Trait/Object

scalaz

ComonadStore

Related Docs: object ComonadStore | package scalaz

Permalink

trait ComonadStore[F[_], S] extends Comonad[F]

Self Type
ComonadStore[F, S]
Source
ComonadStore.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ComonadStore
  2. Comonad
  3. Cobind
  4. Functor
  5. InvariantFunctor
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait CobindLaws extends AnyRef

    Permalink
    Definition Classes
    Cobind
  2. trait ComonadLaws extends CobindLaws

    Permalink
    Definition Classes
    Comonad
  3. trait FunctorLaw extends InvariantFunctorLaw

    Permalink
    Definition Classes
    Functor
  4. trait InvariantFunctorLaw extends AnyRef

    Permalink
    Definition Classes
    InvariantFunctor

Abstract Value Members

  1. abstract def cobind[A, B](fa: F[A])(f: (F[A]) ⇒ B): F[B]

    Permalink

    Also know as extend

    Also know as extend

    Definition Classes
    Cobind
  2. abstract def copoint[A](p: F[A]): A

    Permalink

    Also known as extract / copure

    Also known as extract / copure

    Definition Classes
    Comonad
  3. abstract def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Permalink

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    Functor
  4. abstract def peek[A](s: S, w: F[A]): A

    Permalink
  5. abstract def pos[A](w: F[A]): S

    Permalink

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def apply[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Permalink

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]

    Permalink

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. def cobindLaw: CobindLaws

    Permalink
    Definition Classes
    Cobind
  9. val cobindSyntax: CobindSyntax[F]

    Permalink
    Definition Classes
    Cobind
  10. def cojoin[A](fa: F[A]): F[F[A]]

    Permalink

    Also known as duplicate

    Also known as duplicate

    Definition Classes
    Cobind
  11. def comonadLaw: ComonadLaws

    Permalink
    Definition Classes
    Comonad
  12. val comonadSyntax: ComonadSyntax[F]

    Permalink
    Definition Classes
    Comonad
  13. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]

    Permalink

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  14. final def copure[A](p: F[A]): A

    Permalink

    alias for copoint

    alias for copoint

    Definition Classes
    Comonad
  15. def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]

    Permalink
    Definition Classes
    Functor
  16. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  17. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  18. def experiment[G[_], A](s: (S) ⇒ G[S], w: F[A])(implicit FG: Functor[G]): G[A]

    Permalink
  19. final def extend[A, B](fa: F[A])(f: (F[A]) ⇒ B): F[B]

    Permalink
    Definition Classes
    Cobind
  20. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  21. def fpair[A](fa: F[A]): F[(A, A)]

    Permalink

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  22. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

    Permalink

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  23. def functorLaw: FunctorLaw

    Permalink
    Definition Classes
    Functor
  24. val functorSyntax: FunctorSyntax[F]

    Permalink
    Definition Classes
    Functor
  25. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  26. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  27. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]

    Permalink

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  28. def invariantFunctorLaw: InvariantFunctorLaw

    Permalink
    Definition Classes
    InvariantFunctor
  29. val invariantFunctorSyntax: InvariantFunctorSyntax[F]

    Permalink
    Definition Classes
    InvariantFunctor
  30. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  31. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

    Permalink

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  32. def mapply[A, B](a: A)(f: F[(A) ⇒ B]): F[B]

    Permalink

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  33. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  34. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  35. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  36. def peeks[A](s: (S) ⇒ S, w: F[A]): A

    Permalink
  37. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]

    Permalink

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  38. def seek[A](s: S, w: F[A]): F[A]

    Permalink
  39. def seeks[A](s: (S) ⇒ S, w: F[A]): F[A]

    Permalink
  40. def strengthL[A, B](a: A, f: F[B]): F[(A, B)]

    Permalink

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  41. def strengthR[A, B](f: F[A], b: B): F[(A, B)]

    Permalink

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  42. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  43. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  44. def void[A](fa: F[A]): F[Unit]

    Permalink

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  45. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  46. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  47. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  48. def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]

    Permalink

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  49. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    FunctorInvariantFunctor
  50. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  51. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor

Inherited from Comonad[F]

Inherited from Cobind[F]

Inherited from Functor[F]

Inherited from InvariantFunctor[F]

Inherited from AnyRef

Inherited from Any

Ungrouped