Object/Trait

scalaz

Semigroup

Related Docs: trait Semigroup | package scalaz

Permalink

object Semigroup

Source
Semigroup.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. Semigroup
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def apply[F](implicit F: Semigroup[F]): Semigroup[F]

    Permalink
    Annotations
    @inline()
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. def firstSemigroup[A]: Band[A]

    Permalink

    A purely left-biased semigroup.

  11. implicit def firstTaggedSemigroup[A]: Band[@@[A, FirstVal]]

    Permalink
    Annotations
    @inline()
  12. def fromIso[F, G](D: Isomorphism.<=>[F, G])(implicit M: Semigroup[G]): Semigroup[F]

    Permalink
  13. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  14. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  15. def instance[A](f: (A, ⇒ A) ⇒ A): Semigroup[A]

    Permalink

    Make an associative binary function into an instance.

  16. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  17. def iterate[F[_], A](a: A)(f: (A) ⇒ A)(implicit F: Applicative[F], m: Semigroup[F[A]]): F[A]

    Permalink

    point(a) append (point(f(a)) append (point(f(f(a)))...

  18. def lastSemigroup[A]: Band[A]

    Permalink

    A purely right-biased semigroup.

  19. implicit def lastTaggedSemigroup[A]: Band[@@[A, LastVal]]

    Permalink
    Annotations
    @inline()
  20. def liftSemigroup[F[_], M](implicit F0: Apply[F], M0: Semigroup[M]): Semigroup[F[M]]

    Permalink

    A semigroup for sequencing Apply effects.

  21. def maxSemigroup[A](implicit o: Order[A]): SemiLattice[@@[A, MaxVal]]

    Permalink
  22. implicit def maxTaggedSemigroup[A](implicit arg0: Order[A]): SemiLattice[@@[A, MaxVal]]

    Permalink
    Annotations
    @inline()
  23. def minSemigroup[A](implicit o: Order[A]): SemiLattice[@@[A, MinVal]]

    Permalink
  24. implicit def minTaggedSemigroup[A](implicit arg0: Order[A]): SemiLattice[@@[A, MinVal]]

    Permalink
    Annotations
    @inline()
  25. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  26. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  27. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  28. def repeat[F[_], A](a: A)(implicit F: Applicative[F], m: Semigroup[F[A]]): F[A]

    Permalink

    point(a) append (point(a) append (point(a)...

  29. implicit val semigroupInvariantFunctor: InvariantFunctor[Semigroup]

    Permalink

    Semigroup is an invariant functor.

  30. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  31. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  32. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped