Class/Object

scalaz

FreeAp

Related Docs: object FreeAp | package scalaz

Permalink

sealed abstract class FreeAp[F[_], A] extends AnyRef

Free applicative functors. Less expressive than free monads, but more flexible to inspect and interpret.

Source
FreeAp.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. FreeAp
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def analyze[M](f: ~>[F, [α]M])(implicit arg0: Monoid[M]): M

    Permalink

    Performs a monoidal analysis over this free program.

    Performs a monoidal analysis over this free program. Maps the effects in F to values in the monoid M, discarding the values of those effects. Example:

    def count[F[_],B](p: FreeAp[F,B]): Int =
      p.analyze(new (F ~> λ[α => Int]) {
        def apply[A](a: F[A]) = 1
      })
  5. def ap[B](f: FreeAp[F, (A) ⇒ B]): FreeAp[F, B]

    Permalink

    Idiomatic function application

  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. def foldMap[G[_]](f: ~>[F, G])(implicit arg0: Applicative[G]): G[A]

    Permalink

    The canonical natural transformation that interprets this free program by giving it the semantics of the applicative functor G.

    The canonical natural transformation that interprets this free program by giving it the semantics of the applicative functor G. Not tail-recursive unless G is a free monad.

  12. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  13. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  14. def hoist[G[_]](f: ~>[F, G]): FreeAp[G, A]

    Permalink

    The natural transformation from FreeAp[F,_] to FreeAp[G,_]

  15. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  16. def map[B](f: (A) ⇒ B): FreeAp[F, B]

    Permalink

    Append a function to the end of this program

  17. def monadic: Free[F, A]

    Permalink

    Embeds this program in the free monad on F.

  18. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  19. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  20. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. def para[B](pure: (A) ⇒ B, ap: ~>[[α](F[α], FreeAp[F, (α) ⇒ A]), [α]B]): B

    Permalink

    Provides access to the first instruction of this program, if present

  22. def retract(implicit F: Applicative[F]): F[A]

    Permalink

    Interprets this free F program using the semantics of the Applicative instance for F.

  23. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  24. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  25. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped