GenConcurrent

trait GenConcurrent[F <: ([_$1] =>> Any), E] extends GenSpawn[F, E]
Companion
object
trait GenSpawn[F, E]
trait MonadCancel[F, E]
trait MonadError[F, E]
trait Monad[F]
trait FlatMap[F]
trait ApplicativeError[F, E]
trait Applicative[F]
trait InvariantMonoidal[F]
trait Apply[F]
trait ApplyArityFunctions[F]
trait InvariantSemigroupal[F]
trait Semigroupal[F]
trait Functor[F]
trait Invariant[F]
trait Serializable
class Object
trait Matchable
class Any
trait Async[F]
trait GenTemporal[F, E]

Document{}

def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
Inhertied from
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Inhertied from
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
Inhertied from
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
Inhertied from
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Inhertied from
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
Inhertied from
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
Inhertied from
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
Inhertied from
ApplyArityFunctions
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
Inhertied from
ApplyArityFunctions
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Inhertied from
ApplyArityFunctions
def tuple4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
Inhertied from
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Inhertied from
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Inhertied from
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
Inhertied from
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
Inhertied from
ApplyArityFunctions
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
Inhertied from
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Inhertied from
ApplyArityFunctions
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Inhertied from
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
Inhertied from
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
Inhertied from
ApplyArityFunctions
def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
Inhertied from
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Inhertied from
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
Inhertied from
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
Inhertied from
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
Inhertied from
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Inhertied from
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
Inhertied from
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Inhertied from
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
Inhertied from
ApplyArityFunctions
def tuple3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
Inhertied from
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
Inhertied from
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Inhertied from
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
Inhertied from
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
Inhertied from
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Inhertied from
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
Inhertied from
ApplyArityFunctions
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
Inhertied from
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
Inhertied from
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Inhertied from
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Inhertied from
ApplyArityFunctions

Value members

Methods

def ref[A](a: A): F[Ref[F, A]]
Implicitly added by genConcurrentForOptionT
def deferred[A]: F[Deferred[F, A]]
Implicitly added by genConcurrentForOptionT
def memoize[A](fa: F[A]): F[F[A]]
Implicitly added by genConcurrentForOptionT
def parSequenceN[T <: ([_$2] =>> Any), A](n: Int)(tma: T[F[A]])(evidence$1: Traverse[T]): F[T[A]]
Implicitly added by genConcurrentForOptionT
Like Parallel.parSequence, but limits the degree of parallelism.
def parTraverseN[T <: ([_$3] =>> Any), A, B](n: Int)(ta: T[A])(f: A => F[B])(evidence$2: Traverse[T]): F[T[B]]
Implicitly added by genConcurrentForOptionT
Like Parallel.parTraverse, but limits the degree of parallelism.
Note that the semantics of this operation aim to maximise
fairness: when a spot to execute becomes available, every task
has a chance to claim it, and not only the next n tasks in ta
def ref[A](a: A): F[Ref[F, A]]
Implicitly added by genConcurrentForEitherT
def deferred[A]: F[Deferred[F, A]]
Implicitly added by genConcurrentForEitherT
def memoize[A](fa: F[A]): F[F[A]]
Implicitly added by genConcurrentForEitherT
def parSequenceN[T <: ([_$2] =>> Any), A](n: Int)(tma: T[F[A]])(evidence$1: Traverse[T]): F[T[A]]
Implicitly added by genConcurrentForEitherT
Like Parallel.parSequence, but limits the degree of parallelism.
def parTraverseN[T <: ([_$3] =>> Any), A, B](n: Int)(ta: T[A])(f: A => F[B])(evidence$2: Traverse[T]): F[T[B]]
Implicitly added by genConcurrentForEitherT
Like Parallel.parTraverse, but limits the degree of parallelism.
Note that the semantics of this operation aim to maximise
fairness: when a spot to execute becomes available, every task
has a chance to claim it, and not only the next n tasks in ta
def ref[A](a: A): F[Ref[F, A]]
Implicitly added by genConcurrentForKleisli
def deferred[A]: F[Deferred[F, A]]
Implicitly added by genConcurrentForKleisli
def memoize[A](fa: F[A]): F[F[A]]
Implicitly added by genConcurrentForKleisli
def parSequenceN[T <: ([_$2] =>> Any), A](n: Int)(tma: T[F[A]])(evidence$1: Traverse[T]): F[T[A]]
Implicitly added by genConcurrentForKleisli
Like Parallel.parSequence, but limits the degree of parallelism.
def parTraverseN[T <: ([_$3] =>> Any), A, B](n: Int)(ta: T[A])(f: A => F[B])(evidence$2: Traverse[T]): F[T[B]]
Implicitly added by genConcurrentForKleisli
Like Parallel.parTraverse, but limits the degree of parallelism.
Note that the semantics of this operation aim to maximise
fairness: when a spot to execute becomes available, every task
has a chance to claim it, and not only the next n tasks in ta
def ref[A](a: A): F[Ref[F, A]]
def deferred[A]: F[Deferred[F, A]]
def memoize[A](fa: F[A]): F[F[A]]
def parSequenceN[T <: ([_$2] =>> Any), A](n: Int)(tma: T[F[A]])(evidence$1: Traverse[T]): F[T[A]]
Like Parallel.parSequence, but limits the degree of parallelism.
def parTraverseN[T <: ([_$3] =>> Any), A, B](n: Int)(ta: T[A])(f: A => F[B])(evidence$2: Traverse[T]): F[T[B]]
Like Parallel.parTraverse, but limits the degree of parallelism.
Note that the semantics of this operation aim to maximise
fairness: when a spot to execute becomes available, every task
has a chance to claim it, and not only the next n tasks in ta
override def racePair[A, B](fa: F[A], fb: F[B]): F[Either[(Outcome[F, E, A], Fiber[F, E, B]), (Fiber[F, E, A], Outcome[F, E, B])]]
Definition Classes

Inherited methods

def fproductLeft[A, B](fa: F[A])(f: A => B): F[(B, A)]
Implicitly added by genConcurrentForOptionT
Pair the result of function application with A.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> Functor[Option] .fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
}}}
Inhertied from
Functor
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]
Implicitly added by genConcurrentForOptionT
Pair A with the result of function application.
Example:
{{{
scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
}}}
Inhertied from
FlatMap
@noop
def whileM_[A](p: F[Boolean])(body: => F[A]): F[Unit]
Implicitly added by genConcurrentForOptionT
Execute an action repeatedly as long as the given Boolean expression
returns true. The condition is evaluated before the loop body.
Discards results.
Inhertied from
Monad
def raceOutcome[A, B](fa: F[A], fb: F[B]): F[Either[Outcome[F, E, A], Outcome[F, E, B]]]
Implicitly added by genConcurrentForOptionT
Races the evaluation of two fibers that returns the Outcome of the
winner. The winner of the race is considered to be the first fiber that
completes with an outcome. The loser of the race is canceled before
returning.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
race for a simpler variant that returns the successful outcome.
Inhertied from
GenSpawn
@inline
final def *>[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genConcurrentForOptionT
Alias for productR.
Inhertied from
Apply
@noop
def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])
Implicitly added by genConcurrentForOptionT
Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.
NOTE: Check for effect duplication, possibly memoize before
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .unzip(List((1,2), (3, 4)))
res0: (List[Int] , List[Int] ) = (List(1, 3),List(2, 4))
}}}
Inhertied from
Functor
def handleError[A](fa: F[A])(f: E => A): F[A]
Implicitly added by genConcurrentForOptionT
Handle any error, by mapping it to an A value.
See also
handleErrorWith to map to an F[A] value instead of simply an
A value.
recover to only recover from certain errors.
Inhertied from
ApplicativeError
def as[A, B](fa: F[A], b: B): F[B]
Implicitly added by genConcurrentForOptionT
Replaces the A value in F[A] with the supplied value.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
}}}
Inhertied from
Functor
def attemptNarrow[EE <: Throwable, A](fa: F[A])(tag: ClassTag[EE], ev: EE <:< E): F[Either[EE, A]]
Implicitly added by genConcurrentForOptionT
Similar to attempt, but it only handles errors of type EE.
Inhertied from
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => E): F[A]
Implicitly added by genConcurrentForOptionT
Convert from scala.Option
Example:
{{{
scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *] , String]
scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)
scala> F.fromOption(Option.empty[Int] , "Empty")
res1: scala.Either[String, Int] = Left(Empty)
}}}
Inhertied from
ApplicativeError
def fromEither[A](x: Either[E, A]): F[A]
Implicitly added by genConcurrentForOptionT
Convert from scala.Either
Example:
{{{
scala> import cats.ApplicativeError
scala> import cats.instances.option._
scala> ApplicativeError[Option, Unit] .fromEither(Right(1))
res0: scala.Option[Int] = Some(1)
scala> ApplicativeError[Option, Unit] .fromEither(Left(()))
res1: scala.Option[Nothing] = None
}}}
Inhertied from
ApplicativeError
def guarantee[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genConcurrentForOptionT
Specifies an effect that is always invoked after evaluation of fa
completes, regardless of the outcome.
This function can be thought of as a combination of
flatTap, onError, and
onCancel.
Value Params
fa
The effect that is run after fin is registered.
fin
The effect to run in the event of a cancellation or error.
See also
guaranteeCase for a more powerful variant
Outcome for the various outcomes of evaluation
Inhertied from
MonadCancel
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
Implicitly added by genConcurrentForOptionT
Inhertied from
FlatMap
def bracketCase[A, B](acquire: F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genConcurrentForOptionT
A pattern for safely interacting with effectful lifecycles.
If acquire completes successfully, use is called. If use succeeds,
fails, or is canceled, release is guaranteed to be called exactly once.
acquire is uncancelable.
release is uncancelable.
use is cancelable by default, but can be masked.
Value Params
acquire
the lifecycle acquisition action
release
the lifecycle release action which depends on the outcome of use
use
the effect to which the lifecycle is scoped, whose result
is the return value of this function
See also
bracketFull for a more powerful variant
Resource for a composable datatype encoding of effectful lifecycles
Inhertied from
MonadCancel
@noop
def whileM[G <: ([_$2] =>> Any), A](p: F[Boolean])(body: => F[A])(G: Alternative[G]): F[G[A]]
Implicitly added by genConcurrentForOptionT
Execute an action repeatedly as long as the given Boolean expression
returns true. The condition is evaluated before the loop body.
Collects the results into an arbitrary Alternative value, such as a Vector.
This implementation uses append on each evaluation result,
so avoid data structures with non-constant append performance, e.g. List.
Inhertied from
Monad
@noop
def untilDefinedM[A](foa: F[Option[A]]): F[A]
Implicitly added by genConcurrentForOptionT
This repeats an F until we get defined values. This can be useful
for polling type operations on State (or RNG) Monads, or in effect
monads.
Inhertied from
FlatMap
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]
Implicitly added by genConcurrentForOptionT
Tuple the values in fa with the result of applying a function
with the value
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> Functor[Option] .fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
}}}
Inhertied from
Functor
@noop
def ifElseM[A](branches: (F[Boolean], F[A])*)(els: F[A]): F[A]
Implicitly added by genConcurrentForOptionT
Simulates an if/else-if/else in the context of an F. It evaluates conditions until
one evaluates to true, and returns the associated F[A] . If no condition is true,
returns els.
{{{
scala> import cats._
scala> Monad[Eval] .ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2
}}}
Based on a gist by Daniel Spiewak with a stack-safe
implementation due to P. Oscar Boykin
See also
Inhertied from
Monad
def onCancel[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genConcurrentForOptionT
Registers a finalizer that is invoked if cancellation is observed
during the evaluation of fa. If the evaluation of fa completes
without encountering a cancellation, the finalizer is unregistered
before proceeding.
During finalization, all actively registered finalizers are run exactly
once. The order by which finalizers are run is dictated by nesting:
innermost finalizers are run before outermost finalizers. For example,
in the following program, the finalizer f1 is run before the finalizer
f2:
{{{
F.onCancel(F.onCancel(F.canceled, f1), f2)
}}}
If a finalizer throws an error during evaluation, the error is suppressed,
and implementations may choose to report it via a side channel. Finalizers
are always uncancelable, so cannot otherwise be interrupted.
Value Params
fa
The effect that is evaluated after fin is registered.
fin
The finalizer to register before evaluating fa.
Inhertied from
MonadCancel
def point[A](a: A): F[A]
Implicitly added by genConcurrentForOptionT
point lifts any value into a Monoidal Functor.
Example:
{{{
scala> import cats.implicits._
scala> InvariantMonoidal[Option] .point(10)
res0: Option[Int] = Some(10)
}}}
Inhertied from
InvariantMonoidal
def map2Eval[A, B, Z](fa: F[A], fb: Eval[F[B]])(f: (A, B) => Z): Eval[F[Z]]
Implicitly added by genConcurrentForOptionT
Similar to map2 but uses Eval to allow for laziness in the F[B]
argument. This can allow for "short-circuiting" of computations.
NOTE: the default implementation of map2Eval does not short-circuit
computations. For data structures that can benefit from laziness, Apply
instances should override this method.
In the following example, x.map2(bomb)(_ + _) would result in an error,
but map2Eval "short-circuits" the computation. x is None and thus the
result of bomb doesn't even need to be evaluated in order to determine
that the result of map2Eval should be None.
{{{
scala> import cats.{Eval, Later}
scala> import cats.implicits._
scala> val bomb: Eval[Option[Int] ] = Later(sys.error("boom"))
scala> val x: Option[Int] = None
scala> x.map2Eval(bomb)(_ + _).value
res0: Option[Int] = None
}}}
Inhertied from
Apply
def fromValidated[A](x: Validated[E, A]): F[A]
Implicitly added by genConcurrentForOptionT
Convert from cats.data.Validated
Example:
{{{
scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> ApplicativeError[Option, Unit] .fromValidated(1.valid[Unit] )
res0: scala.Option[Int] = Some(1)
scala> ApplicativeError[Option, Unit] .fromValidated(().invalid[Int] )
res1: scala.Option[Int] = None
}}}
Inhertied from
ApplicativeError
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForOptionT
Execute an action repeatedly until its result fails to satisfy the given predicate
and return that result, discarding all others.
Inhertied from
Monad
def raiseError[A](e: E): F[A]
Implicitly added by genConcurrentForOptionT
Lift an error into the F context.
Example:
{{{
scala> import cats.implicits._
// integer-rounded division
scala> def divide[F[_] ](dividend: Int, divisor: Int)(implicit F: ApplicativeError[F, String] ): F[Int] =
| if (divisor === 0) F.raiseError("division by zero")
| else F.pure(dividend / divisor)
scala> type ErrorOr[A] = Either[String, A]
scala> divide[ErrorOr] (6, 3)
res0: ErrorOr[Int] = Right(2)
scala> divide[ErrorOr] (6, 0)
res1: ErrorOr[Int] = Left(division by zero)
}}}
Inhertied from
ApplicativeError
def fromTry[A](t: Try[A])(ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForOptionT
If the error type is Throwable, we can convert from a scala.util.Try
Inhertied from
ApplicativeError
def composeFunctor[G <: ([_$3] =>> Any)](evidence$2: Functor[G]): Invariant[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForOptionT
Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]]
using F's imap and G's map.
Example:
{{{
scala> import cats.implicits._
scala> import scala.concurrent.duration._
scala> val durSemigroupList: Semigroup[List[FiniteDuration] ] =
| Invariant[Semigroup]
| .composeFunctor[List]
| .imap(Semigroup[List[Long] ])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
}}}
Inhertied from
Invariant
def composeApply[G <: ([_$2] =>> Any)](evidence$1: Apply[G]): InvariantSemigroupal[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForOptionT
Inhertied from
InvariantSemigroupal
def recoverWith[A](fa: F[A])(pf: PartialFunction[E, F[A]]): F[A]
Implicitly added by genConcurrentForOptionT
Recover from certain errors by mapping them to an F[A] value.
See also
handleErrorWith to handle any/all errors.
recover to recover from certain errors by mapping them to A
values.
Inhertied from
ApplicativeError
def flatten[A](ffa: F[F[A]]): F[A]
Implicitly added by genConcurrentForOptionT
"flatten" a nested F of F structure into a single-layer F structure.
This is also commonly called join.
Example:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> val nested: Eval[Eval[Int] ] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3
}}}
Inhertied from
FlatMap
def untilM[G <: ([_$4] =>> Any), A](f: F[A])(cond: => F[Boolean])(G: Alternative[G]): F[G[A]]
Implicitly added by genConcurrentForOptionT
Execute an action repeatedly until the Boolean condition returns true.
The condition is evaluated after the loop body. Collects results into an
arbitrary Alternative value, such as a Vector.
This implementation uses append on each evaluation result,
so avoid data structures with non-constant append performance, e.g. List.
Inhertied from
Monad
def unit: F[Unit]
Implicitly added by genConcurrentForOptionT
Returns an F[Unit] value, equivalent with pure(()).
A useful shorthand, also allowing implementations to optimize the
returned reference (e.g. it can be a val).
Example:
{{{
scala> import cats.implicits._
scala> Applicative[Option] .unit
res0: Option[Unit] = Some(())
}}}
Inhertied from
Applicative
def untilM_[A](f: F[A])(cond: => F[Boolean]): F[Unit]
Implicitly added by genConcurrentForOptionT
Execute an action repeatedly until the Boolean condition returns true.
The condition is evaluated after the loop body. Discards results.
Inhertied from
Monad
def background[A](fa: F[A]): Resource[F, F[Outcome[F, E, A]]]
Implicitly added by genConcurrentForOptionT
Returns a Resource that manages the concurrent execution of a fiber.
The inner effect can be used to wait on the outcome of the child fiber;
it is effectively a join.
The child fiber is canceled in two cases: either the resource goes out
of scope or the parent fiber is cancelled. If the child fiber terminates
before one of these cases occurs, then cancellation is a no-op. This
avoids fiber leaks because the child fiber is always canceled before
the parent fiber drops the reference to it.
{{{
// Starts a fiber that continously prints "A".
// After 10 seconds, the resource scope exits so the fiber is canceled.
F.background(F.delay(println("A")).foreverM).use { _ =>
F.sleep(10.seconds)
}
}}}
Value Params
fa
the effect for the spawned fiber
Inhertied from
GenSpawn
def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]
Implicitly added by genConcurrentForOptionT
Tuples the A value in F[A] with the supplied B value, with the B value on the left.
Example:
{{{
scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue
scala> Functor[Queue] .tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
}}}
Inhertied from
Functor
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]
Implicitly added by genConcurrentForOptionT
Handle any error, potentially recovering from it, by mapping it to an
F[A] value.
See also
handleError to handle any error by simply mapping it to an A
value instead of an F[A].
recoverWith to recover from only certain errors.
Inhertied from
ApplicativeError
def flatTap[A, B](fa: F[A])(f: A => F[B]): F[A]
Implicitly added by genConcurrentForOptionT
Apply a monadic function and discard the result while keeping the effect.
{{{
scala> import cats., implicits.
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> ListInt.flatTap(nCats)
res2: List[Int] = List()
scala> ListInt.flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
}}}
Inhertied from
FlatMap
def uncancelable[A](body: Poll[F] => F[A]): F[A]
Implicitly added by genConcurrentForOptionT
Masks cancellation on the current fiber. The argument to body of type
Poll[F] is a natural transformation F ~> F that enables polling.
Polling causes a fiber to unmask within a masked region so that
cancellation can be observed again.
In the following example, cancellation can be observed only within fb
and nowhere else:
{{{
F.uncancelable { poll =>
fa *> poll(fb) *> fc
}
}}}
If a fiber is canceled while it is masked, the cancellation is suppressed
for as long as the fiber remains masked. Whenever the fiber is completely
unmasked again, the cancellation will be respected.
Masks can also be stacked or nested within each other. If multiple masks
are active, all masks must be undone so that cancellation can be observed.
In order to completely unmask within a multi-masked region, the poll
corresponding to each mask must be applied, innermost-first.
{{{
F.uncancelable { p1 =>
F.uncancelable { p2 =>
fa *> p2(p1(fb)) *> fc
}
}
}}}
The following operations are no-ops:
  1. Polling in the wrong order
  2. Applying the same poll more than once: poll(poll(fa))
  3. Applying a poll bound to one fiber within another fiber
Inhertied from
MonadCancel
Implicitly added by genConcurrentForOptionT
Inhertied from
GenSpawn
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]
Implicitly added by genConcurrentForOptionT
Turns a successful value into an error if it does not satisfy a given predicate.
Inhertied from
MonadError
def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]
Implicitly added by genConcurrentForOptionT
Sequentially compose two actions, discarding any value produced by the second. This variant of
productL also lets you define the evaluation strategy of the second action. For instance
you can evaluate it only ''after'' the first action has finished:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int] .productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
}}}
Inhertied from
FlatMap
def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]
Implicitly added by genConcurrentForOptionT
Sequentially compose two actions, discarding any value produced by the first. This variant of
productR also lets you define the evaluation strategy of the second action. For instance
you can evaluate it only ''after'' the first action has finished:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
}}}
Inhertied from
FlatMap
def onError[A](fa: F[A])(pf: PartialFunction[E, F[Unit]]): F[A]
Implicitly added by genConcurrentForOptionT
Execute a callback on certain errors, then rethrow them.
Any non matching error is rethrown as well.
In the following example, only one of the errors is logged,
but they are both rethrown, to be possibly handled by another
layer of the program:
{{{
scala> import cats., data., implicits._
scala> case class Err(msg: String)
scala> type F[A] = EitherT[State[String, *] , Err, A]
scala> val action: PartialFunction[Err, F[Unit] ] = {
| case Err("one") => EitherT.liftF(State.set("one"))
| }
scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]
scala> prog1.onError(action).value.run("").value
res0: (String, Either[Err,Int] ) = (one,Left(Err(one)))
scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int] ) = ("",Left(Err(two)))
}}}
Inhertied from
ApplicativeError
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, F, E]
Implicitly added by genConcurrentForOptionT
Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.
Inhertied from
ApplicativeError
def redeem[A, B](fa: F[A])(recover: E => B, f: A => B): F[B]
Implicitly added by genConcurrentForOptionT
Returns a new value that transforms the result of the source,
given the recover or map functions, which get executed depending
on whether the result is successful or if it ends in error.
This is an optimization on usage of attempt and map,
this equivalence being available:
{{{
fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))
}}}
Usage of redeem subsumes handleError because:
{{{
fa.redeem(fe, id) <-> fa.handleError(fe)
}}}
Implementations are free to override it in order to optimize
error recovery.
Value Params
fa
is the source whose result is going to get transformed
recover
is the function that gets called to recover the source
in case of error
See also
MonadError.redeemWith, attempt and handleError
Inhertied from
ApplicativeError
def lift[A, B](f: A => B): F[A] => F[B]
Implicitly added by genConcurrentForOptionT
Lift a function f to operate on Functors
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> val o = Option(42)
scala> Functor[Option] .lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
}}}
Inhertied from
Functor
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]
Implicitly added by genConcurrentForOptionT
Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.
Inhertied from
MonadError
def iterateUntilM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForOptionT
Apply a monadic function iteratively until its result satisfies
the given predicate and return that result.
Inhertied from
Monad
def redeemWith[A, B](fa: F[A])(recover: E => F[B], bind: A => F[B]): F[B]
Implicitly added by genConcurrentForOptionT
Returns a new value that transforms the result of the source,
given the recover or bind functions, which get executed depending
on whether the result is successful or if it ends in error.
This is an optimization on usage of attempt and flatMap,
this equivalence being available:
{{{
fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))
}}}
Usage of redeemWith subsumes handleErrorWith because:
{{{
fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)
}}}
Usage of redeemWith also subsumes flatMap because:
{{{
fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)
}}}
Implementations are free to override it in order to optimize
error recovery.
Value Params
bind
is the function that gets to transform the source
in case of success
fa
is the source whose result is going to get transformed
recover
is the function that gets called to recover the source
in case of error
See also
Inhertied from
MonadError
def replicateA[A](n: Int, fa: F[A]): F[List[A]]
Implicitly added by genConcurrentForOptionT
Given fa and n, apply fa n times to construct an F[List[A]] value.
Example:
{{{
scala> import cats.data.State
scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int] ] =
| Applicative[Counter] .replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int] ) = (5,List(0, 1, 2, 3, 4))
}}}
Inhertied from
Applicative
def start[A](fa: F[A]): F[Fiber[F, E, A]]
Implicitly added by genConcurrentForOptionT
A low-level primitive for starting the concurrent evaluation of a fiber.
Returns a Fiber that can be used to wait for a fiber or cancel it.
start is a cancellation-unsafe function; it is recommended to
use the safer variant, background, to spawn fibers.
Value Params
fa
the effect for the fiber
See also
background for the safer, recommended variant
Inhertied from
GenSpawn
def iterateWhileM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForOptionT
Apply a monadic function iteratively until its result fails
to satisfy the given predicate and return that result.
Inhertied from
Monad
def composeContravariantMonoidal[G <: ([_$3] =>> Any)](evidence$2: ContravariantMonoidal[G]): ContravariantMonoidal[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForOptionT
Compose an Applicative[F] and a ContravariantMonoidal[G] into a
ContravariantMonoidal[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.kernel.Comparison
scala> import cats.implicits._
// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]
// compares strings by their length
scala> val strLength: Order[String] = Order.byString, Int
scala> val stringOrders: List[Order[String] ] = List(alpha, strLength)
// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)
scala> val le = Applicative[List] .composeContravariantMonoidal[Order]
// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int] ] = le.contramap(stringOrders)(_.toString)
// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)
// create the product of the string order list and the int order list
// p contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)] ] = le.product(stringOrders, intOrders)
scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
}}}
Inhertied from
Applicative
def bracketFull[A, B](acquire: Poll[F] => F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genConcurrentForOptionT
A pattern for safely interacting with effectful lifecycles.
If acquire completes successfully, use is called. If use succeeds,
fails, or is canceled, release is guaranteed to be called exactly once.
If use succeeds the returned value B is returned. If use returns
an exception, the exception is returned.
acquire is uncancelable by default, but can be unmasked.
release is uncancelable.
use is cancelable by default, but can be masked.
Value Params
acquire
the lifecycle acquisition action which can be canceled
release
the lifecycle release action which depends on the outcome of use
use
the effect to which the lifecycle is scoped, whose result
is the return value of this function
Inhertied from
MonadCancel
@noop
def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
Implicitly added by genConcurrentForOptionT
An if-then-else lifted into the F context.
This function combines the effects of the fcond condition and of the two branches,
in the order in which they are given.
The value of the result is, depending on the value of the condition,
the value of the first argument, or the value of the second argument.
Example:
{{{
scala> import cats.implicits._
scala> val b1: Option[Boolean] = Some(true)
scala> val asInt1: Option[Int] = Apply[Option] .ifA(b1)(Some(1), Some(0))
scala> asInt1.get
res0: Int = 1
scala> val b2: Option[Boolean] = Some(false)
scala> val asInt2: Option[Int] = Apply[Option] .ifA(b2)(Some(1), Some(0))
scala> asInt2.get
res1: Int = 0
scala> val b3: Option[Boolean] = Some(true)
scala> val asInt3: Option[Int] = Apply[Option] .ifA(b3)(Some(1), None)
asInt2: Option[Int] = None
}}}
Inhertied from
Apply
def catchNonFatal[A](a: => A)(ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForOptionT
Often E is Throwable. Here we try to call pure or catch
and raise.
Inhertied from
ApplicativeError
@noop
def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]
Implicitly added by genConcurrentForOptionT
Lifts if to Functor
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
}}}
Inhertied from
Functor
def attemptT[A](fa: F[A]): EitherT[F, E, A]
Implicitly added by genConcurrentForOptionT
Similar to attempt, but wraps the result in a data.EitherT for
convenience.
Inhertied from
ApplicativeError
def canceled: F[Unit]
Implicitly added by genConcurrentForOptionT
An effect that requests self-cancellation on the current fiber.
In the following example, the fiber requests self-cancellation in a masked
region, so cancellation is suppressed until the fiber is completely
unmasked. fa will run but fb will not.
{{{
F.uncancelable { _ =>
F.canceled *> fa
} *> fb
}}}
Inhertied from
MonadCancel
def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genConcurrentForOptionT
Returns the given argument (mapped to Unit) if cond is true, otherwise,
unit lifted into F.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[List] .whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())
scala> Applicative[List] .whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())
scala> Applicative[List] .whenA(true)(List.empty[Int] )
res2: List[Unit] = List()
scala> Applicative[List] .whenA(false)(List.empty[Int] )
res3: List[Unit] = List(())
}}}
Inhertied from
Applicative
@noop
def iterateForeverM[A, B](a: A)(f: A => F[A]): F[B]
Implicitly added by genConcurrentForOptionT
iterateForeverM is almost exclusively useful for effect types. For instance,
A may be some state, we may take the current state, run some effect to get
a new state and repeat.
Inhertied from
FlatMap
@noop
def foreverM[A, B](fa: F[A]): F[B]
Implicitly added by genConcurrentForOptionT
Like an infinite loop of >> calls. This is most useful effect loops
that you want to run forever in for instance a server.
This will be an infinite loop, or it will return an F[Nothing] .
Be careful using this.
For instance, a List of length k will produce a list of length k^n at iteration
n. This means if k = 0, we return an empty list, if k = 1, we loop forever
allocating single element lists, but if we have a k > 1, we will allocate
exponentially increasing memory and very quickly OOM.
Inhertied from
FlatMap
def widen[A, B >: A](fa: F[A]): F[B]
Implicitly added by genConcurrentForOptionT
Lifts natural subtyping covariance of covariant Functors.
NOTE: In certain (perhaps contrived) situations that rely on universal
equality this can result in a ClassCastException, because it is
implemented as a type cast. It could be implemented as map(identity), but
according to the functor laws, that should be equal to fa, and a type
cast is often much more performant.
See this example
of widen creating a ClassCastException.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> val s = Some(42)
scala> Functor[Option] .widen(s)
res0: Option[Int] = Some(42)
}}}
Inhertied from
Functor
def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Implicitly added by genConcurrentForOptionT
Inhertied from
ApplyArityFunctions
def catchNonFatalEval[A](a: Eval[A])(ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForOptionT
Often E is Throwable. Here we try to call pure or catch
and raise
Inhertied from
ApplicativeError
def attempt[A](fa: F[A]): F[Either[E, A]]
Implicitly added by genConcurrentForOptionT
Handle errors by turning them into scala.util.Either values.
If there is no error, then an scala.util.Right value will be returned instead.
All non-fatal errors should be handled by this method.
Inhertied from
ApplicativeError
def cede: F[Unit]
Implicitly added by genConcurrentForOptionT
Introduces a fairness boundary that yields control back to the scheduler
of the runtime system. This allows the carrier thread to resume execution
of another waiting fiber.
Note that cede is merely a hint to the runtime system; implementations
have the liberty to interpret this method to their liking as long as it
obeys the respective laws. For example, a lawful, but atypical,
implementation of this function is F.unit, in which case the fairness
boundary is a no-op.
Inhertied from
GenSpawn
final def fmap[A, B](fa: F[A])(f: A => B): F[B]
Implicitly added by genConcurrentForOptionT
Alias for map, since map can't be injected as syntax if
the implementing type already had a built-in .map method.
Example:
{{{
scala> import cats.implicits._
scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")
scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
}}}
Inhertied from
Functor
def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]
Implicitly added by genConcurrentForOptionT
Tuples the A value in F[A] with the supplied B value, with the B value on the right.
Example:
{{{
scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue
scala> Functor[Queue] .tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
}}}
Inhertied from
Functor
def tailRecM[A, B](a: A)(f: A => F[Either[A, B]]): F[B]
Implicitly added by genConcurrentForOptionT
Keeps calling f until a scala.util.Right[B] is returned.
Based on Phil Freeman's
Stack Safety for Free.
Implementations of this method should use constant stack space relative to f.
Inhertied from
FlatMap
def rethrow[A, EE <: E](fa: F[Either[EE, A]]): F[A]
Implicitly added by genConcurrentForOptionT
Inverse of attempt
Example:
{{{
scala> import cats.implicits._
scala> import scala.util.{Try, Success}
scala> val a: Try[Either[Throwable, Int] ] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)
scala> val b: Try[Either[Throwable, Int] ] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
}}}
Inhertied from
MonadError
def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genConcurrentForOptionT
Returns the given argument (mapped to Unit) if cond is false,
otherwise, unit lifted into F.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[List] .unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())
scala> Applicative[List] .unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())
scala> Applicative[List] .unlessA(true)(List.empty[Int] )
res2: List[Unit] = List(())
scala> Applicative[List] .unlessA(false)(List.empty[Int] )
res3: List[Unit] = List()
}}}
Inhertied from
Applicative
def attemptTap[A, B](fa: F[A])(f: Either[E, A] => F[B]): F[A]
Implicitly added by genConcurrentForOptionT
Reifies the value or error of the source and performs an effect on the result,
then recovers the original value or error back into F.
Note that if the effect returned by f fails, the resulting effect will fail too.
Alias for fa.attempt.flatTap(f).rethrow for convenience.
Example:
{{{
scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}
scala> def checkError(result: Either[Throwable, Int] ): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))
scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)
scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
}}}
Inhertied from
MonadError
def void[A](fa: F[A]): F[Unit]
Implicitly added by genConcurrentForOptionT
Empty the fa of the values, preserving the structure
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .void(List(1,2,3))
res0: List[Unit] = List((), (), ())
}}}
Inhertied from
Functor
@inline
final def <*[A, B](fa: F[A])(fb: F[B]): F[A]
Implicitly added by genConcurrentForOptionT
Alias for productL.
Inhertied from
Apply
@noop
def ifM[B](fa: F[Boolean])(ifTrue: => F[B], ifFalse: => F[B]): F[B]
Implicitly added by genConcurrentForOptionT
if lifted into monad.
Inhertied from
FlatMap
def guaranteeCase[A](fa: F[A])(fin: Outcome[F, E, A] => F[Unit]): F[A]
Implicitly added by genConcurrentForOptionT
Specifies an effect that is always invoked after evaluation of fa
completes, but depends on the outcome.
This function can be thought of as a combination of
flatTap, onError, and
onCancel.
Value Params
fa
The effect that is run after fin is registered.
fin
A function that returns the effect to run based on the
outcome.
See also
bracketCase for a more powerful variant
Outcome for the various outcomes of evaluation
Inhertied from
MonadCancel
def compose[G <: ([_$2] =>> Any)](evidence$1: Applicative[G]): Applicative[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForOptionT
Compose an Applicative[F] and an Applicative[G] into an
Applicative[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.implicits._
scala> val alo = Applicative[List] .compose[Option]
scala> alo.pure(3)
res0: List[Option[Int] ] = List(Some(3))
scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)] ] = List(None, None, Some((true,2)), None, Some((false,2)), None)
}}}
Inhertied from
Applicative
def compose[G <: ([_$2] =>> Any)](evidence$1: Invariant[G]): Invariant[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForOptionT
Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.
Example:
{{{
scala> import cats.implicits._
scala> import scala.concurrent.duration._
scala> val durSemigroupList: Semigroup[List[FiniteDuration] ] =
| Invariant[Semigroup] .compose[List] .imap(Semigroup[List[Long] ])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
}}}
Inhertied from
Invariant
def compose[G <: ([_$3] =>> Any)](evidence$1: Apply[G]): Apply[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForOptionT
Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.implicits._
scala> val alo = Apply[List] .compose[Option]
scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)] ] = List(None, None, Some((true,2)), None, Some((false,2)), None)
}}}
Inhertied from
Apply
def compose[G <: ([_$6] =>> Any)](evidence$1: Functor[G]): Functor[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForOptionT
Inhertied from
Functor
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForOptionT
Execute an action repeatedly until its result satisfies the given predicate
and return that result, discarding all others.
Inhertied from
Monad
def bothOutcome[A, B](fa: F[A], fb: F[B]): F[(Outcome[F, E, A], Outcome[F, E, B])]
Implicitly added by genConcurrentForOptionT
Races the evaluation of two fibers and returns the Outcome of both. If
the race is canceled before one or both participants complete, then
then whichever ones are incomplete are canceled.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
both for a simpler variant that returns the results of both
fibers.
Inhertied from
GenSpawn
def race[A, B](fa: F[A], fb: F[B]): F[Either[A, B]]
Implicitly added by genConcurrentForOptionT
Races the evaluation of two fibers that returns the result of the winner,
except in the case of cancellation.
The semantics of race are described by the following rules:
  1. If the winner completes with Succeeded, the race returns the
    successful value. The loser is canceled before returning.
  2. If the winner completes with Errored, the race raises the error.
    The loser is canceled before returning.
  3. If the winner completes with Canceled, the race returns the
    result of the loser, consistent with the first two rules.
  4. If both the winner and loser complete with Canceled, the race
    is canceled.
  5. If the race is masked and is canceled because both participants
    canceled, the fiber will block indefinitely.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
raceOutcome for a variant that returns the outcome of the winner.
Inhertied from
GenSpawn
def never[A]: F[A]
Implicitly added by genConcurrentForOptionT
A non-terminating effect that never completes, which causes a fiber to
semantically block indefinitely. This is the purely functional,
asynchronous equivalent of an infinite while loop in Java, but no
native threads are blocked.
A fiber that is suspended in never can be canceled if it is
completely unmasked before it suspends:
{{{
// ignoring race conditions between start and cancel
F.never.start.flatMap(_.cancel) <-> F.unit
}}}
However, if the fiber is masked, cancellers will be semantically blocked
forever:
{{{
// ignoring race conditions between start and cancel
F.uncancelable(_ => F.never).start.flatMap(_.cancel) <-> F.never
}}}
Inhertied from
GenSpawn
def both[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Implicitly added by genConcurrentForOptionT
Races the evaluation of two fibers and returns the result of both.
The following rules describe the semantics of both:
  1. If the winner completes with Succeeded, the race waits for the
    loser to complete.
  2. If the winner completes with Errored, the race raises the error.
    The loser is canceled.
  3. If the winner completes with Canceled, the loser and the race
    are canceled as well.
  4. If the loser completes with Succeeded, the race returns the
    successful value of both fibers.
  5. If the loser completes with Errored, the race returns the error.
  6. If the loser completes with Canceled, the race is canceled.
  7. If the race is canceled before one or both participants complete,
    then whichever ones are incomplete are canceled.
  8. If the race is masked and is canceled because one or both
    participants canceled, the fiber will block indefinitely.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
bothOutcome for a variant that returns the Outcome of both
fibers.
Inhertied from
GenSpawn
def recover[A](fa: F[A])(pf: PartialFunction[E, A]): F[A]
Implicitly added by genConcurrentForOptionT
Recover from certain errors by mapping them to an A value.
See also
handleError to handle any/all errors.
recoverWith to recover from certain errors by mapping them to
F[A] values.
Inhertied from
ApplicativeError
def forceR[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genConcurrentForOptionT
Analogous to productR, but suppresses short-circuiting behavior
except for cancellation.
Inhertied from
MonadCancel
@inline
final def <*>[A, B](ff: F[A => B])(fa: F[A]): F[B]
Implicitly added by genConcurrentForOptionT
Alias for ap.
Inhertied from
Apply
def bracket[A, B](acquire: F[A])(use: A => F[B])(release: A => F[Unit]): F[B]
Implicitly added by genConcurrentForOptionT
A pattern for safely interacting with effectful lifecycles.
If acquire completes successfully, use is called. If use succeeds,
fails, or is canceled, release is guaranteed to be called exactly once.
acquire is uncancelable.
release is uncancelable.
use is cancelable by default, but can be masked.
Value Params
acquire
the lifecycle acquisition action
release
the lifecycle release action
use
the effect to which the lifecycle is scoped, whose result
is the return value of this function
See also
bracketCase for a more powerful variant
Resource for a composable datatype encoding of effectful lifecycles
Inhertied from
MonadCancel
def pure[A](x: A): F[A]
Implicitly added by genConcurrentForOptionT
pure lifts any value into the Applicative Functor.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[Option] .pure(10)
res0: Option[Int] = Some(10)
}}}
Inhertied from
Applicative
def fproductLeft[A, B](fa: F[A])(f: A => B): F[(B, A)]
Implicitly added by genConcurrentForEitherT
Pair the result of function application with A.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> Functor[Option] .fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
}}}
Inhertied from
Functor
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]
Implicitly added by genConcurrentForEitherT
Pair A with the result of function application.
Example:
{{{
scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
}}}
Inhertied from
FlatMap
@noop
def whileM_[A](p: F[Boolean])(body: => F[A]): F[Unit]
Implicitly added by genConcurrentForEitherT
Execute an action repeatedly as long as the given Boolean expression
returns true. The condition is evaluated before the loop body.
Discards results.
Inhertied from
Monad
def raceOutcome[A, B](fa: F[A], fb: F[B]): F[Either[Outcome[F, E, A], Outcome[F, E, B]]]
Implicitly added by genConcurrentForEitherT
Races the evaluation of two fibers that returns the Outcome of the
winner. The winner of the race is considered to be the first fiber that
completes with an outcome. The loser of the race is canceled before
returning.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
race for a simpler variant that returns the successful outcome.
Inhertied from
GenSpawn
@inline
final def *>[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genConcurrentForEitherT
Alias for productR.
Inhertied from
Apply
@noop
def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])
Implicitly added by genConcurrentForEitherT
Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.
NOTE: Check for effect duplication, possibly memoize before
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .unzip(List((1,2), (3, 4)))
res0: (List[Int] , List[Int] ) = (List(1, 3),List(2, 4))
}}}
Inhertied from
Functor
def handleError[A](fa: F[A])(f: E => A): F[A]
Implicitly added by genConcurrentForEitherT
Handle any error, by mapping it to an A value.
See also
handleErrorWith to map to an F[A] value instead of simply an
A value.
recover to only recover from certain errors.
Inhertied from
ApplicativeError
def as[A, B](fa: F[A], b: B): F[B]
Implicitly added by genConcurrentForEitherT
Replaces the A value in F[A] with the supplied value.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
}}}
Inhertied from
Functor
def attemptNarrow[EE <: Throwable, A](fa: F[A])(tag: ClassTag[EE], ev: EE <:< E): F[Either[EE, A]]
Implicitly added by genConcurrentForEitherT
Similar to attempt, but it only handles errors of type EE.
Inhertied from
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => E): F[A]
Implicitly added by genConcurrentForEitherT
Convert from scala.Option
Example:
{{{
scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *] , String]
scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)
scala> F.fromOption(Option.empty[Int] , "Empty")
res1: scala.Either[String, Int] = Left(Empty)
}}}
Inhertied from
ApplicativeError
def fromEither[A](x: Either[E, A]): F[A]
Implicitly added by genConcurrentForEitherT
Convert from scala.Either
Example:
{{{
scala> import cats.ApplicativeError
scala> import cats.instances.option._
scala> ApplicativeError[Option, Unit] .fromEither(Right(1))
res0: scala.Option[Int] = Some(1)
scala> ApplicativeError[Option, Unit] .fromEither(Left(()))
res1: scala.Option[Nothing] = None
}}}
Inhertied from
ApplicativeError
def guarantee[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genConcurrentForEitherT
Specifies an effect that is always invoked after evaluation of fa
completes, regardless of the outcome.
This function can be thought of as a combination of
flatTap, onError, and
onCancel.
Value Params
fa
The effect that is run after fin is registered.
fin
The effect to run in the event of a cancellation or error.
See also
guaranteeCase for a more powerful variant
Outcome for the various outcomes of evaluation
Inhertied from
MonadCancel
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
Implicitly added by genConcurrentForEitherT
Inhertied from
FlatMap
def bracketCase[A, B](acquire: F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genConcurrentForEitherT
A pattern for safely interacting with effectful lifecycles.
If acquire completes successfully, use is called. If use succeeds,
fails, or is canceled, release is guaranteed to be called exactly once.
acquire is uncancelable.
release is uncancelable.
use is cancelable by default, but can be masked.
Value Params
acquire
the lifecycle acquisition action
release
the lifecycle release action which depends on the outcome of use
use
the effect to which the lifecycle is scoped, whose result
is the return value of this function
See also
bracketFull for a more powerful variant
Resource for a composable datatype encoding of effectful lifecycles
Inhertied from
MonadCancel
@noop
def whileM[G <: ([_$2] =>> Any), A](p: F[Boolean])(body: => F[A])(G: Alternative[G]): F[G[A]]
Implicitly added by genConcurrentForEitherT
Execute an action repeatedly as long as the given Boolean expression
returns true. The condition is evaluated before the loop body.
Collects the results into an arbitrary Alternative value, such as a Vector.
This implementation uses append on each evaluation result,
so avoid data structures with non-constant append performance, e.g. List.
Inhertied from
Monad
@noop
def untilDefinedM[A](foa: F[Option[A]]): F[A]
Implicitly added by genConcurrentForEitherT
This repeats an F until we get defined values. This can be useful
for polling type operations on State (or RNG) Monads, or in effect
monads.
Inhertied from
FlatMap
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]
Implicitly added by genConcurrentForEitherT
Tuple the values in fa with the result of applying a function
with the value
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> Functor[Option] .fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
}}}
Inhertied from
Functor
@noop
def ifElseM[A](branches: (F[Boolean], F[A])*)(els: F[A]): F[A]
Implicitly added by genConcurrentForEitherT
Simulates an if/else-if/else in the context of an F. It evaluates conditions until
one evaluates to true, and returns the associated F[A] . If no condition is true,
returns els.
{{{
scala> import cats._
scala> Monad[Eval] .ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2
}}}
Based on a gist by Daniel Spiewak with a stack-safe
implementation due to P. Oscar Boykin
See also
Inhertied from
Monad
def onCancel[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genConcurrentForEitherT
Registers a finalizer that is invoked if cancellation is observed
during the evaluation of fa. If the evaluation of fa completes
without encountering a cancellation, the finalizer is unregistered
before proceeding.
During finalization, all actively registered finalizers are run exactly
once. The order by which finalizers are run is dictated by nesting:
innermost finalizers are run before outermost finalizers. For example,
in the following program, the finalizer f1 is run before the finalizer
f2:
{{{
F.onCancel(F.onCancel(F.canceled, f1), f2)
}}}
If a finalizer throws an error during evaluation, the error is suppressed,
and implementations may choose to report it via a side channel. Finalizers
are always uncancelable, so cannot otherwise be interrupted.
Value Params
fa
The effect that is evaluated after fin is registered.
fin
The finalizer to register before evaluating fa.
Inhertied from
MonadCancel
def point[A](a: A): F[A]
Implicitly added by genConcurrentForEitherT
point lifts any value into a Monoidal Functor.
Example:
{{{
scala> import cats.implicits._
scala> InvariantMonoidal[Option] .point(10)
res0: Option[Int] = Some(10)
}}}
Inhertied from
InvariantMonoidal
def map2Eval[A, B, Z](fa: F[A], fb: Eval[F[B]])(f: (A, B) => Z): Eval[F[Z]]
Implicitly added by genConcurrentForEitherT
Similar to map2 but uses Eval to allow for laziness in the F[B]
argument. This can allow for "short-circuiting" of computations.
NOTE: the default implementation of map2Eval does not short-circuit
computations. For data structures that can benefit from laziness, Apply
instances should override this method.
In the following example, x.map2(bomb)(_ + _) would result in an error,
but map2Eval "short-circuits" the computation. x is None and thus the
result of bomb doesn't even need to be evaluated in order to determine
that the result of map2Eval should be None.
{{{
scala> import cats.{Eval, Later}
scala> import cats.implicits._
scala> val bomb: Eval[Option[Int] ] = Later(sys.error("boom"))
scala> val x: Option[Int] = None
scala> x.map2Eval(bomb)(_ + _).value
res0: Option[Int] = None
}}}
Inhertied from
Apply
def fromValidated[A](x: Validated[E, A]): F[A]
Implicitly added by genConcurrentForEitherT
Convert from cats.data.Validated
Example:
{{{
scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> ApplicativeError[Option, Unit] .fromValidated(1.valid[Unit] )
res0: scala.Option[Int] = Some(1)
scala> ApplicativeError[Option, Unit] .fromValidated(().invalid[Int] )
res1: scala.Option[Int] = None
}}}
Inhertied from
ApplicativeError
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForEitherT
Execute an action repeatedly until its result fails to satisfy the given predicate
and return that result, discarding all others.
Inhertied from
Monad
def raiseError[A](e: E): F[A]
Implicitly added by genConcurrentForEitherT
Lift an error into the F context.
Example:
{{{
scala> import cats.implicits._
// integer-rounded division
scala> def divide[F[_] ](dividend: Int, divisor: Int)(implicit F: ApplicativeError[F, String] ): F[Int] =
| if (divisor === 0) F.raiseError("division by zero")
| else F.pure(dividend / divisor)
scala> type ErrorOr[A] = Either[String, A]
scala> divide[ErrorOr] (6, 3)
res0: ErrorOr[Int] = Right(2)
scala> divide[ErrorOr] (6, 0)
res1: ErrorOr[Int] = Left(division by zero)
}}}
Inhertied from
ApplicativeError
def fromTry[A](t: Try[A])(ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForEitherT
If the error type is Throwable, we can convert from a scala.util.Try
Inhertied from
ApplicativeError
def composeFunctor[G <: ([_$3] =>> Any)](evidence$2: Functor[G]): Invariant[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForEitherT
Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]]
using F's imap and G's map.
Example:
{{{
scala> import cats.implicits._
scala> import scala.concurrent.duration._
scala> val durSemigroupList: Semigroup[List[FiniteDuration] ] =
| Invariant[Semigroup]
| .composeFunctor[List]
| .imap(Semigroup[List[Long] ])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
}}}
Inhertied from
Invariant
def composeApply[G <: ([_$2] =>> Any)](evidence$1: Apply[G]): InvariantSemigroupal[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForEitherT
Inhertied from
InvariantSemigroupal
def recoverWith[A](fa: F[A])(pf: PartialFunction[E, F[A]]): F[A]
Implicitly added by genConcurrentForEitherT
Recover from certain errors by mapping them to an F[A] value.
See also
handleErrorWith to handle any/all errors.
recover to recover from certain errors by mapping them to A
values.
Inhertied from
ApplicativeError
def flatten[A](ffa: F[F[A]]): F[A]
Implicitly added by genConcurrentForEitherT
"flatten" a nested F of F structure into a single-layer F structure.
This is also commonly called join.
Example:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> val nested: Eval[Eval[Int] ] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3
}}}
Inhertied from
FlatMap
def untilM[G <: ([_$4] =>> Any), A](f: F[A])(cond: => F[Boolean])(G: Alternative[G]): F[G[A]]
Implicitly added by genConcurrentForEitherT
Execute an action repeatedly until the Boolean condition returns true.
The condition is evaluated after the loop body. Collects results into an
arbitrary Alternative value, such as a Vector.
This implementation uses append on each evaluation result,
so avoid data structures with non-constant append performance, e.g. List.
Inhertied from
Monad
def unit: F[Unit]
Implicitly added by genConcurrentForEitherT
Returns an F[Unit] value, equivalent with pure(()).
A useful shorthand, also allowing implementations to optimize the
returned reference (e.g. it can be a val).
Example:
{{{
scala> import cats.implicits._
scala> Applicative[Option] .unit
res0: Option[Unit] = Some(())
}}}
Inhertied from
Applicative
def untilM_[A](f: F[A])(cond: => F[Boolean]): F[Unit]
Implicitly added by genConcurrentForEitherT
Execute an action repeatedly until the Boolean condition returns true.
The condition is evaluated after the loop body. Discards results.
Inhertied from
Monad
def background[A](fa: F[A]): Resource[F, F[Outcome[F, E, A]]]
Implicitly added by genConcurrentForEitherT
Returns a Resource that manages the concurrent execution of a fiber.
The inner effect can be used to wait on the outcome of the child fiber;
it is effectively a join.
The child fiber is canceled in two cases: either the resource goes out
of scope or the parent fiber is cancelled. If the child fiber terminates
before one of these cases occurs, then cancellation is a no-op. This
avoids fiber leaks because the child fiber is always canceled before
the parent fiber drops the reference to it.
{{{
// Starts a fiber that continously prints "A".
// After 10 seconds, the resource scope exits so the fiber is canceled.
F.background(F.delay(println("A")).foreverM).use { _ =>
F.sleep(10.seconds)
}
}}}
Value Params
fa
the effect for the spawned fiber
Inhertied from
GenSpawn
def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]
Implicitly added by genConcurrentForEitherT
Tuples the A value in F[A] with the supplied B value, with the B value on the left.
Example:
{{{
scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue
scala> Functor[Queue] .tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
}}}
Inhertied from
Functor
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]
Implicitly added by genConcurrentForEitherT
Handle any error, potentially recovering from it, by mapping it to an
F[A] value.
See also
handleError to handle any error by simply mapping it to an A
value instead of an F[A].
recoverWith to recover from only certain errors.
Inhertied from
ApplicativeError
def flatTap[A, B](fa: F[A])(f: A => F[B]): F[A]
Implicitly added by genConcurrentForEitherT
Apply a monadic function and discard the result while keeping the effect.
{{{
scala> import cats., implicits.
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> ListInt.flatTap(nCats)
res2: List[Int] = List()
scala> ListInt.flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
}}}
Inhertied from
FlatMap
def uncancelable[A](body: Poll[F] => F[A]): F[A]
Implicitly added by genConcurrentForEitherT
Masks cancellation on the current fiber. The argument to body of type
Poll[F] is a natural transformation F ~> F that enables polling.
Polling causes a fiber to unmask within a masked region so that
cancellation can be observed again.
In the following example, cancellation can be observed only within fb
and nowhere else:
{{{
F.uncancelable { poll =>
fa *> poll(fb) *> fc
}
}}}
If a fiber is canceled while it is masked, the cancellation is suppressed
for as long as the fiber remains masked. Whenever the fiber is completely
unmasked again, the cancellation will be respected.
Masks can also be stacked or nested within each other. If multiple masks
are active, all masks must be undone so that cancellation can be observed.
In order to completely unmask within a multi-masked region, the poll
corresponding to each mask must be applied, innermost-first.
{{{
F.uncancelable { p1 =>
F.uncancelable { p2 =>
fa *> p2(p1(fb)) *> fc
}
}
}}}
The following operations are no-ops:
  1. Polling in the wrong order
  2. Applying the same poll more than once: poll(poll(fa))
  3. Applying a poll bound to one fiber within another fiber
Inhertied from
MonadCancel
Implicitly added by genConcurrentForEitherT
Inhertied from
GenSpawn
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]
Implicitly added by genConcurrentForEitherT
Turns a successful value into an error if it does not satisfy a given predicate.
Inhertied from
MonadError
def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]
Implicitly added by genConcurrentForEitherT
Sequentially compose two actions, discarding any value produced by the second. This variant of
productL also lets you define the evaluation strategy of the second action. For instance
you can evaluate it only ''after'' the first action has finished:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int] .productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
}}}
Inhertied from
FlatMap
def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]
Implicitly added by genConcurrentForEitherT
Sequentially compose two actions, discarding any value produced by the first. This variant of
productR also lets you define the evaluation strategy of the second action. For instance
you can evaluate it only ''after'' the first action has finished:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
}}}
Inhertied from
FlatMap
def onError[A](fa: F[A])(pf: PartialFunction[E, F[Unit]]): F[A]
Implicitly added by genConcurrentForEitherT
Execute a callback on certain errors, then rethrow them.
Any non matching error is rethrown as well.
In the following example, only one of the errors is logged,
but they are both rethrown, to be possibly handled by another
layer of the program:
{{{
scala> import cats., data., implicits._
scala> case class Err(msg: String)
scala> type F[A] = EitherT[State[String, *] , Err, A]
scala> val action: PartialFunction[Err, F[Unit] ] = {
| case Err("one") => EitherT.liftF(State.set("one"))
| }
scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]
scala> prog1.onError(action).value.run("").value
res0: (String, Either[Err,Int] ) = (one,Left(Err(one)))
scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int] ) = ("",Left(Err(two)))
}}}
Inhertied from
ApplicativeError
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, F, E]
Implicitly added by genConcurrentForEitherT
Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.
Inhertied from
ApplicativeError
def redeem[A, B](fa: F[A])(recover: E => B, f: A => B): F[B]
Implicitly added by genConcurrentForEitherT
Returns a new value that transforms the result of the source,
given the recover or map functions, which get executed depending
on whether the result is successful or if it ends in error.
This is an optimization on usage of attempt and map,
this equivalence being available:
{{{
fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))
}}}
Usage of redeem subsumes handleError because:
{{{
fa.redeem(fe, id) <-> fa.handleError(fe)
}}}
Implementations are free to override it in order to optimize
error recovery.
Value Params
fa
is the source whose result is going to get transformed
recover
is the function that gets called to recover the source
in case of error
See also
MonadError.redeemWith, attempt and handleError
Inhertied from
ApplicativeError
def lift[A, B](f: A => B): F[A] => F[B]
Implicitly added by genConcurrentForEitherT
Lift a function f to operate on Functors
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> val o = Option(42)
scala> Functor[Option] .lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
}}}
Inhertied from
Functor
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]
Implicitly added by genConcurrentForEitherT
Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.
Inhertied from
MonadError
def iterateUntilM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForEitherT
Apply a monadic function iteratively until its result satisfies
the given predicate and return that result.
Inhertied from
Monad
def redeemWith[A, B](fa: F[A])(recover: E => F[B], bind: A => F[B]): F[B]
Implicitly added by genConcurrentForEitherT
Returns a new value that transforms the result of the source,
given the recover or bind functions, which get executed depending
on whether the result is successful or if it ends in error.
This is an optimization on usage of attempt and flatMap,
this equivalence being available:
{{{
fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))
}}}
Usage of redeemWith subsumes handleErrorWith because:
{{{
fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)
}}}
Usage of redeemWith also subsumes flatMap because:
{{{
fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)
}}}
Implementations are free to override it in order to optimize
error recovery.
Value Params
bind
is the function that gets to transform the source
in case of success
fa
is the source whose result is going to get transformed
recover
is the function that gets called to recover the source
in case of error
See also
Inhertied from
MonadError
def replicateA[A](n: Int, fa: F[A]): F[List[A]]
Implicitly added by genConcurrentForEitherT
Given fa and n, apply fa n times to construct an F[List[A]] value.
Example:
{{{
scala> import cats.data.State
scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int] ] =
| Applicative[Counter] .replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int] ) = (5,List(0, 1, 2, 3, 4))
}}}
Inhertied from
Applicative
def start[A](fa: F[A]): F[Fiber[F, E, A]]
Implicitly added by genConcurrentForEitherT
A low-level primitive for starting the concurrent evaluation of a fiber.
Returns a Fiber that can be used to wait for a fiber or cancel it.
start is a cancellation-unsafe function; it is recommended to
use the safer variant, background, to spawn fibers.
Value Params
fa
the effect for the fiber
See also
background for the safer, recommended variant
Inhertied from
GenSpawn
def iterateWhileM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForEitherT
Apply a monadic function iteratively until its result fails
to satisfy the given predicate and return that result.
Inhertied from
Monad
def composeContravariantMonoidal[G <: ([_$3] =>> Any)](evidence$2: ContravariantMonoidal[G]): ContravariantMonoidal[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForEitherT
Compose an Applicative[F] and a ContravariantMonoidal[G] into a
ContravariantMonoidal[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.kernel.Comparison
scala> import cats.implicits._
// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]
// compares strings by their length
scala> val strLength: Order[String] = Order.byString, Int
scala> val stringOrders: List[Order[String] ] = List(alpha, strLength)
// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)
scala> val le = Applicative[List] .composeContravariantMonoidal[Order]
// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int] ] = le.contramap(stringOrders)(_.toString)
// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)
// create the product of the string order list and the int order list
// p contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)] ] = le.product(stringOrders, intOrders)
scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
}}}
Inhertied from
Applicative
def bracketFull[A, B](acquire: Poll[F] => F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genConcurrentForEitherT
A pattern for safely interacting with effectful lifecycles.
If acquire completes successfully, use is called. If use succeeds,
fails, or is canceled, release is guaranteed to be called exactly once.
If use succeeds the returned value B is returned. If use returns
an exception, the exception is returned.
acquire is uncancelable by default, but can be unmasked.
release is uncancelable.
use is cancelable by default, but can be masked.
Value Params
acquire
the lifecycle acquisition action which can be canceled
release
the lifecycle release action which depends on the outcome of use
use
the effect to which the lifecycle is scoped, whose result
is the return value of this function
Inhertied from
MonadCancel
@noop
def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
Implicitly added by genConcurrentForEitherT
An if-then-else lifted into the F context.
This function combines the effects of the fcond condition and of the two branches,
in the order in which they are given.
The value of the result is, depending on the value of the condition,
the value of the first argument, or the value of the second argument.
Example:
{{{
scala> import cats.implicits._
scala> val b1: Option[Boolean] = Some(true)
scala> val asInt1: Option[Int] = Apply[Option] .ifA(b1)(Some(1), Some(0))
scala> asInt1.get
res0: Int = 1
scala> val b2: Option[Boolean] = Some(false)
scala> val asInt2: Option[Int] = Apply[Option] .ifA(b2)(Some(1), Some(0))
scala> asInt2.get
res1: Int = 0
scala> val b3: Option[Boolean] = Some(true)
scala> val asInt3: Option[Int] = Apply[Option] .ifA(b3)(Some(1), None)
asInt2: Option[Int] = None
}}}
Inhertied from
Apply
def catchNonFatal[A](a: => A)(ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForEitherT
Often E is Throwable. Here we try to call pure or catch
and raise.
Inhertied from
ApplicativeError
@noop
def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]
Implicitly added by genConcurrentForEitherT
Lifts if to Functor
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
}}}
Inhertied from
Functor
def attemptT[A](fa: F[A]): EitherT[F, E, A]
Implicitly added by genConcurrentForEitherT
Similar to attempt, but wraps the result in a data.EitherT for
convenience.
Inhertied from
ApplicativeError
def canceled: F[Unit]
Implicitly added by genConcurrentForEitherT
An effect that requests self-cancellation on the current fiber.
In the following example, the fiber requests self-cancellation in a masked
region, so cancellation is suppressed until the fiber is completely
unmasked. fa will run but fb will not.
{{{
F.uncancelable { _ =>
F.canceled *> fa
} *> fb
}}}
Inhertied from
MonadCancel
def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genConcurrentForEitherT
Returns the given argument (mapped to Unit) if cond is true, otherwise,
unit lifted into F.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[List] .whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())
scala> Applicative[List] .whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())
scala> Applicative[List] .whenA(true)(List.empty[Int] )
res2: List[Unit] = List()
scala> Applicative[List] .whenA(false)(List.empty[Int] )
res3: List[Unit] = List(())
}}}
Inhertied from
Applicative
@noop
def iterateForeverM[A, B](a: A)(f: A => F[A]): F[B]
Implicitly added by genConcurrentForEitherT
iterateForeverM is almost exclusively useful for effect types. For instance,
A may be some state, we may take the current state, run some effect to get
a new state and repeat.
Inhertied from
FlatMap
@noop
def foreverM[A, B](fa: F[A]): F[B]
Implicitly added by genConcurrentForEitherT
Like an infinite loop of >> calls. This is most useful effect loops
that you want to run forever in for instance a server.
This will be an infinite loop, or it will return an F[Nothing] .
Be careful using this.
For instance, a List of length k will produce a list of length k^n at iteration
n. This means if k = 0, we return an empty list, if k = 1, we loop forever
allocating single element lists, but if we have a k > 1, we will allocate
exponentially increasing memory and very quickly OOM.
Inhertied from
FlatMap
def widen[A, B >: A](fa: F[A]): F[B]
Implicitly added by genConcurrentForEitherT
Lifts natural subtyping covariance of covariant Functors.
NOTE: In certain (perhaps contrived) situations that rely on universal
equality this can result in a ClassCastException, because it is
implemented as a type cast. It could be implemented as map(identity), but
according to the functor laws, that should be equal to fa, and a type
cast is often much more performant.
See this example
of widen creating a ClassCastException.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> val s = Some(42)
scala> Functor[Option] .widen(s)
res0: Option[Int] = Some(42)
}}}
Inhertied from
Functor
def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Implicitly added by genConcurrentForEitherT
Inhertied from
ApplyArityFunctions
def catchNonFatalEval[A](a: Eval[A])(ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForEitherT
Often E is Throwable. Here we try to call pure or catch
and raise
Inhertied from
ApplicativeError
def attempt[A](fa: F[A]): F[Either[E, A]]
Implicitly added by genConcurrentForEitherT
Handle errors by turning them into scala.util.Either values.
If there is no error, then an scala.util.Right value will be returned instead.
All non-fatal errors should be handled by this method.
Inhertied from
ApplicativeError
def cede: F[Unit]
Implicitly added by genConcurrentForEitherT
Introduces a fairness boundary that yields control back to the scheduler
of the runtime system. This allows the carrier thread to resume execution
of another waiting fiber.
Note that cede is merely a hint to the runtime system; implementations
have the liberty to interpret this method to their liking as long as it
obeys the respective laws. For example, a lawful, but atypical,
implementation of this function is F.unit, in which case the fairness
boundary is a no-op.
Inhertied from
GenSpawn
final def fmap[A, B](fa: F[A])(f: A => B): F[B]
Implicitly added by genConcurrentForEitherT
Alias for map, since map can't be injected as syntax if
the implementing type already had a built-in .map method.
Example:
{{{
scala> import cats.implicits._
scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")
scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
}}}
Inhertied from
Functor
def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]
Implicitly added by genConcurrentForEitherT
Tuples the A value in F[A] with the supplied B value, with the B value on the right.
Example:
{{{
scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue
scala> Functor[Queue] .tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
}}}
Inhertied from
Functor
def tailRecM[A, B](a: A)(f: A => F[Either[A, B]]): F[B]
Implicitly added by genConcurrentForEitherT
Keeps calling f until a scala.util.Right[B] is returned.
Based on Phil Freeman's
Stack Safety for Free.
Implementations of this method should use constant stack space relative to f.
Inhertied from
FlatMap
def rethrow[A, EE <: E](fa: F[Either[EE, A]]): F[A]
Implicitly added by genConcurrentForEitherT
Inverse of attempt
Example:
{{{
scala> import cats.implicits._
scala> import scala.util.{Try, Success}
scala> val a: Try[Either[Throwable, Int] ] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)
scala> val b: Try[Either[Throwable, Int] ] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
}}}
Inhertied from
MonadError
def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genConcurrentForEitherT
Returns the given argument (mapped to Unit) if cond is false,
otherwise, unit lifted into F.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[List] .unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())
scala> Applicative[List] .unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())
scala> Applicative[List] .unlessA(true)(List.empty[Int] )
res2: List[Unit] = List(())
scala> Applicative[List] .unlessA(false)(List.empty[Int] )
res3: List[Unit] = List()
}}}
Inhertied from
Applicative
def attemptTap[A, B](fa: F[A])(f: Either[E, A] => F[B]): F[A]
Implicitly added by genConcurrentForEitherT
Reifies the value or error of the source and performs an effect on the result,
then recovers the original value or error back into F.
Note that if the effect returned by f fails, the resulting effect will fail too.
Alias for fa.attempt.flatTap(f).rethrow for convenience.
Example:
{{{
scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}
scala> def checkError(result: Either[Throwable, Int] ): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))
scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)
scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
}}}
Inhertied from
MonadError
def void[A](fa: F[A]): F[Unit]
Implicitly added by genConcurrentForEitherT
Empty the fa of the values, preserving the structure
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .void(List(1,2,3))
res0: List[Unit] = List((), (), ())
}}}
Inhertied from
Functor
@inline
final def <*[A, B](fa: F[A])(fb: F[B]): F[A]
Implicitly added by genConcurrentForEitherT
Alias for productL.
Inhertied from
Apply
@noop
def ifM[B](fa: F[Boolean])(ifTrue: => F[B], ifFalse: => F[B]): F[B]
Implicitly added by genConcurrentForEitherT
if lifted into monad.
Inhertied from
FlatMap
def guaranteeCase[A](fa: F[A])(fin: Outcome[F, E, A] => F[Unit]): F[A]
Implicitly added by genConcurrentForEitherT
Specifies an effect that is always invoked after evaluation of fa
completes, but depends on the outcome.
This function can be thought of as a combination of
flatTap, onError, and
onCancel.
Value Params
fa
The effect that is run after fin is registered.
fin
A function that returns the effect to run based on the
outcome.
See also
bracketCase for a more powerful variant
Outcome for the various outcomes of evaluation
Inhertied from
MonadCancel
def compose[G <: ([_$2] =>> Any)](evidence$1: Applicative[G]): Applicative[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForEitherT
Compose an Applicative[F] and an Applicative[G] into an
Applicative[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.implicits._
scala> val alo = Applicative[List] .compose[Option]
scala> alo.pure(3)
res0: List[Option[Int] ] = List(Some(3))
scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)] ] = List(None, None, Some((true,2)), None, Some((false,2)), None)
}}}
Inhertied from
Applicative
def compose[G <: ([_$2] =>> Any)](evidence$1: Invariant[G]): Invariant[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForEitherT
Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.
Example:
{{{
scala> import cats.implicits._
scala> import scala.concurrent.duration._
scala> val durSemigroupList: Semigroup[List[FiniteDuration] ] =
| Invariant[Semigroup] .compose[List] .imap(Semigroup[List[Long] ])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
}}}
Inhertied from
Invariant
def compose[G <: ([_$3] =>> Any)](evidence$1: Apply[G]): Apply[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForEitherT
Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.implicits._
scala> val alo = Apply[List] .compose[Option]
scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)] ] = List(None, None, Some((true,2)), None, Some((false,2)), None)
}}}
Inhertied from
Apply
def compose[G <: ([_$6] =>> Any)](evidence$1: Functor[G]): Functor[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForEitherT
Inhertied from
Functor
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForEitherT
Execute an action repeatedly until its result satisfies the given predicate
and return that result, discarding all others.
Inhertied from
Monad
def bothOutcome[A, B](fa: F[A], fb: F[B]): F[(Outcome[F, E, A], Outcome[F, E, B])]
Implicitly added by genConcurrentForEitherT
Races the evaluation of two fibers and returns the Outcome of both. If
the race is canceled before one or both participants complete, then
then whichever ones are incomplete are canceled.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
both for a simpler variant that returns the results of both
fibers.
Inhertied from
GenSpawn
def race[A, B](fa: F[A], fb: F[B]): F[Either[A, B]]
Implicitly added by genConcurrentForEitherT
Races the evaluation of two fibers that returns the result of the winner,
except in the case of cancellation.
The semantics of race are described by the following rules:
  1. If the winner completes with Succeeded, the race returns the
    successful value. The loser is canceled before returning.
  2. If the winner completes with Errored, the race raises the error.
    The loser is canceled before returning.
  3. If the winner completes with Canceled, the race returns the
    result of the loser, consistent with the first two rules.
  4. If both the winner and loser complete with Canceled, the race
    is canceled.
  5. If the race is masked and is canceled because both participants
    canceled, the fiber will block indefinitely.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
raceOutcome for a variant that returns the outcome of the winner.
Inhertied from
GenSpawn
def never[A]: F[A]
Implicitly added by genConcurrentForEitherT
A non-terminating effect that never completes, which causes a fiber to
semantically block indefinitely. This is the purely functional,
asynchronous equivalent of an infinite while loop in Java, but no
native threads are blocked.
A fiber that is suspended in never can be canceled if it is
completely unmasked before it suspends:
{{{
// ignoring race conditions between start and cancel
F.never.start.flatMap(_.cancel) <-> F.unit
}}}
However, if the fiber is masked, cancellers will be semantically blocked
forever:
{{{
// ignoring race conditions between start and cancel
F.uncancelable(_ => F.never).start.flatMap(_.cancel) <-> F.never
}}}
Inhertied from
GenSpawn
def both[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Implicitly added by genConcurrentForEitherT
Races the evaluation of two fibers and returns the result of both.
The following rules describe the semantics of both:
  1. If the winner completes with Succeeded, the race waits for the
    loser to complete.
  2. If the winner completes with Errored, the race raises the error.
    The loser is canceled.
  3. If the winner completes with Canceled, the loser and the race
    are canceled as well.
  4. If the loser completes with Succeeded, the race returns the
    successful value of both fibers.
  5. If the loser completes with Errored, the race returns the error.
  6. If the loser completes with Canceled, the race is canceled.
  7. If the race is canceled before one or both participants complete,
    then whichever ones are incomplete are canceled.
  8. If the race is masked and is canceled because one or both
    participants canceled, the fiber will block indefinitely.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
bothOutcome for a variant that returns the Outcome of both
fibers.
Inhertied from
GenSpawn
def recover[A](fa: F[A])(pf: PartialFunction[E, A]): F[A]
Implicitly added by genConcurrentForEitherT
Recover from certain errors by mapping them to an A value.
See also
handleError to handle any/all errors.
recoverWith to recover from certain errors by mapping them to
F[A] values.
Inhertied from
ApplicativeError
def forceR[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genConcurrentForEitherT
Analogous to productR, but suppresses short-circuiting behavior
except for cancellation.
Inhertied from
MonadCancel
@inline
final def <*>[A, B](ff: F[A => B])(fa: F[A]): F[B]
Implicitly added by genConcurrentForEitherT
Alias for ap.
Inhertied from
Apply
def bracket[A, B](acquire: F[A])(use: A => F[B])(release: A => F[Unit]): F[B]
Implicitly added by genConcurrentForEitherT
A pattern for safely interacting with effectful lifecycles.
If acquire completes successfully, use is called. If use succeeds,
fails, or is canceled, release is guaranteed to be called exactly once.
acquire is uncancelable.
release is uncancelable.
use is cancelable by default, but can be masked.
Value Params
acquire
the lifecycle acquisition action
release
the lifecycle release action
use
the effect to which the lifecycle is scoped, whose result
is the return value of this function
See also
bracketCase for a more powerful variant
Resource for a composable datatype encoding of effectful lifecycles
Inhertied from
MonadCancel
def pure[A](x: A): F[A]
Implicitly added by genConcurrentForEitherT
pure lifts any value into the Applicative Functor.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[Option] .pure(10)
res0: Option[Int] = Some(10)
}}}
Inhertied from
Applicative
def fproductLeft[A, B](fa: F[A])(f: A => B): F[(B, A)]
Implicitly added by genConcurrentForKleisli
Pair the result of function application with A.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> Functor[Option] .fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
}}}
Inhertied from
Functor
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]
Implicitly added by genConcurrentForKleisli
Pair A with the result of function application.
Example:
{{{
scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
}}}
Inhertied from
FlatMap
@noop
def whileM_[A](p: F[Boolean])(body: => F[A]): F[Unit]
Implicitly added by genConcurrentForKleisli
Execute an action repeatedly as long as the given Boolean expression
returns true. The condition is evaluated before the loop body.
Discards results.
Inhertied from
Monad
def raceOutcome[A, B](fa: F[A], fb: F[B]): F[Either[Outcome[F, E, A], Outcome[F, E, B]]]
Implicitly added by genConcurrentForKleisli
Races the evaluation of two fibers that returns the Outcome of the
winner. The winner of the race is considered to be the first fiber that
completes with an outcome. The loser of the race is canceled before
returning.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
race for a simpler variant that returns the successful outcome.
Inhertied from
GenSpawn
@inline
final def *>[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genConcurrentForKleisli
Alias for productR.
Inhertied from
Apply
@noop
def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])
Implicitly added by genConcurrentForKleisli
Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.
NOTE: Check for effect duplication, possibly memoize before
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .unzip(List((1,2), (3, 4)))
res0: (List[Int] , List[Int] ) = (List(1, 3),List(2, 4))
}}}
Inhertied from
Functor
def handleError[A](fa: F[A])(f: E => A): F[A]
Implicitly added by genConcurrentForKleisli
Handle any error, by mapping it to an A value.
See also
handleErrorWith to map to an F[A] value instead of simply an
A value.
recover to only recover from certain errors.
Inhertied from
ApplicativeError
def as[A, B](fa: F[A], b: B): F[B]
Implicitly added by genConcurrentForKleisli
Replaces the A value in F[A] with the supplied value.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
}}}
Inhertied from
Functor
def attemptNarrow[EE <: Throwable, A](fa: F[A])(tag: ClassTag[EE], ev: EE <:< E): F[Either[EE, A]]
Implicitly added by genConcurrentForKleisli
Similar to attempt, but it only handles errors of type EE.
Inhertied from
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => E): F[A]
Implicitly added by genConcurrentForKleisli
Convert from scala.Option
Example:
{{{
scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *] , String]
scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)
scala> F.fromOption(Option.empty[Int] , "Empty")
res1: scala.Either[String, Int] = Left(Empty)
}}}
Inhertied from
ApplicativeError
def fromEither[A](x: Either[E, A]): F[A]
Implicitly added by genConcurrentForKleisli
Convert from scala.Either
Example:
{{{
scala> import cats.ApplicativeError
scala> import cats.instances.option._
scala> ApplicativeError[Option, Unit] .fromEither(Right(1))
res0: scala.Option[Int] = Some(1)
scala> ApplicativeError[Option, Unit] .fromEither(Left(()))
res1: scala.Option[Nothing] = None
}}}
Inhertied from
ApplicativeError
def guarantee[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genConcurrentForKleisli
Specifies an effect that is always invoked after evaluation of fa
completes, regardless of the outcome.
This function can be thought of as a combination of
flatTap, onError, and
onCancel.
Value Params
fa
The effect that is run after fin is registered.
fin
The effect to run in the event of a cancellation or error.
See also
guaranteeCase for a more powerful variant
Outcome for the various outcomes of evaluation
Inhertied from
MonadCancel
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
Implicitly added by genConcurrentForKleisli
Inhertied from
FlatMap
def bracketCase[A, B](acquire: F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genConcurrentForKleisli
A pattern for safely interacting with effectful lifecycles.
If acquire completes successfully, use is called. If use succeeds,
fails, or is canceled, release is guaranteed to be called exactly once.
acquire is uncancelable.
release is uncancelable.
use is cancelable by default, but can be masked.
Value Params
acquire
the lifecycle acquisition action
release
the lifecycle release action which depends on the outcome of use
use
the effect to which the lifecycle is scoped, whose result
is the return value of this function
See also
bracketFull for a more powerful variant
Resource for a composable datatype encoding of effectful lifecycles
Inhertied from
MonadCancel
@noop
def whileM[G <: ([_$2] =>> Any), A](p: F[Boolean])(body: => F[A])(G: Alternative[G]): F[G[A]]
Implicitly added by genConcurrentForKleisli
Execute an action repeatedly as long as the given Boolean expression
returns true. The condition is evaluated before the loop body.
Collects the results into an arbitrary Alternative value, such as a Vector.
This implementation uses append on each evaluation result,
so avoid data structures with non-constant append performance, e.g. List.
Inhertied from
Monad
@noop
def untilDefinedM[A](foa: F[Option[A]]): F[A]
Implicitly added by genConcurrentForKleisli
This repeats an F until we get defined values. This can be useful
for polling type operations on State (or RNG) Monads, or in effect
monads.
Inhertied from
FlatMap
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]
Implicitly added by genConcurrentForKleisli
Tuple the values in fa with the result of applying a function
with the value
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> Functor[Option] .fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
}}}
Inhertied from
Functor
@noop
def ifElseM[A](branches: (F[Boolean], F[A])*)(els: F[A]): F[A]
Implicitly added by genConcurrentForKleisli
Simulates an if/else-if/else in the context of an F. It evaluates conditions until
one evaluates to true, and returns the associated F[A] . If no condition is true,
returns els.
{{{
scala> import cats._
scala> Monad[Eval] .ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2
}}}
Based on a gist by Daniel Spiewak with a stack-safe
implementation due to P. Oscar Boykin
See also
Inhertied from
Monad
def onCancel[A](fa: F[A], fin: F[Unit]): F[A]
Implicitly added by genConcurrentForKleisli
Registers a finalizer that is invoked if cancellation is observed
during the evaluation of fa. If the evaluation of fa completes
without encountering a cancellation, the finalizer is unregistered
before proceeding.
During finalization, all actively registered finalizers are run exactly
once. The order by which finalizers are run is dictated by nesting:
innermost finalizers are run before outermost finalizers. For example,
in the following program, the finalizer f1 is run before the finalizer
f2:
{{{
F.onCancel(F.onCancel(F.canceled, f1), f2)
}}}
If a finalizer throws an error during evaluation, the error is suppressed,
and implementations may choose to report it via a side channel. Finalizers
are always uncancelable, so cannot otherwise be interrupted.
Value Params
fa
The effect that is evaluated after fin is registered.
fin
The finalizer to register before evaluating fa.
