Trait/Object

scalaz

Decidable

Related Docs: object Decidable | package scalaz

Permalink

trait Decidable[F[_]] extends Divisible[F] with InvariantAlt[F]

Coproduct analogue of Divide

https://hackage.haskell.org/package/contravariant-1.4.1/docs/Data-Functor-Contravariant-Divisible.html#t:Decidable

Self Type
Decidable[F]
Source
Decidable.scala
Linear Supertypes
Known Subclasses
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Decidable
  2. InvariantAlt
  3. Divisible
  4. InvariantApplicative
  5. Divide
  6. Contravariant
  7. InvariantFunctor
  8. AnyRef
  9. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait ContravariantLaw extends InvariantFunctorLaw

    Permalink
    Definition Classes
    Contravariant
  2. trait DecidableLaw extends DivisibleLaw

    Permalink
  3. trait DivideLaw extends ContravariantLaw

    Permalink
    Definition Classes
    Divide
  4. trait DivisibleLaw extends DivideLaw

    Permalink
    Definition Classes
    Divisible
  5. trait InvariantFunctorLaw extends AnyRef

    Permalink
    Definition Classes
    InvariantFunctor

Abstract Value Members

  1. abstract def choose2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (Z) ⇒ \/[A1, A2]): F[Z]

    Permalink
  2. abstract def conquer[A]: F[A]

    Permalink

    Universally quantified instance of F[_]

    Universally quantified instance of F[_]

    Definition Classes
    Divisible
  3. abstract def divide2[A1, A2, Z](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (Z) ⇒ (A1, A2)): F[Z]

    Permalink
    Definition Classes
    Divide

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. final def choose[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (Z) ⇒ \/[A1, A2]): F[Z]

    Permalink
  6. def choose1[Z, A1](a1: ⇒ F[A1])(f: (Z) ⇒ A1): F[Z]

    Permalink
  7. def choose3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (Z) ⇒ \/[A1, \/[A2, A3]]): F[Z]

    Permalink
  8. def choose4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (Z) ⇒ \/[A1, \/[A2, \/[A3, A4]]]): F[Z]

    Permalink
  9. final def choosing2[Z, A1, A2](f: (Z) ⇒ \/[A1, A2])(implicit fa1: F[A1], fa2: F[A2]): F[Z]

    Permalink
  10. final def choosing3[Z, A1, A2, A3](f: (Z) ⇒ \/[A1, \/[A2, A3]])(implicit fa1: F[A1], fa2: F[A2], fa3: F[A3]): F[Z]

    Permalink
  11. final def choosing4[Z, A1, A2, A3, A4](f: (Z) ⇒ \/[A1, \/[A2, \/[A3, A4]]])(implicit fa1: F[A1], fa2: F[A2], fa3: F[A3], fa4: F[A4]): F[Z]

    Permalink
  12. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  13. def compose[G[_]](implicit G0: Contravariant[G]): Functor[[α]F[G[α]]]

    Permalink

    The composition of Contravariant F and G, [x]F[G[x]], is covariant.

    The composition of Contravariant F and G, [x]F[G[x]], is covariant.

    Definition Classes
    Contravariant
  14. def contramap[A, B](fa: F[A])(f: (B) ⇒ A): F[B]

    Permalink

    Transform A.

    Transform A.

    Definition Classes
    DivisibleContravariant
    Note

    contramap(r)(identity) = r

  15. def contravariantLaw: ContravariantLaw

    Permalink
    Definition Classes
    Contravariant
  16. val contravariantSyntax: ContravariantSyntax[F]

    Permalink
    Definition Classes
    Contravariant
  17. def decidableLaw: DecidableLaw

    Permalink
  18. val decidableSyntax: DecidableSyntax[F]

    Permalink
  19. final def divide[A, B, C](fa: ⇒ F[A], fb: ⇒ F[B])(f: (C) ⇒ (A, B)): F[C]

    Permalink
    Definition Classes
    Divide
  20. final def divide1[A1, Z](a1: F[A1])(f: (Z) ⇒ A1): F[Z]

    Permalink
    Definition Classes
    Divide
  21. def divide3[A1, A2, A3, Z](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (Z) ⇒ (A1, A2, A3)): F[Z]

    Permalink
    Definition Classes
    Divide
  22. def divide4[A1, A2, A3, A4, Z](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (Z) ⇒ (A1, A2, A3, A4)): F[Z]

    Permalink
    Definition Classes
    Divide
  23. def divideLaw: DivideLaw

    Permalink
    Definition Classes
    Divide
  24. val divideSyntax: DivideSyntax[F]

    Permalink
    Definition Classes
    Divide
  25. final def dividing1[A1, Z](f: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]

    Permalink
    Definition Classes
    Divide
  26. final def dividing2[A1, A2, Z](f: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]

    Permalink
    Definition Classes
    Divide
  27. final def dividing3[A1, A2, A3, Z](f: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]

    Permalink
    Definition Classes
    Divide
  28. final def dividing4[A1, A2, A3, A4, Z](f: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]

    Permalink
    Definition Classes
    Divide
  29. def divisibleLaw: DivisibleLaw

    Permalink
    Definition Classes
    Divisible
  30. val divisibleSyntax: DivisibleSyntax[F]

    Permalink
    Definition Classes
    Divisible
  31. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  32. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  33. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  34. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  35. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  36. def icompose[G[_]](implicit G0: Functor[G]): Contravariant[[α]F[G[α]]]

    Permalink

    The composition of Contravariant F and Functor G, [x]F[G[x]], is contravariant.

    The composition of Contravariant F and Functor G, [x]F[G[x]], is contravariant.

    Definition Classes
    Contravariant
  37. val invariantAltSyntax: InvariantAltSyntax[F]

    Permalink
    Definition Classes
    InvariantAlt
  38. val invariantApplicativeSyntax: InvariantApplicativeSyntax[F]

    Permalink
    Definition Classes
    InvariantApplicative
  39. def invariantFunctorLaw: InvariantFunctorLaw

    Permalink
    Definition Classes
    InvariantFunctor
  40. val invariantFunctorSyntax: InvariantFunctorSyntax[F]

    Permalink
    Definition Classes
    InvariantFunctor
  41. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  42. def narrow[A, B](fa: F[A])(implicit ev: <~<[B, A]): F[B]

    Permalink
    Definition Classes
    Contravariant
  43. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  44. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  45. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  46. def product[G[_]](implicit G0: Contravariant[G]): Contravariant[[α](F[α], G[α])]

    Permalink

    The product of Contravariant F and G, [x](F[x], G[x]]), is contravariant.

    The product of Contravariant F and G, [x](F[x], G[x]]), is contravariant.

    Definition Classes
    Contravariant
  47. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  48. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  49. def tuple2[A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2]): F[(A1, A2)]

    Permalink
    Definition Classes
    Divide
  50. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  51. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  52. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  53. final def xcoderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]

    Permalink
    Definition Classes
    InvariantAlt
  54. final def xcoderiving2[Z, A1, A2](f: (\/[A1, A2]) ⇒ Z, g: (Z) ⇒ \/[A1, A2])(implicit a1: F[A1], a2: F[A2]): F[Z]

    Permalink
    Definition Classes
    InvariantAlt
  55. final def xcoderiving3[Z, A1, A2, A3](f: (\/[A1, \/[A2, A3]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, A3]])(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]

    Permalink
    Definition Classes
    InvariantAlt
  56. final def xcoderiving4[Z, A1, A2, A3, A4](f: (\/[A1, \/[A2, \/[A3, A4]]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, \/[A3, A4]]])(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]

    Permalink
    Definition Classes
    InvariantAlt
  57. def xcoproduct1[Z, A1](a1: ⇒ F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]

    Permalink
    Definition Classes
    DecidableInvariantAlt
  58. def xcoproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (\/[A1, A2]) ⇒ Z, g: (Z) ⇒ \/[A1, A2]): F[Z]

    Permalink
    Definition Classes
    DecidableInvariantAlt
  59. def xcoproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (\/[A1, \/[A2, A3]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, A3]]): F[Z]

    Permalink
    Definition Classes
    DecidableInvariantAlt
  60. def xcoproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (\/[A1, \/[A2, \/[A3, A4]]]) ⇒ Z, g: (Z) ⇒ \/[A1, \/[A2, \/[A3, A4]]]): F[Z]

    Permalink
    Definition Classes
    DecidableInvariantAlt
  61. final def xderiving0[Z](z: ⇒ Z): F[Z]

    Permalink
    Definition Classes
    InvariantApplicative
  62. final def xderiving1[Z, A1](f: (A1) ⇒ Z, g: (Z) ⇒ A1)(implicit a1: F[A1]): F[Z]

    Permalink
    Definition Classes
    InvariantApplicative
  63. final def xderiving2[Z, A1, A2](f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2))(implicit a1: F[A1], a2: F[A2]): F[Z]

    Permalink
    Definition Classes
    InvariantApplicative
  64. final def xderiving3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3))(implicit a1: F[A1], a2: F[A2], a3: F[A3]): F[Z]

    Permalink
    Definition Classes
    InvariantApplicative
  65. final def xderiving4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4))(implicit a1: F[A1], a2: F[A2], a3: F[A3], a4: F[A4]): F[Z]

    Permalink
    Definition Classes
    InvariantApplicative
  66. def xmap[A, B](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ A): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    ContravariantInvariantFunctor
  67. def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  68. def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]

    Permalink

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor
  69. def xproduct0[Z](z: ⇒ Z): F[Z]

    Permalink
    Definition Classes
    DivisibleInvariantApplicative
  70. def xproduct1[Z, A1](a1: ⇒ F[A1])(f: (A1) ⇒ Z, g: (Z) ⇒ A1): F[Z]

    Permalink
    Definition Classes
    DivisibleInvariantApplicative
  71. def xproduct2[Z, A1, A2](a1: ⇒ F[A1], a2: ⇒ F[A2])(f: (A1, A2) ⇒ Z, g: (Z) ⇒ (A1, A2)): F[Z]

    Permalink
    Definition Classes
    DivisibleInvariantApplicative
  72. def xproduct3[Z, A1, A2, A3](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3])(f: (A1, A2, A3) ⇒ Z, g: (Z) ⇒ (A1, A2, A3)): F[Z]

    Permalink
    Definition Classes
    DivisibleInvariantApplicative
  73. def xproduct4[Z, A1, A2, A3, A4](a1: ⇒ F[A1], a2: ⇒ F[A2], a3: ⇒ F[A3], a4: ⇒ F[A4])(f: (A1, A2, A3, A4) ⇒ Z, g: (Z) ⇒ (A1, A2, A3, A4)): F[Z]

    Permalink
    Definition Classes
    DivisibleInvariantApplicative

Inherited from InvariantAlt[F]

Inherited from Divisible[F]

Inherited from InvariantApplicative[F]

Inherited from Divide[F]

Inherited from Contravariant[F]

Inherited from InvariantFunctor[F]

Inherited from AnyRef

Inherited from Any

Ungrouped