Class/Object

scalaz

Adjunction

Related Docs: object Adjunction | package scalaz

Permalink

abstract class Adjunction[F[_], G[_]] extends AnyRef

An adjunction formed by two functors F and G such that F is left-adjoint to G. The composite functor GF is a monad and the composite functor FG is a comonad.

The minimal definition is either (unit, counit) or (leftAdjunct, rightAdjunct)

Self Type
Adjunction[F, G]
Source
Adjunction.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Adjunction
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new Adjunction()(implicit F: Functor[F], G: Functor[G])

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. implicit val F: Functor[F]

    Permalink
  5. implicit val G: Functor[G]

    Permalink
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. implicit val comonad: Comonad[[α]F[G[α]]]

    Permalink

    Every adjunction gives rise to a comonad.

  9. def compose[P[_], Q[_]](implicit A: -|[P, Q]): -|[[α]P[F[α]], [α]G[Q[α]]]

    Permalink

    Adjunctions compose in a natural fashion.

    Adjunctions compose in a natural fashion. If F -| G is an adjunction, and P -| Q is an adjunction, then PF -| GQ is an adjunction. In fact, adjunctions in Scala form a monoid.

  10. def counit[A](a: F[G[A]]): A

    Permalink

    Extracts a value out of the comonad.

  11. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  13. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  17. def leftAdjunct[A, B](a: ⇒ A)(f: (F[A]) ⇒ B): G[B]

    Permalink

    Every F-algebra maps to a G-coalgebra.

  18. implicit val monad: Monad[[α]G[F[α]]]

    Permalink

    Every adjunction gives rise to a monad.

  19. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  20. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  22. implicit val representable: Representable[G, F[Unit]]

    Permalink

    Every adjunction is representable.

  23. def rightAdjunct[A, B](a: F[A])(f: (A) ⇒ G[B]): B

    Permalink

    Every G-coalgebra maps to an F-algebra.

  24. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  25. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  26. def unit[A](a: ⇒ A): G[F[A]]

    Permalink

    Puts a value into the monad.

  27. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  30. implicit val zapFG: Zap[F, G]

    Permalink

    Adjoint functors annihilate each other.

  31. implicit val zapGF: Zap[G, F]

    Permalink

    Adjoint functors annihilate each other.

Inherited from AnyRef

Inherited from Any

Ungrouped