Inhertied from
MonadCancel
def point[A](a: A): F[A]
Implicitly added by genConcurrentForKleisli
point lifts any value into a Monoidal Functor.
Example:
{{{
scala> import cats.implicits._
scala> InvariantMonoidal[Option] .point(10)
res0: Option[Int] = Some(10)
}}}
Inhertied from
InvariantMonoidal
def map2Eval[A, B, Z](fa: F[A], fb: Eval[F[B]])(f: (A, B) => Z): Eval[F[Z]]
Implicitly added by genConcurrentForKleisli
Similar to map2 but uses Eval to allow for laziness in the F[B]
argument. This can allow for "short-circuiting" of computations.
NOTE: the default implementation of map2Eval does not short-circuit
computations. For data structures that can benefit from laziness, Apply
instances should override this method.
In the following example, x.map2(bomb)(_ + _) would result in an error,
but map2Eval "short-circuits" the computation. x is None and thus the
result of bomb doesn't even need to be evaluated in order to determine
that the result of map2Eval should be None.
{{{
scala> import cats.{Eval, Later}
scala> import cats.implicits._
scala> val bomb: Eval[Option[Int] ] = Later(sys.error("boom"))
scala> val x: Option[Int] = None
scala> x.map2Eval(bomb)(_ + _).value
res0: Option[Int] = None
}}}
Inhertied from
Apply
def fromValidated[A](x: Validated[E, A]): F[A]
Implicitly added by genConcurrentForKleisli
Convert from cats.data.Validated
Example:
{{{
scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> ApplicativeError[Option, Unit] .fromValidated(1.valid[Unit] )
res0: scala.Option[Int] = Some(1)
scala> ApplicativeError[Option, Unit] .fromValidated(().invalid[Int] )
res1: scala.Option[Int] = None
}}}
Inhertied from
ApplicativeError
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForKleisli
Execute an action repeatedly until its result fails to satisfy the given predicate
and return that result, discarding all others.
Inhertied from
Monad
def raiseError[A](e: E): F[A]
Implicitly added by genConcurrentForKleisli
Lift an error into the F context.
Example:
{{{
scala> import cats.implicits._
// integer-rounded division
scala> def divide[F[_] ](dividend: Int, divisor: Int)(implicit F: ApplicativeError[F, String] ): F[Int] =
| if (divisor === 0) F.raiseError("division by zero")
| else F.pure(dividend / divisor)
scala> type ErrorOr[A] = Either[String, A]
scala> divide[ErrorOr] (6, 3)
res0: ErrorOr[Int] = Right(2)
scala> divide[ErrorOr] (6, 0)
res1: ErrorOr[Int] = Left(division by zero)
}}}
Inhertied from
ApplicativeError
def fromTry[A](t: Try[A])(ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForKleisli
If the error type is Throwable, we can convert from a scala.util.Try
Inhertied from
ApplicativeError
def composeFunctor[G <: ([_$3] =>> Any)](evidence$2: Functor[G]): Invariant[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForKleisli
Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]]
using F's imap and G's map.
Example:
{{{
scala> import cats.implicits._
scala> import scala.concurrent.duration._
scala> val durSemigroupList: Semigroup[List[FiniteDuration] ] =
| Invariant[Semigroup]
| .composeFunctor[List]
| .imap(Semigroup[List[Long] ])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
}}}
Inhertied from
Invariant
def composeApply[G <: ([_$2] =>> Any)](evidence$1: Apply[G]): InvariantSemigroupal[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForKleisli
Inhertied from
InvariantSemigroupal
def recoverWith[A](fa: F[A])(pf: PartialFunction[E, F[A]]): F[A]
Implicitly added by genConcurrentForKleisli
Recover from certain errors by mapping them to an F[A] value.
See also
handleErrorWith to handle any/all errors.
recover to recover from certain errors by mapping them to A
values.
Inhertied from
ApplicativeError
def flatten[A](ffa: F[F[A]]): F[A]
Implicitly added by genConcurrentForKleisli
"flatten" a nested F of F structure into a single-layer F structure.
This is also commonly called join.
Example:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> val nested: Eval[Eval[Int] ] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3
}}}
Inhertied from
FlatMap
def untilM[G <: ([_$4] =>> Any), A](f: F[A])(cond: => F[Boolean])(G: Alternative[G]): F[G[A]]
Implicitly added by genConcurrentForKleisli
Execute an action repeatedly until the Boolean condition returns true.
The condition is evaluated after the loop body. Collects results into an
arbitrary Alternative value, such as a Vector.
This implementation uses append on each evaluation result,
so avoid data structures with non-constant append performance, e.g. List.
Inhertied from
Monad
def unit: F[Unit]
Implicitly added by genConcurrentForKleisli
Returns an F[Unit] value, equivalent with pure(()).
A useful shorthand, also allowing implementations to optimize the
returned reference (e.g. it can be a val).
Example:
{{{
scala> import cats.implicits._
scala> Applicative[Option] .unit
res0: Option[Unit] = Some(())
}}}
Inhertied from
Applicative
def untilM_[A](f: F[A])(cond: => F[Boolean]): F[Unit]
Implicitly added by genConcurrentForKleisli
Execute an action repeatedly until the Boolean condition returns true.
The condition is evaluated after the loop body. Discards results.
Inhertied from
Monad
def background[A](fa: F[A]): Resource[F, F[Outcome[F, E, A]]]
Implicitly added by genConcurrentForKleisli
Returns a Resource that manages the concurrent execution of a fiber.
The inner effect can be used to wait on the outcome of the child fiber;
it is effectively a join.
The child fiber is canceled in two cases: either the resource goes out
of scope or the parent fiber is cancelled. If the child fiber terminates
before one of these cases occurs, then cancellation is a no-op. This
avoids fiber leaks because the child fiber is always canceled before
the parent fiber drops the reference to it.
{{{
// Starts a fiber that continously prints "A".
// After 10 seconds, the resource scope exits so the fiber is canceled.
F.background(F.delay(println("A")).foreverM).use { _ =>
F.sleep(10.seconds)
}
}}}
Value Params
fa
the effect for the spawned fiber
Inhertied from
GenSpawn
def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]
Implicitly added by genConcurrentForKleisli
Tuples the A value in F[A] with the supplied B value, with the B value on the left.
Example:
{{{
scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue
scala> Functor[Queue] .tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
}}}
Inhertied from
Functor
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]
Implicitly added by genConcurrentForKleisli
Handle any error, potentially recovering from it, by mapping it to an
F[A] value.
See also
handleError to handle any error by simply mapping it to an A
value instead of an F[A].
recoverWith to recover from only certain errors.
Inhertied from
ApplicativeError
def flatTap[A, B](fa: F[A])(f: A => F[B]): F[A]
Implicitly added by genConcurrentForKleisli
Apply a monadic function and discard the result while keeping the effect.
{{{
scala> import cats., implicits.
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> ListInt.flatTap(nCats)
res2: List[Int] = List()
scala> ListInt.flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
}}}
Inhertied from
FlatMap
def uncancelable[A](body: Poll[F] => F[A]): F[A]
Implicitly added by genConcurrentForKleisli
Masks cancellation on the current fiber. The argument to body of type
Poll[F] is a natural transformation F ~> F that enables polling.
Polling causes a fiber to unmask within a masked region so that
cancellation can be observed again.
In the following example, cancellation can be observed only within fb
and nowhere else:
{{{
F.uncancelable { poll =>
fa *> poll(fb) *> fc
}
}}}
If a fiber is canceled while it is masked, the cancellation is suppressed
for as long as the fiber remains masked. Whenever the fiber is completely
unmasked again, the cancellation will be respected.
Masks can also be stacked or nested within each other. If multiple masks
are active, all masks must be undone so that cancellation can be observed.
In order to completely unmask within a multi-masked region, the poll
corresponding to each mask must be applied, innermost-first.
{{{
F.uncancelable { p1 =>
F.uncancelable { p2 =>
fa *> p2(p1(fb)) *> fc
}
}
}}}
The following operations are no-ops:
  1. Polling in the wrong order
  2. Applying the same poll more than once: poll(poll(fa))
  3. Applying a poll bound to one fiber within another fiber
Inhertied from
MonadCancel
Implicitly added by genConcurrentForKleisli
Inhertied from
GenSpawn
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]
Implicitly added by genConcurrentForKleisli
Turns a successful value into an error if it does not satisfy a given predicate.
Inhertied from
MonadError
def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]
Implicitly added by genConcurrentForKleisli
Sequentially compose two actions, discarding any value produced by the second. This variant of
productL also lets you define the evaluation strategy of the second action. For instance
you can evaluate it only ''after'' the first action has finished:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int] .productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
}}}
Inhertied from
FlatMap
def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]
Implicitly added by genConcurrentForKleisli
Sequentially compose two actions, discarding any value produced by the first. This variant of
productR also lets you define the evaluation strategy of the second action. For instance
you can evaluate it only ''after'' the first action has finished:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
}}}
Inhertied from
FlatMap
def onError[A](fa: F[A])(pf: PartialFunction[E, F[Unit]]): F[A]
Implicitly added by genConcurrentForKleisli
Execute a callback on certain errors, then rethrow them.
Any non matching error is rethrown as well.
In the following example, only one of the errors is logged,
but they are both rethrown, to be possibly handled by another
layer of the program:
{{{
scala> import cats., data., implicits._
scala> case class Err(msg: String)
scala> type F[A] = EitherT[State[String, *] , Err, A]
scala> val action: PartialFunction[Err, F[Unit] ] = {
| case Err("one") => EitherT.liftF(State.set("one"))
| }
scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]
scala> prog1.onError(action).value.run("").value
res0: (String, Either[Err,Int] ) = (one,Left(Err(one)))
scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int] ) = ("",Left(Err(two)))
}}}
Inhertied from
ApplicativeError
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, F, E]
Implicitly added by genConcurrentForKleisli
Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.
Inhertied from
ApplicativeError
def redeem[A, B](fa: F[A])(recover: E => B, f: A => B): F[B]
Implicitly added by genConcurrentForKleisli
Returns a new value that transforms the result of the source,
given the recover or map functions, which get executed depending
on whether the result is successful or if it ends in error.
This is an optimization on usage of attempt and map,
this equivalence being available:
{{{
fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))
}}}
Usage of redeem subsumes handleError because:
{{{
fa.redeem(fe, id) <-> fa.handleError(fe)
}}}
Implementations are free to override it in order to optimize
error recovery.
Value Params
fa
is the source whose result is going to get transformed
recover
is the function that gets called to recover the source
in case of error
See also
MonadError.redeemWith, attempt and handleError
Inhertied from
ApplicativeError
def lift[A, B](f: A => B): F[A] => F[B]
Implicitly added by genConcurrentForKleisli
Lift a function f to operate on Functors
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> val o = Option(42)
scala> Functor[Option] .lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
}}}
Inhertied from
Functor
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]
Implicitly added by genConcurrentForKleisli
Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.
Inhertied from
MonadError
def iterateUntilM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForKleisli
Apply a monadic function iteratively until its result satisfies
the given predicate and return that result.
Inhertied from
Monad
def redeemWith[A, B](fa: F[A])(recover: E => F[B], bind: A => F[B]): F[B]
Implicitly added by genConcurrentForKleisli
Returns a new value that transforms the result of the source,
given the recover or bind functions, which get executed depending
on whether the result is successful or if it ends in error.
This is an optimization on usage of attempt and flatMap,
this equivalence being available:
{{{
fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))
}}}
Usage of redeemWith subsumes handleErrorWith because:
{{{
fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)
}}}
Usage of redeemWith also subsumes flatMap because:
{{{
fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)
}}}
Implementations are free to override it in order to optimize
error recovery.
Value Params
bind
is the function that gets to transform the source
in case of success
fa
is the source whose result is going to get transformed
recover
is the function that gets called to recover the source
in case of error
See also
Inhertied from
MonadError
def replicateA[A](n: Int, fa: F[A]): F[List[A]]
Implicitly added by genConcurrentForKleisli
Given fa and n, apply fa n times to construct an F[List[A]] value.
Example:
{{{
scala> import cats.data.State
scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int] ] =
| Applicative[Counter] .replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int] ) = (5,List(0, 1, 2, 3, 4))
}}}
Inhertied from
Applicative
def start[A](fa: F[A]): F[Fiber[F, E, A]]
Implicitly added by genConcurrentForKleisli
A low-level primitive for starting the concurrent evaluation of a fiber.
Returns a Fiber that can be used to wait for a fiber or cancel it.
start is a cancellation-unsafe function; it is recommended to
use the safer variant, background, to spawn fibers.
Value Params
fa
the effect for the fiber
See also
background for the safer, recommended variant
Inhertied from
GenSpawn
def iterateWhileM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForKleisli
Apply a monadic function iteratively until its result fails
to satisfy the given predicate and return that result.
Inhertied from
Monad
def composeContravariantMonoidal[G <: ([_$3] =>> Any)](evidence$2: ContravariantMonoidal[G]): ContravariantMonoidal[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForKleisli
Compose an Applicative[F] and a ContravariantMonoidal[G] into a
ContravariantMonoidal[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.kernel.Comparison
scala> import cats.implicits._
// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]
// compares strings by their length
scala> val strLength: Order[String] = Order.byString, Int
scala> val stringOrders: List[Order[String] ] = List(alpha, strLength)
// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)
scala> val le = Applicative[List] .composeContravariantMonoidal[Order]
// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int] ] = le.contramap(stringOrders)(_.toString)
// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)
// create the product of the string order list and the int order list
// p contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)] ] = le.product(stringOrders, intOrders)
scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
}}}
Inhertied from
Applicative
def bracketFull[A, B](acquire: Poll[F] => F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
Implicitly added by genConcurrentForKleisli
A pattern for safely interacting with effectful lifecycles.
