Trait

scalaz.Semigroup

SemigroupApply

Related Doc: package Semigroup

Permalink

trait SemigroupApply extends Apply[[α]F]

Attributes
protected[this]
Source
Semigroup.scala
Linear Supertypes
Apply[[α]F], Functor[[α]F], InvariantFunctor[[α]F], AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. SemigroupApply
  2. Apply
  3. Functor
  4. InvariantFunctor
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. trait ApplyLaw extends FunctorLaw

    Permalink
    Definition Classes
    Apply
  2. trait FlippedApply extends Apply[F]

    Permalink
    Attributes
    protected[this]
    Definition Classes
    Apply
  3. trait FunctorLaw extends InvariantFunctorLaw

    Permalink
    Definition Classes
    Functor
  4. trait InvariantFunctorLaw extends AnyRef

    Permalink
    Definition Classes
    InvariantFunctor

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def ap[A, B](fa: ⇒ F)(f: ⇒ F): F

    Permalink

    Sequence f, then fa, combining their results by function application.

    Sequence f, then fa, combining their results by function application.

    NB: with respect to apply2 and all other combinators, as well as scalaz.Bind, the f action appears to the *left*. So f should be the "first" F-action to perform. This is in accordance with all other implementations of this typeclass in common use, which are "function first".

    Definition Classes
    SemigroupApplyApply
  5. def ap2[A, B, C](fa: ⇒ F, fb: ⇒ F)(f: F): F

    Permalink
    Definition Classes
    Apply
  6. def ap3[A, B, C, D](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F)(f: F): F

    Permalink
    Definition Classes
    Apply
  7. def ap4[A, B, C, D, E](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F)(f: F): F

    Permalink
    Definition Classes
    Apply
  8. def ap5[A, B, C, D, E, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F)(f: F): F

    Permalink
    Definition Classes
    Apply
  9. def ap6[A, B, C, D, E, FF, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F)(f: F): F

    Permalink
    Definition Classes
    Apply
  10. def ap7[A, B, C, D, E, FF, G, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F)(f: F): F

    Permalink
    Definition Classes
    Apply
  11. def ap8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F, fh: ⇒ F)(f: F): F

    Permalink
    Definition Classes
    Apply
  12. def apF[A, B](f: ⇒ F): (F) ⇒ F

    Permalink

    Flipped variant of ap.

    Flipped variant of ap.

    Definition Classes
    Apply
  13. def apply[A, B](fa: F)(f: (A) ⇒ B): F

    Permalink

    Alias for map.

    Alias for map.

    Definition Classes
    Functor
  14. def apply10[A, B, C, D, E, FF, G, H, I, J, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F, fh: ⇒ F, fi: ⇒ F, fj: ⇒ F)(f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): F

    Permalink
    Definition Classes
    Apply
  15. def apply11[A, B, C, D, E, FF, G, H, I, J, K, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F, fh: ⇒ F, fi: ⇒ F, fj: ⇒ F, fk: ⇒ F)(f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): F

    Permalink
    Definition Classes
    Apply
  16. def apply12[A, B, C, D, E, FF, G, H, I, J, K, L, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F, fh: ⇒ F, fi: ⇒ F, fj: ⇒ F, fk: ⇒ F, fl: ⇒ F)(f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): F

    Permalink
    Definition Classes
    Apply
  17. def apply2[A, B, C](fa: ⇒ F, fb: ⇒ F)(f: (A, B) ⇒ C): F

    Permalink
    Definition Classes
    Apply
  18. def apply3[A, B, C, D](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F)(f: (A, B, C) ⇒ D): F

    Permalink
    Definition Classes
    Apply
  19. def apply4[A, B, C, D, E](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F)(f: (A, B, C, D) ⇒ E): F

    Permalink
    Definition Classes
    Apply
  20. def apply5[A, B, C, D, E, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F)(f: (A, B, C, D, E) ⇒ R): F

    Permalink
    Definition Classes
    Apply
  21. def apply6[A, B, C, D, E, FF, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F)(f: (A, B, C, D, E, FF) ⇒ R): F

    Permalink
    Definition Classes
    Apply
  22. def apply7[A, B, C, D, E, FF, G, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F)(f: (A, B, C, D, E, FF, G) ⇒ R): F

    Permalink
    Definition Classes
    Apply
  23. def apply8[A, B, C, D, E, FF, G, H, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F, fh: ⇒ F)(f: (A, B, C, D, E, FF, G, H) ⇒ R): F

    Permalink
    Definition Classes
    Apply
  24. def apply9[A, B, C, D, E, FF, G, H, I, R](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F, ff: ⇒ F, fg: ⇒ F, fh: ⇒ F, fi: ⇒ F)(f: (A, B, C, D, E, FF, G, H, I) ⇒ R): F

    Permalink
    Definition Classes
    Apply
  25. def applyApplicative: Applicative[[α]\/[F, α]]

    Permalink

    Add a unit to any Apply to form an Applicative.

    Add a unit to any Apply to form an Applicative.

    Definition Classes
    Apply
  26. def applyLaw: ApplyLaw

    Permalink
    Definition Classes
    Apply
  27. val applySyntax: ApplySyntax[[α]F]

    Permalink
    Definition Classes
    Apply
  28. final def applying1[Z, A1](f: (A1) ⇒ Z)(implicit a1: F): F

    Permalink
    Definition Classes
    Apply
  29. final def applying2[Z, A1, A2](f: (A1, A2) ⇒ Z)(implicit a1: F, a2: F): F

    Permalink
    Definition Classes
    Apply
  30. final def applying3[Z, A1, A2, A3](f: (A1, A2, A3) ⇒ Z)(implicit a1: F, a2: F, a3: F): F

    Permalink
    Definition Classes
    Apply
  31. final def applying4[Z, A1, A2, A3, A4](f: (A1, A2, A3, A4) ⇒ Z)(implicit a1: F, a2: F, a3: F, a4: F): F

    Permalink
    Definition Classes
    Apply
  32. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  33. def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F]

    Permalink

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    The composition of Functor F and Bifunctor G, [x, y]F[G[x, y]], is a Bifunctor

    Definition Classes
    Functor
  34. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  35. def compose[G[_]](implicit G0: Apply[G]): Apply[[α]F]

    Permalink

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    The composition of Applys F and G, [x]F[G[x]], is a Apply

    Definition Classes
    Apply
  36. def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F]

    Permalink

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    The composition of Functors F and G, [x]F[G[x]], is a Functor

    Definition Classes
    Functor
  37. def counzip[A, B](a: \/[F, F]): F

    Permalink
    Definition Classes
    Functor
  38. def discardLeft[A, B](fa: ⇒ F, fb: ⇒ F): F

    Permalink

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Combine fa and fb according to Apply[F] with a function that discards the A(s)

    Definition Classes
    Apply
  39. def discardRight[A, B](fa: ⇒ F, fb: ⇒ F): F

    Permalink

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Combine fa and fb according to Apply[F] with a function that discards the B(s)

    Definition Classes
    Apply
  40. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  41. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  42. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  43. def flip: Apply[[α]F]

    Permalink

    An Apply for F in which effects happen in the opposite order.

    An Apply for F in which effects happen in the opposite order.

    Definition Classes
    Apply
  44. def forever[A, B](fa: F): F

    Permalink

    Repeats an applicative action infinitely

    Repeats an applicative action infinitely

    Definition Classes
    Apply
  45. def fpair[A](fa: F): F

    Permalink

    Twin all As in fa.

    Twin all As in fa.

    Definition Classes
    Functor
  46. def fproduct[A, B](fa: F)(f: (A) ⇒ B): F

    Permalink

    Pair all As in fa with the result of function application.

    Pair all As in fa with the result of function application.

    Definition Classes
    Functor
  47. def functorLaw: FunctorLaw

    Permalink
    Definition Classes
    Functor
  48. val functorSyntax: FunctorSyntax[[α]F]

    Permalink
    Definition Classes
    Functor
  49. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  50. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  51. def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F]

    Permalink

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    The composition of Functor F and Contravariant G, [x]F[G[x]], is contravariant.

    Definition Classes
    Functor
  52. def invariantFunctorLaw: InvariantFunctorLaw

    Permalink
    Definition Classes
    InvariantFunctor
  53. val invariantFunctorSyntax: InvariantFunctorSyntax[[α]F]

    Permalink
    Definition Classes
    InvariantFunctor
  54. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  55. def lift[A, B](f: (A) ⇒ B): (F) ⇒ F

    Permalink

    Lift f into F.

    Lift f into F.

    Definition Classes
    Functor
  56. def lift10[A, B, C, D, E, FF, G, H, I, J, R](f: (A, B, C, D, E, FF, G, H, I, J) ⇒ R): (F, F, F, F, F, F, F, F, F, F) ⇒ F

    Permalink
    Definition Classes
    Apply
  57. def lift11[A, B, C, D, E, FF, G, H, I, J, K, R](f: (A, B, C, D, E, FF, G, H, I, J, K) ⇒ R): (F, F, F, F, F, F, F, F, F, F, F) ⇒ F

    Permalink
    Definition Classes
    Apply
  58. def lift12[A, B, C, D, E, FF, G, H, I, J, K, L, R](f: (A, B, C, D, E, FF, G, H, I, J, K, L) ⇒ R): (F, F, F, F, F, F, F, F, F, F, F, F) ⇒ F

    Permalink
    Definition Classes
    Apply
  59. def lift2[A, B, C](f: (A, B) ⇒ C): (F, F) ⇒ F

    Permalink
    Definition Classes
    Apply
  60. def lift3[A, B, C, D](f: (A, B, C) ⇒ D): (F, F, F) ⇒ F

    Permalink
    Definition Classes
    Apply
  61. def lift4[A, B, C, D, E](f: (A, B, C, D) ⇒ E): (F, F, F, F) ⇒ F

    Permalink
    Definition Classes
    Apply
  62. def lift5[A, B, C, D, E, R](f: (A, B, C, D, E) ⇒ R): (F, F, F, F, F) ⇒ F

    Permalink
    Definition Classes
    Apply
  63. def lift6[A, B, C, D, E, FF, R](f: (A, B, C, D, E, FF) ⇒ R): (F, F, F, F, F, F) ⇒ F

    Permalink
    Definition Classes
    Apply
  64. def lift7[A, B, C, D, E, FF, G, R](f: (A, B, C, D, E, FF, G) ⇒ R): (F, F, F, F, F, F, F) ⇒ F

    Permalink
    Definition Classes
    Apply
  65. def lift8[A, B, C, D, E, FF, G, H, R](f: (A, B, C, D, E, FF, G, H) ⇒ R): (F, F, F, F, F, F, F, F) ⇒ F

    Permalink
    Definition Classes
    Apply
  66. def lift9[A, B, C, D, E, FF, G, H, I, R](f: (A, B, C, D, E, FF, G, H, I) ⇒ R): (F, F, F, F, F, F, F, F, F) ⇒ F

    Permalink
    Definition Classes
    Apply
  67. def liftReducer[A, B](implicit r: Reducer[A, B]): Reducer[F, F]

    Permalink
    Definition Classes
    Apply
  68. def map[A, B](fa: F)(f: (A) ⇒ B): F

    Permalink

    Lift f into F and apply to F[A].

    Lift f into F and apply to F[A].

    Definition Classes
    SemigroupApplyFunctor
  69. def mapply[A, B](a: A)(f: F): F

    Permalink

    Lift apply(a), and apply the result to f.

    Lift apply(a), and apply the result to f.

    Definition Classes
    Functor
  70. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  71. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  72. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  73. def product[G[_]](implicit G0: Apply[G]): Apply[[α](F, G[α])]

    Permalink

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    The product of Applys F and G, [x](F[x], G[x]]), is a Apply

    Definition Classes
    Apply
  74. def product[G[_]](implicit G0: Functor[G]): Functor[[α](F, G[α])]

    Permalink

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    The product of Functors F and G, [x](F[x], G[x]]), is a Functor

    Definition Classes
    Functor
  75. def sequence1[A, G[_]](as: G[F])(implicit arg0: Traverse1[G]): F

    Permalink
    Definition Classes
    Apply
  76. def strengthL[A, B](a: A, f: F): F

    Permalink

    Inject a to the left of Bs in f.

    Inject a to the left of Bs in f.

    Definition Classes
    Functor
  77. def strengthR[A, B](f: F, b: B): F

    Permalink

    Inject b to the right of As in f.

    Inject b to the right of As in f.

    Definition Classes
    Functor
  78. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  79. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  80. def traverse1[A, G[_], B](value: G[A])(f: (A) ⇒ F)(implicit G: Traverse1[G]): F

    Permalink
    Definition Classes
    Apply
  81. def tuple2[A, B](fa: ⇒ F, fb: ⇒ F): F

    Permalink
    Definition Classes
    Apply
  82. def tuple3[A, B, C](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F): F

    Permalink
    Definition Classes
    Apply
  83. def tuple4[A, B, C, D](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F): F

    Permalink
    Definition Classes
    Apply
  84. def tuple5[A, B, C, D, E](fa: ⇒ F, fb: ⇒ F, fc: ⇒ F, fd: ⇒ F, fe: ⇒ F): F

    Permalink
    Definition Classes
    Apply
  85. def unfoldrOpt[S, A, B](seed: S)(f: (S) ⇒ Maybe[(F, S)])(implicit R: Reducer[A, B]): Maybe[F]

    Permalink

    Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values.

    Unfold seed to the right and combine effects left-to-right, using the given Reducer to combine values. Implementations may override this method to not unfold more than is necessary to determine the result.

    Definition Classes
    Apply
  86. def void[A](fa: F): F

    Permalink

    Empty fa of meaningful pure values, preserving its structure.

    Empty fa of meaningful pure values, preserving its structure.

    Definition Classes
    Functor
  87. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  88. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  89. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  90. def widen[A, B](fa: F)(implicit ev: <~<[A, B]): F

    Permalink

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Functors are covariant by nature, so we can treat an F[A] as an F[B] if A is a subtype of B.

    Definition Classes
    Functor
  91. def xmap[A, B](fa: F, f: (A) ⇒ B, g: (B) ⇒ A): F

    Permalink

    Converts ma to a value of type F[B] using the provided functions f and g.

    Converts ma to a value of type F[B] using the provided functions f and g.

    Definition Classes
    FunctorInvariantFunctor
  92. def xmapb[A, B](ma: F)(b: Bijection[A, B]): F

    Permalink

    Converts ma to a value of type F[B] using the provided bijection.

    Converts ma to a value of type F[B] using the provided bijection.

    Definition Classes
    InvariantFunctor
  93. def xmapi[A, B](ma: F)(iso: Isomorphism.<=>[A, B]): F

    Permalink

    Converts ma to a value of type F[B] using the provided isomorphism.

    Converts ma to a value of type F[B] using the provided isomorphism.

    Definition Classes
    InvariantFunctor

Inherited from Apply[[α]F]

Inherited from Functor[[α]F]

Inherited from InvariantFunctor[[α]F]

Inherited from AnyRef

Inherited from Any

Ungrouped