Trait/Object

cats.arrow

CommutativeArrow

Related Docs: object CommutativeArrow | package arrow

Permalink

trait CommutativeArrow[F[_, _]] extends Arrow[F] with Serializable

In a Commutative Arrow F[_, _], the split operation (or ***) is commutative, which means that there is non-interference between the effect of the paired arrows.

Must obey the laws in CommutativeArrowLaws

Linear Supertypes
Arrow[F], Strong[F], Profunctor[F], Category[F], Compose[F], Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. CommutativeArrow
  2. Arrow
  3. Strong
  4. Profunctor
  5. Category
  6. Compose
  7. Serializable
  8. Serializable
  9. AnyRef
  10. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def compose[A, B, C](f: F[B, C], g: F[A, B]): F[A, C]

    Permalink
    Definition Classes
    Compose
  2. abstract def first[A, B, C](fa: F[A, B]): F[(A, C), (B, C)]

    Permalink

    Create a new F that takes two inputs, but only modifies the first input

    Create a new F that takes two inputs, but only modifies the first input

    Example:

    scala> import cats.implicits._
    scala> import cats.arrow.Strong
    scala> val f: Int => Int = _ * 2
    scala> val fab = Strong[Function1].first[Int,Int,Int](f)
    scala> fab((2,3))
    res0: (Int, Int) = (4,3)
    Definition Classes
    Strong
  3. abstract def lift[A, B](f: (A) ⇒ B): F[A, B]

    Permalink

    Lift a function into the context of an Arrow.

    Lift a function into the context of an Arrow.

    In the reference articles "Arrows are Promiscuous...", and in the corresponding Haskell library Control.Arrow, this function is called arr.

    Definition Classes
    Arrow

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def algebra[A]: Monoid[F[A, A]]

    Permalink
    Definition Classes
    CategoryCompose
  5. def algebraK: MonoidK[[α]F[α, α]]

    Permalink
    Definition Classes
    CategoryCompose
  6. def andThen[A, B, C](f: F[A, B], g: F[B, C]): F[A, C]

    Permalink
    Definition Classes
    Compose
  7. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  8. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. def dimap[A, B, C, D](fab: F[A, B])(f: (C) ⇒ A)(g: (B) ⇒ D): F[C, D]

    Permalink

    Contramap on the first type parameter and map on the second type parameter

    Contramap on the first type parameter and map on the second type parameter

    Example:

    scala> import cats.implicits._
    scala> import cats.arrow.Profunctor
    scala> val fab: Double => Double = x => x + 0.3
    scala> val f: Int => Double = x => x.toDouble / 2
    scala> val g: Double => Double = x => x * 3
    scala> val h = Profunctor[Function1].dimap(fab)(f)(g)
    scala> h(3)
    res0: Double = 5.4
    Definition Classes
    ArrowProfunctor
  10. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  11. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  12. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  13. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  14. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  15. def id[A]: F[A, A]

    Permalink
    Definition Classes
    ArrowCategory
  16. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  17. def lmap[A, B, C](fab: F[A, B])(f: (C) ⇒ A): F[C, B]

    Permalink

    contramap on the first type parameter

    contramap on the first type parameter

    Definition Classes
    Profunctor
  18. def merge[A, B, C](f: F[A, B], g: F[A, C]): F[A, (B, C)]

    Permalink

    Create a new computation F that merge outputs of f and g both having the same input

    Create a new computation F that merge outputs of f and g both having the same input

    Example:

    scala> import cats.implicits._
    scala> val addEmpty: Int => Int = _ + 0
    scala> val multiplyEmpty: Int => Double= _ * 1d
    scala> val f: Int => (Int, Double) = addEmpty &&& multiplyEmpty
    scala> f(1)
    res0: (Int, Double) = (1,1.0)

    Note that the arrow laws do not guarantee the non-interference between the _effects_ of f and g in the context of F. This means that f &&& g may not be equivalent to g &&& f.

    Definition Classes
    Arrow
    Annotations
    @op( "&&&" , true )
  19. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  20. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  22. def rmap[A, B, C](fab: F[A, B])(f: (B) ⇒ C): F[A, C]

    Permalink

    map on the second type parameter

    map on the second type parameter

    Definition Classes
    Profunctor
  23. def second[A, B, C](fa: F[A, B]): F[(C, A), (C, B)]

    Permalink

    Create a new F that takes two inputs, but only modifies the second input

    Create a new F that takes two inputs, but only modifies the second input

    Example:

    scala> import cats.implicits._
    scala> import cats.arrow.Strong
    scala> val f: Int => Int = _ * 2
    scala> val fab = Strong[Function1].second[Int,Int,Int](f)
    scala> fab((2,3))
    res0: (Int, Int) = (2,6)
    Definition Classes
    ArrowStrong
  24. def split[A, B, C, D](f: F[A, B], g: F[C, D]): F[(A, C), (B, D)]

    Permalink

    Create a new computation F that splits its input between f and g and combines the output of each.

    Create a new computation F that splits its input between f and g and combines the output of each.

    Example:

    scala> import cats.implicits._
    scala> import cats.arrow.Arrow
    scala> val toLong: Int => Long = _.toLong
    scala> val toDouble: Float => Double = _.toDouble
    scala> val f: ((Int, Float)) => (Long, Double) = Arrow[Function1].split(toLong, toDouble)
    scala> f((3, 4.0f))
    res0: (Long, Double) = (3,4.0)

    Note that the arrow laws do not guarantee the non-interference between the _effects_ of f and g in the context of F. This means that f *** g may not be equivalent to g *** f.

    Definition Classes
    Arrow
    Annotations
    @op( "***" , true )
  25. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  26. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  27. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Arrow[F]

Inherited from Strong[F]

Inherited from Profunctor[F]

Inherited from Category[F]

Inherited from Compose[F]

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped