Trait/Object

cats.laws

MonadCombineLaws

Related Docs: object MonadCombineLaws | package laws

Permalink

trait MonadCombineLaws[F[_]] extends MonadFilterLaws[F] with AlternativeLaws[F]

Laws that must be obeyed by any MonadCombine.

Linear Supertypes
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. MonadCombineLaws
  2. AlternativeLaws
  3. MonoidKLaws
  4. SemigroupKLaws
  5. MonadFilterLaws
  6. MonadLaws
  7. FlatMapLaws
  8. ApplicativeLaws
  9. ApplyLaws
  10. FunctorLaws
  11. InvariantLaws
  12. AnyRef
  13. Any
  1. Hide All
  2. Show all
Visibility
  1. Public
  2. All

Abstract Value Members

  1. implicit abstract def F: MonadCombine[F]

    Permalink

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. implicit def algebra[A]: Monoid[F[A]]

    Permalink
    Definition Classes
    AlternativeLaws
  5. def alternativeLeftDistributivity[A, B](fa: F[A], fa2: F[A], f: (A) ⇒ B): IsEq[F[B]]

    Permalink
    Definition Classes
    AlternativeLaws
  6. def alternativeRightAbsorption[A, B](ff: F[(A) ⇒ B]): IsEq[F[B]]

    Permalink
    Definition Classes
    AlternativeLaws
  7. def alternativeRightDistributivity[A, B](fa: F[A], ff: F[(A) ⇒ B], fg: F[(A) ⇒ B]): IsEq[F[B]]

    Permalink
    Definition Classes
    AlternativeLaws
  8. def applicativeComposition[A, B, C](fa: F[A], fab: F[(A) ⇒ B], fbc: F[(B) ⇒ C]): IsEq[F[C]]

    Permalink

    This law is applyComposition stated in terms of pure.

    This law is applyComposition stated in terms of pure. It is a combination of applyComposition and applicativeMap and hence not strictly necessary.

    Definition Classes
    ApplicativeLaws
  9. def applicativeHomomorphism[A, B](a: A, f: (A) ⇒ B): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplicativeLaws
  10. def applicativeIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    ApplicativeLaws
  11. def applicativeInterchange[A, B](a: A, ff: F[(A) ⇒ B]): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplicativeLaws
  12. def applicativeMap[A, B](fa: F[A], f: (A) ⇒ B): IsEq[F[B]]

    Permalink
    Definition Classes
    ApplicativeLaws
  13. def applyComposition[A, B, C](fa: F[A], fab: F[(A) ⇒ B], fbc: F[(B) ⇒ C]): IsEq[F[C]]

    Permalink
    Definition Classes
    ApplyLaws
  14. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  15. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  16. def covariantComposition[A, B, C](fa: F[A], f: (A) ⇒ B, g: (B) ⇒ C): IsEq[F[C]]

    Permalink
    Definition Classes
    FunctorLaws
  17. def covariantIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    FunctorLaws
  18. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  19. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  20. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  21. def flatMapAssociativity[A, B, C](fa: F[A], f: (A) ⇒ F[B], g: (B) ⇒ F[C]): IsEq[F[C]]

    Permalink
    Definition Classes
    FlatMapLaws
  22. def flatMapConsistentApply[A, B](fa: F[A], fab: F[(A) ⇒ B]): IsEq[F[B]]

    Permalink
    Definition Classes
    FlatMapLaws
  23. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  24. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  25. def invariantComposition[A, B, C](fa: F[A], f1: (A) ⇒ B, f2: (B) ⇒ A, g1: (B) ⇒ C, g2: (C) ⇒ B): IsEq[F[C]]

    Permalink
    Definition Classes
    InvariantLaws
  26. def invariantIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    InvariantLaws
  27. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  28. def kleisliAssociativity[A, B, C, D](f: (A) ⇒ F[B], g: (B) ⇒ F[C], h: (C) ⇒ F[D], a: A): IsEq[F[D]]

    Permalink

    The composition of cats.data.Kleisli arrows is associative.

    The composition of cats.data.Kleisli arrows is associative. This is analogous to flatMapAssociativity.

    Definition Classes
    FlatMapLaws
  29. def kleisliLeftIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink

    pure is the left identity element under left-to-right composition of cats.data.Kleisli arrows.

    pure is the left identity element under left-to-right composition of cats.data.Kleisli arrows. This is analogous to monadLeftIdentity.

    Definition Classes
    MonadLaws
  30. def kleisliRightIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink

    pure is the right identity element under left-to-right composition of cats.data.Kleisli arrows.

    pure is the right identity element under left-to-right composition of cats.data.Kleisli arrows. This is analogous to monadRightIdentity.

    Definition Classes
    MonadLaws
  31. def mapFlatMapCoherence[A, B](fa: F[A], f: (A) ⇒ B): IsEq[F[B]]

    Permalink

    Make sure that map and flatMap are consistent.

    Make sure that map and flatMap are consistent.

    Definition Classes
    MonadLaws
  32. def monadCombineLeftDistributivity[A, B](fa: F[A], fa2: F[A], f: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink
  33. def monadFilterConsistency[A, B](fa: F[A], f: (A) ⇒ Boolean): IsEq[F[A]]

    Permalink
    Definition Classes
    MonadFilterLaws
  34. def monadFilterLeftEmpty[A, B](f: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink
    Definition Classes
    MonadFilterLaws
  35. def monadFilterRightEmpty[A, B](fa: F[A]): IsEq[F[B]]

    Permalink
    Definition Classes
    MonadFilterLaws
  36. def monadLeftIdentity[A, B](a: A, f: (A) ⇒ F[B]): IsEq[F[B]]

    Permalink
    Definition Classes
    MonadLaws
  37. def monadRightIdentity[A](fa: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    MonadLaws
  38. def monoidKLeftIdentity[A](a: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    MonoidKLaws
  39. def monoidKRightIdentity[A](a: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    MonoidKLaws
  40. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  41. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  42. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  43. def semigroupKAssociative[A](a: F[A], b: F[A], c: F[A]): IsEq[F[A]]

    Permalink
    Definition Classes
    SemigroupKLaws
  44. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  45. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  46. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  47. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  48. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AlternativeLaws[F]

Inherited from MonoidKLaws[F]

Inherited from SemigroupKLaws[F]

Inherited from MonadFilterLaws[F]

Inherited from MonadLaws[F]

Inherited from FlatMapLaws[F]

Inherited from ApplicativeLaws[F]

Inherited from ApplyLaws[F]

Inherited from FunctorLaws[F]

Inherited from InvariantLaws[F]

Inherited from AnyRef

Inherited from Any

Ungrouped