sealed abstract
class
Coyoneda[F[_], A] extends AnyRef
Type Members
-
abstract
type
I
Abstract Value Members
-
abstract
val
fi: F[I]
-
abstract
val
k: (I) ⇒ A
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
-
final
def
##(): Int
-
final
def
==(arg0: Any): Boolean
-
final
def
asInstanceOf[T0]: T0
-
def
clone(): AnyRef
-
-
-
def
extend[G[_]](f: ~>[[β$1$]Coyoneda[F, β$1$], G]): Coyoneda[G, A]
-
def
finalize(): Unit
-
def
flatMap[G[_]](f: ~>[F, [β$0$]Coyoneda[G, β$0$]]): Coyoneda[G, A]
-
final
def
getClass(): Class[_]
-
def
hashCode(): Int
-
final
def
isInstanceOf[T0]: Boolean
-
final
def
map[B](f: (A) ⇒ B): Aux[F, B, I]
-
-
final
def
notify(): Unit
-
final
def
notifyAll(): Unit
-
final
def
run(implicit F: Functor[F]): F[A]
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
-
def
toLan: Lan[Id.Id, F, A]
-
def
toString(): String
-
final
def
toYoneda(implicit F: Functor[F]): Yoneda[F, A]
-
final
def
trans[G[_]](f: ~>[F, G]): Aux[G, A, I]
-
final
def
unlift(implicit F: Functor[F]): F[A]
-
final
def
wait(): Unit
-
final
def
wait(arg0: Long, arg1: Int): Unit
-
final
def
wait(arg0: Long): Unit
The dual view of the Yoneda lemma. Also a free functor on
F
. This is isomorphic toF
as long asF
itself is a functor. The homomorphism fromF[A]
toCoyoneda[F,A]
exists even whenF
is not a functor.