Trait/Object

cats

Traverse

Related Docs: object Traverse | package cats

Permalink

trait Traverse[F[_]] extends Functor[F] with Foldable[F]

Traverse, also known as Traversable.

Traversal over a structure with an effect.

Traversing with the cats.Id effect is equivalent to cats.Functor#map. Traversing with the cats.data.Const effect where the first type parameter has a cats.Monoid instance is equivalent to cats.Foldable#fold.

See: The Essence of the Iterator Pattern

Self Type
Traverse[F]
Linear Supertypes
Foldable[F], Functor[F], Invariant[F], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Traverse
  2. Foldable
  3. Functor
  4. Invariant
  5. Serializable
  6. Serializable
  7. AnyRef
  8. Any
  1. Hide All
  2. Show all
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def foldLeft[A, B](fa: F[A], b: B)(f: (B, A) ⇒ B): B

    Permalink

    Left associative fold on 'F' using the function 'f'.

    Left associative fold on 'F' using the function 'f'.

    Definition Classes
    Foldable
  2. abstract def foldRight[A, B](fa: F[A], lb: Eval[B])(f: (A, Eval[B]) ⇒ Eval[B]): Eval[B]

    Permalink

    Right associative lazy fold on F using the folding function 'f'.

    Right associative lazy fold on F using the folding function 'f'.

    This method evaluates lb lazily (in some cases it will not be needed), and returns a lazy value. We are using (A, Eval[B]) => Eval[B] to support laziness in a stack-safe way. Chained computation should be performed via .map and .flatMap.

    For more detailed information about how this method works see the documentation for Eval[_].

    Definition Classes
    Foldable
  3. abstract def traverse[G[_], A, B](fa: F[A])(f: (A) ⇒ G[B])(implicit arg0: Applicative[G]): G[F[B]]

    Permalink

    Given a function which returns a G effect, thread this effect through the running of this function on all the values in F, returning an F[B] in a G context.

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def as[A, B](fa: F[A], b: B): F[B]

    Permalink

    Replaces the A value in F[A] with the supplied value.

    Replaces the A value in F[A] with the supplied value.

    Definition Classes
    Functor
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. def combineAll[A](fa: F[A])(implicit arg0: Monoid[A]): A

    Permalink

    Alias for fold.

    Alias for fold.

    Definition Classes
    Foldable
  8. def compose[G[_]](implicit ev: Foldable[G]): Foldable[[α]F[G[α]]]

    Permalink

    Compose this Foldable[F] with a Foldable[G] to create a Foldable[F[G]] instance.

    Compose this Foldable[F] with a Foldable[G] to create a Foldable[F[G]] instance.

    Definition Classes
    Foldable
  9. def compose[G[_]](implicit GG: Functor[G]): Functor[[X]F[G[X]]]

    Permalink

    Compose this functor F with a functor G to produce a composite Functor on G[F[_]], with a map method which uses an A => B to map a G[F[A]] to a G[F[B]].

    Compose this functor F with a functor G to produce a composite Functor on G[F[_]], with a map method which uses an A => B to map a G[F[A]] to a G[F[B]].

    Definition Classes
    Functor
  10. def compose[G[_]](implicit arg0: Invariant[G], GG: Invariant[G]): Invariant[[X]F[G[X]]]

    Permalink

    Compose 2 invariant Functors F and G to get a new Invariant Functor for F[G[_]].

    Compose 2 invariant Functors F and G to get a new Invariant Functor for F[G[_]].

    Definition Classes
    Invariant
  11. def composeWithContravariant[G[_]](implicit GG: Contravariant[G]): Contravariant[[X]F[G[X]]]

    Permalink

    Compose this functor F with a Contravariant Functor G to produce a new Contravariant Functor on F[G[_]].

    Compose this functor F with a Contravariant Functor G to produce a new Contravariant Functor on F[G[_]].

    Definition Classes
    FunctorInvariant
  12. def composeWithFunctor[G[_]](implicit arg0: Functor[G]): Functor[[X]F[G[X]]]

    Permalink

    Compose the Invariant Functor F with a normal (Covariant) Functor to get a new Invariant Functor for [F[G[_]].

    Compose the Invariant Functor F with a normal (Covariant) Functor to get a new Invariant Functor for [F[G[_]].

    Definition Classes
    FunctorInvariant
  13. def dropWhile_[A](fa: F[A])(p: (A) ⇒ Boolean): List[A]

    Permalink

    Convert F[A] to a List[A], dropping all initial elements which match p.

    Convert F[A] to a List[A], dropping all initial elements which match p.

    Definition Classes
    Foldable
  14. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  15. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  16. def exists[A](fa: F[A])(p: (A) ⇒ Boolean): Boolean

    Permalink

    Check whether at least one element satisfies the predicate.

    Check whether at least one element satisfies the predicate.

    If there are no elements, the result is false.

    Definition Classes
    Foldable
  17. def filter_[A](fa: F[A])(p: (A) ⇒ Boolean): List[A]

    Permalink

    Convert F[A] to a List[A], only including elements which match p.

    Convert F[A] to a List[A], only including elements which match p.

    Definition Classes
    Foldable
  18. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  19. def find[A](fa: F[A])(f: (A) ⇒ Boolean): Option[A]

    Permalink

    Find the first element matching the predicate, if one exists.

    Find the first element matching the predicate, if one exists.

    Definition Classes
    Foldable
  20. def fold[A](fa: F[A])(implicit A: Monoid[A]): A

    Permalink

    Fold implemented using the given Monoid[A] instance.

    Fold implemented using the given Monoid[A] instance.

    Definition Classes
    Foldable
  21. def foldK[G[_], A](fga: F[G[A]])(implicit G: MonoidK[G]): G[A]

    Permalink

    Fold implemented using the given MonoidK[G] instance.

    Fold implemented using the given MonoidK[G] instance.

    This method is identical to fold, except that we use the universal monoid (MonoidK[G]) to get a Monoid[G[A]] instance.

    For example:

    val F = Foldable[List]
    F.foldK(List(1 :: 2 :: Nil, 3 :: 4 :: 5 :: Nil))
    // List(1, 2, 3, 4, 5)
    Definition Classes
    Foldable
  22. def foldMap[A, B](fa: F[A])(f: (A) ⇒ B)(implicit B: Monoid[B]): B

    Permalink

    Fold implemented by mapping A values into B and then combining them using the given Monoid[B] instance.

    Fold implemented by mapping A values into B and then combining them using the given Monoid[B] instance.

    Definition Classes
    Foldable
  23. def forall[A](fa: F[A])(p: (A) ⇒ Boolean): Boolean

    Permalink

    Check whether all elements satisfy the predicate.

    Check whether all elements satisfy the predicate.

    If there are no elements, the result is true.

    Definition Classes
    Foldable
  24. def fproduct[A, B](fa: F[A])(f: (A) ⇒ B): F[(A, B)]

    Permalink

    Tuple the values in fa with the result of applying a function with the value

    Tuple the values in fa with the result of applying a function with the value

    Definition Classes
    Functor
  25. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  26. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  27. def imap[A, B](fa: F[A])(f: (A) ⇒ B)(fi: (B) ⇒ A): F[B]

    Permalink
    Definition Classes
    FunctorInvariant
  28. def isEmpty[A](fa: F[A]): Boolean

    Permalink

    Returns true if there are no elements.

    Returns true if there are no elements. Otherwise false.

    Definition Classes
    Foldable
  29. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  30. def lift[A, B](f: (A) ⇒ B): (F[A]) ⇒ F[B]

    Permalink

    Lift a function f to operate on Functors

    Lift a function f to operate on Functors

    Definition Classes
    Functor
  31. def map[A, B](fa: F[A])(f: (A) ⇒ B): F[B]

    Permalink
    Definition Classes
    TraverseFunctor
  32. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  33. def nonEmpty[A](fa: F[A]): Boolean

    Permalink
    Definition Classes
    Foldable
  34. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  35. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  36. def reduceLeftToOption[A, B](fa: F[A])(f: (A) ⇒ B)(g: (B, A) ⇒ B): Option[B]

    Permalink
    Definition Classes
    Foldable
  37. def reduceRightToOption[A, B](fa: F[A])(f: (A) ⇒ B)(g: (A, Eval[B]) ⇒ Eval[B]): Eval[Option[B]]

    Permalink
    Definition Classes
    Foldable
  38. def sequence[G[_], A](fga: F[G[A]])(implicit arg0: Applicative[G]): G[F[A]]

    Permalink

    Thread all the G effects through the F structure to invert the structure from F[G[A]] to G[F[A]].

  39. def sequenceU[GA](fga: F[GA])(implicit U: Unapply[Applicative, GA]): M[F[A]]

    Permalink

    Behaves just like sequence, but uses Unapply to find the Applicative instance for G.

  40. def sequence_[G[_], A, B](fga: F[G[A]])(implicit arg0: Applicative[G]): G[Unit]

    Permalink

    Sequence F[G[A]] using Applicative[G].

    Sequence F[G[A]] using Applicative[G].

    This is similar to traverse_ except it operates on F[G[A]] values, so no additional functions are needed.

    For example:

    val F = Foldable[List]
    F.sequence_(List(Option(1), Option(2), Option(3))) // Some(())
    F.sequence_(List(Option(1), None, Option(3)))      // None
    Definition Classes
    Foldable
  41. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  42. def toList[A](fa: F[A]): List[A]

    Permalink

    Convert F[A] to a List[A].

    Convert F[A] to a List[A].

    Definition Classes
    Foldable
  43. def toStreaming[A](fa: F[A]): Streaming[A]

    Permalink
    Definition Classes
    Foldable
  44. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  45. def traverseU[A, GB](fa: F[A])(f: (A) ⇒ GB)(implicit U: Unapply[Applicative, GB]): M[F[A]]

    Permalink

    Behaves just like traverse, but uses Unapply to find the Applicative instance for G.

  46. def traverse_[G[_], A, B](fa: F[A])(f: (A) ⇒ G[B])(implicit G: Applicative[G]): G[Unit]

    Permalink

    Traverse F[A] using Applicative[G].

    Traverse F[A] using Applicative[G].

    A values will be mapped into G[B] and combined using Applicative#map2.

    For example:

    def parseInt(s: String): Option[Int] = ...
    val F = Foldable[List]
    F.traverse_(List("333", "444"))(parseInt) // Some(())
    F.traverse_(List("333", "zzz"))(parseInt) // None

    This method is primarily useful when G[_] represents an action or effect, and the specific A aspect of G[A] is not otherwise needed.

    Definition Classes
    Foldable
  47. def void[A](fa: F[A]): F[Unit]

    Permalink

    Empty the fa of the values, preserving the structure

    Empty the fa of the values, preserving the structure

    Definition Classes
    Functor
  48. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  49. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  50. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Foldable[F]

Inherited from Functor[F]

Inherited from Invariant[F]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped