functor to the right

    Definition Classes
    Bifunctor
  41. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  42. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  43. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  44. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  45. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  46. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  47. def leftFoldable[X]: Foldable[[α$0$]F[α$0$, X]]

    Extract the Foldable on the first parameter.

    Extract the Foldable on the first parameter.

    Definition Classes
    Bifoldable
  48. def leftFunctor[X]: Functor[[α$0$]F[α$0$, X]]

    Extract the Functor on the first param.

    Extract the Functor on the first param.

    Definition Classes
    Bifunctor
  49. def leftMap[A, B, C](fab: F[A, B])(f: (A) ⇒ C): F[C, B]

    Definition Classes
    Bifunctor
  50. def leftTraverse[X]: Traverse[[α$0$]F[α$0$, X]]

    Extract the Traverse on the first param.

    Extract the Traverse on the first param.

    Definition Classes
    Bitraverse
  51. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  52. final def notify(): Unit

    Definition Classes
    AnyRef
  53. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  54. def product[G[_, _]](implicit G0: Bitraverse[G]): Bitraverse[[α, β](F[α, β], G[α, β])]

    The product of Bitraverses F and G, [x,y](F[x,y], G[x,y]), is a Bitraverse

    The product of Bitraverses F and G, [x,y](F[x,y], G[x,y]), is a Bitraverse

    Definition Classes
    Bitraverse
  55. def product[G[_, _]](implicit G0: Bifoldable[G]): Bifoldable[[α, β](F[α, β], G[α, β])]

    The product of Bifoldables F and G, [x,y](F[x,y], G[x,y]), is a Bifoldable

    The product of Bifoldables F and G, [x,y](F[x,y], G[x,y]), is a Bifoldable

    Definition Classes
    Bifoldable
  56. def product[G[_, _]](implicit G0: Bifunctor[G]): Bifunctor[[α, β](F[α, β], G[α, β])]

    The product of Bifunctors F and G, [x,y](F[x,y], G[x,y]), is a Bifunctor

    The product of Bifunctors F and G, [x,y](F[x,y], G[x,y]), is a Bifunctor

    Definition Classes
    Bifunctor
  57. def rightFoldable[X]: Foldable[[β$1$]F[X, β$1$]]

    Extract the Foldable on the second parameter.

    Extract the Foldable on the second parameter.

    Definition Classes
    Bifoldable
  58. def rightFunctor[X]: Functor[[β$1$]F[X, β$1$]]

    Extract the Functor on the second param.

    Extract the Functor on the second param.

    Definition Classes
    Bifunctor
  59. def rightMap[A, B, D](fab: F[A, B])(g: (B) ⇒ D): F[A, D]

    Definition Classes
    Bifunctor
  60. def rightTraverse[X]: Traverse[[β$1$]F[X, β$1$]]

    Extract the Traverse on the second param.

    Extract the Traverse on the second param.

    Definition Classes
    Bitraverse
  61. def runBitraverseS[S, A, B, C, D](fa: F[A, B], s: S)(f: (A) ⇒ State[S, C])(g: (B) ⇒ State[S, D]): (S, F[C, D])

    Definition Classes
    Bitraverse
  62. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  63. def toString(): String

    Definition Classes
    AnyRef → Any
  64. def traverseSTrampoline[S, G[_], A, B, C, D](fa: F[A, B])(f: (A) ⇒ State[S, G[C]])(g: (B) ⇒ State[S, G[D]])(implicit arg0: Applicative[G]): State[S, G[F[C, D]]]

    Bitraverse fa with a State[S, G[C]] and State[S, G[D]], internally using a Trampoline to avoid stack overflow.

    Bitraverse fa with a State[S, G[C]] and State[S, G[D]], internally using a Trampoline to avoid stack overflow.

    Definition Classes
    Bitraverse
  65. def uFoldable: Foldable[[α]F[α, α]]

    Unify the foldable over both params.

    Unify the foldable over both params.

    Definition Classes
    Bifoldable
  66. def uFunctor: Functor[[α]F[α, α]]

    Unify the functor over both params.

    Unify the functor over both params.

    Definition Classes
    Bifunctor
  67. def uTraverse: Traverse[[α]F[α, α]]

    Unify the traverse over both params.

    Unify the traverse over both params.

    Definition Classes
    Bitraverse
  68. def umap[A, B](faa: F[A, A])(f: (A) ⇒ B): F[B, B]

    Definition Classes
    Bifunctor
  69. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  70. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  71. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from IsomorphismBifoldable[F, G]

Inherited from IsomorphismBifunctor[F, G]

Inherited from Bitraverse[F]

Inherited from Bifoldable[F]

Inherited from Bifunctor[F]

Inherited from BifunctorParent[F]

Inherited from AnyRef

Inherited from Any

Ungrouped