If acquire completes successfully, use is called. If use succeeds,
fails, or is canceled, release is guaranteed to be called exactly once.
If use succeeds the returned value B is returned. If use returns
an exception, the exception is returned.
acquire is uncancelable by default, but can be unmasked.
release is uncancelable.
use is cancelable by default, but can be masked.
Value Params
acquire
the lifecycle acquisition action which can be canceled
release
the lifecycle release action which depends on the outcome of use
use
the effect to which the lifecycle is scoped, whose result
is the return value of this function
Inhertied from
MonadCancel
@noop
def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
Implicitly added by genConcurrentForKleisli
An if-then-else lifted into the F context.
This function combines the effects of the fcond condition and of the two branches,
in the order in which they are given.
The value of the result is, depending on the value of the condition,
the value of the first argument, or the value of the second argument.
Example:
{{{
scala> import cats.implicits._
scala> val b1: Option[Boolean] = Some(true)
scala> val asInt1: Option[Int] = Apply[Option] .ifA(b1)(Some(1), Some(0))
scala> asInt1.get
res0: Int = 1
scala> val b2: Option[Boolean] = Some(false)
scala> val asInt2: Option[Int] = Apply[Option] .ifA(b2)(Some(1), Some(0))
scala> asInt2.get
res1: Int = 0
scala> val b3: Option[Boolean] = Some(true)
scala> val asInt3: Option[Int] = Apply[Option] .ifA(b3)(Some(1), None)
asInt2: Option[Int] = None
}}}
Inhertied from
Apply
def catchNonFatal[A](a: => A)(ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForKleisli
Often E is Throwable. Here we try to call pure or catch
and raise.
Inhertied from
ApplicativeError
@noop
def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]
Implicitly added by genConcurrentForKleisli
Lifts if to Functor
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
}}}
Inhertied from
Functor
def attemptT[A](fa: F[A]): EitherT[F, E, A]
Implicitly added by genConcurrentForKleisli
Similar to attempt, but wraps the result in a data.EitherT for
convenience.
Inhertied from
ApplicativeError
def canceled: F[Unit]
Implicitly added by genConcurrentForKleisli
An effect that requests self-cancellation on the current fiber.
In the following example, the fiber requests self-cancellation in a masked
region, so cancellation is suppressed until the fiber is completely
unmasked. fa will run but fb will not.
{{{
F.uncancelable { _ =>
F.canceled *> fa
} *> fb
}}}
Inhertied from
MonadCancel
def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genConcurrentForKleisli
Returns the given argument (mapped to Unit) if cond is true, otherwise,
unit lifted into F.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[List] .whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())
scala> Applicative[List] .whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())
scala> Applicative[List] .whenA(true)(List.empty[Int] )
res2: List[Unit] = List()
scala> Applicative[List] .whenA(false)(List.empty[Int] )
res3: List[Unit] = List(())
}}}
Inhertied from
Applicative
@noop
def iterateForeverM[A, B](a: A)(f: A => F[A]): F[B]
Implicitly added by genConcurrentForKleisli
iterateForeverM is almost exclusively useful for effect types. For instance,
A may be some state, we may take the current state, run some effect to get
a new state and repeat.
Inhertied from
FlatMap
@noop
def foreverM[A, B](fa: F[A]): F[B]
Implicitly added by genConcurrentForKleisli
Like an infinite loop of >> calls. This is most useful effect loops
that you want to run forever in for instance a server.
This will be an infinite loop, or it will return an F[Nothing] .
Be careful using this.
For instance, a List of length k will produce a list of length k^n at iteration
n. This means if k = 0, we return an empty list, if k = 1, we loop forever
allocating single element lists, but if we have a k > 1, we will allocate
exponentially increasing memory and very quickly OOM.
Inhertied from
FlatMap
def widen[A, B >: A](fa: F[A]): F[B]
Implicitly added by genConcurrentForKleisli
Lifts natural subtyping covariance of covariant Functors.
NOTE: In certain (perhaps contrived) situations that rely on universal
equality this can result in a ClassCastException, because it is
implemented as a type cast. It could be implemented as map(identity), but
according to the functor laws, that should be equal to fa, and a type
cast is often much more performant.
See this example
of widen creating a ClassCastException.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> val s = Some(42)
scala> Functor[Option] .widen(s)
res0: Option[Int] = Some(42)
}}}
Inhertied from
Functor
def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Implicitly added by genConcurrentForKleisli
Inhertied from
ApplyArityFunctions
def catchNonFatalEval[A](a: Eval[A])(ev: Throwable <:< E): F[A]
Implicitly added by genConcurrentForKleisli
Often E is Throwable. Here we try to call pure or catch
and raise
Inhertied from
ApplicativeError
def attempt[A](fa: F[A]): F[Either[E, A]]
Implicitly added by genConcurrentForKleisli
Handle errors by turning them into scala.util.Either values.
If there is no error, then an scala.util.Right value will be returned instead.
All non-fatal errors should be handled by this method.
Inhertied from
ApplicativeError
def cede: F[Unit]
Implicitly added by genConcurrentForKleisli
Introduces a fairness boundary that yields control back to the scheduler
of the runtime system. This allows the carrier thread to resume execution
of another waiting fiber.
Note that cede is merely a hint to the runtime system; implementations
have the liberty to interpret this method to their liking as long as it
obeys the respective laws. For example, a lawful, but atypical,
implementation of this function is F.unit, in which case the fairness
boundary is a no-op.
Inhertied from
GenSpawn
final def fmap[A, B](fa: F[A])(f: A => B): F[B]
Implicitly added by genConcurrentForKleisli
Alias for map, since map can't be injected as syntax if
the implementing type already had a built-in .map method.
Example:
{{{
scala> import cats.implicits._
scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")
scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
}}}
Inhertied from
Functor
def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]
Implicitly added by genConcurrentForKleisli
Tuples the A value in F[A] with the supplied B value, with the B value on the right.
Example:
{{{
scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue
scala> Functor[Queue] .tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
}}}
Inhertied from
Functor
def tailRecM[A, B](a: A)(f: A => F[Either[A, B]]): F[B]
Implicitly added by genConcurrentForKleisli
Keeps calling f until a scala.util.Right[B] is returned.
Based on Phil Freeman's
Stack Safety for Free.
Implementations of this method should use constant stack space relative to f.
Inhertied from
FlatMap
def rethrow[A, EE <: E](fa: F[Either[EE, A]]): F[A]
Implicitly added by genConcurrentForKleisli
Inverse of attempt
Example:
{{{
scala> import cats.implicits._
scala> import scala.util.{Try, Success}
scala> val a: Try[Either[Throwable, Int] ] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)
scala> val b: Try[Either[Throwable, Int] ] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
}}}
Inhertied from
MonadError
def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by genConcurrentForKleisli
Returns the given argument (mapped to Unit) if cond is false,
otherwise, unit lifted into F.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[List] .unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())
scala> Applicative[List] .unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())
scala> Applicative[List] .unlessA(true)(List.empty[Int] )
res2: List[Unit] = List(())
scala> Applicative[List] .unlessA(false)(List.empty[Int] )
res3: List[Unit] = List()
}}}
Inhertied from
Applicative
def attemptTap[A, B](fa: F[A])(f: Either[E, A] => F[B]): F[A]
Implicitly added by genConcurrentForKleisli
Reifies the value or error of the source and performs an effect on the result,
then recovers the original value or error back into F.
Note that if the effect returned by f fails, the resulting effect will fail too.
Alias for fa.attempt.flatTap(f).rethrow for convenience.
Example:
{{{
scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}
scala> def checkError(result: Either[Throwable, Int] ): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))
scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)
scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
}}}
Inhertied from
MonadError
def void[A](fa: F[A]): F[Unit]
Implicitly added by genConcurrentForKleisli
Empty the fa of the values, preserving the structure
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .void(List(1,2,3))
res0: List[Unit] = List((), (), ())
}}}
Inhertied from
Functor
@inline
final def <*[A, B](fa: F[A])(fb: F[B]): F[A]
Implicitly added by genConcurrentForKleisli
Alias for productL.
Inhertied from
Apply
@noop
def ifM[B](fa: F[Boolean])(ifTrue: => F[B], ifFalse: => F[B]): F[B]
Implicitly added by genConcurrentForKleisli
if lifted into monad.
Inhertied from
FlatMap
def guaranteeCase[A](fa: F[A])(fin: Outcome[F, E, A] => F[Unit]): F[A]
Implicitly added by genConcurrentForKleisli
Specifies an effect that is always invoked after evaluation of fa
completes, but depends on the outcome.
This function can be thought of as a combination of
flatTap, onError, and
onCancel.
Value Params
fa
The effect that is run after fin is registered.
fin
A function that returns the effect to run based on the
outcome.
See also
bracketCase for a more powerful variant
Outcome for the various outcomes of evaluation
Inhertied from
MonadCancel
def compose[G <: ([_$2] =>> Any)](evidence$1: Applicative[G]): Applicative[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForKleisli
Compose an Applicative[F] and an Applicative[G] into an
Applicative[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.implicits._
scala> val alo = Applicative[List] .compose[Option]
scala> alo.pure(3)
res0: List[Option[Int] ] = List(Some(3))
scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)] ] = List(None, None, Some((true,2)), None, Some((false,2)), None)
}}}
Inhertied from
Applicative
def compose[G <: ([_$2] =>> Any)](evidence$1: Invariant[G]): Invariant[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForKleisli
Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.
Example:
{{{
scala> import cats.implicits._
scala> import scala.concurrent.duration._
scala> val durSemigroupList: Semigroup[List[FiniteDuration] ] =
| Invariant[Semigroup] .compose[List] .imap(Semigroup[List[Long] ])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
}}}
Inhertied from
Invariant
def compose[G <: ([_$3] =>> Any)](evidence$1: Apply[G]): Apply[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForKleisli
Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.implicits._
scala> val alo = Apply[List] .compose[Option]
scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)] ] = List(None, None, Some((true,2)), None, Some((false,2)), None)
}}}
Inhertied from
Apply
def compose[G <: ([_$6] =>> Any)](evidence$1: Functor[G]): Functor[[α] =>> F[G[α]]]
Implicitly added by genConcurrentForKleisli
Inhertied from
Functor
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by genConcurrentForKleisli
Execute an action repeatedly until its result satisfies the given predicate
and return that result, discarding all others.
Inhertied from
Monad
def bothOutcome[A, B](fa: F[A], fb: F[B]): F[(Outcome[F, E, A], Outcome[F, E, B])]
Implicitly added by genConcurrentForKleisli
Races the evaluation of two fibers and returns the Outcome of both. If
the race is canceled before one or both participants complete, then
then whichever ones are incomplete are canceled.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
both for a simpler variant that returns the results of both
fibers.
Inhertied from
GenSpawn
def race[A, B](fa: F[A], fb: F[B]): F[Either[A, B]]
Implicitly added by genConcurrentForKleisli
Races the evaluation of two fibers that returns the result of the winner,
except in the case of cancellation.
The semantics of race are described by the following rules:
  1. If the winner completes with Succeeded, the race returns the
    successful value. The loser is canceled before returning.
  2. If the winner completes with Errored, the race raises the error.
    The loser is canceled before returning.
  3. If the winner completes with Canceled, the race returns the
    result of the loser, consistent with the first two rules.
  4. If both the winner and loser complete with Canceled, the race
    is canceled.
  5. If the race is masked and is canceled because both participants
    canceled, the fiber will block indefinitely.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
raceOutcome for a variant that returns the outcome of the winner.
Inhertied from
GenSpawn
def never[A]: F[A]
Implicitly added by genConcurrentForKleisli
A non-terminating effect that never completes, which causes a fiber to
semantically block indefinitely. This is the purely functional,
asynchronous equivalent of an infinite while loop in Java, but no
native threads are blocked.
A fiber that is suspended in never can be canceled if it is
completely unmasked before it suspends:
{{{
// ignoring race conditions between start and cancel
F.never.start.flatMap(_.cancel) <-> F.unit
}}}
However, if the fiber is masked, cancellers will be semantically blocked
forever:
{{{
// ignoring race conditions between start and cancel
F.uncancelable(_ => F.never).start.flatMap(_.cancel) <-> F.never
}}}
Inhertied from
GenSpawn
def both[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Implicitly added by genConcurrentForKleisli
Races the evaluation of two fibers and returns the result of both.
The following rules describe the semantics of both:
  1. If the winner completes with Succeeded, the race waits for the
    loser to complete.
  2. If the winner completes with Errored, the race raises the error.
    The loser is canceled.
  3. If the winner completes with Canceled, the loser and the race
    are canceled as well.
  4. If the loser completes with Succeeded, the race returns the
    successful value of both fibers.
  5. If the loser completes with Errored, the race returns the error.
  6. If the loser completes with Canceled, the race is canceled.
  7. If the race is canceled before one or both participants complete,
    then whichever ones are incomplete are canceled.
  8. If the race is masked and is canceled because one or both
    participants canceled, the fiber will block indefinitely.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
bothOutcome for a variant that returns the Outcome of both
fibers.
Inhertied from
GenSpawn
def recover[A](fa: F[A])(pf: PartialFunction[E, A]): F[A]
Implicitly added by genConcurrentForKleisli
Recover from certain errors by mapping them to an A value.
See also
handleError to handle any/all errors.
recoverWith to recover from certain errors by mapping them to
F[A] values.
Inhertied from
ApplicativeError
def forceR[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by genConcurrentForKleisli
Analogous to productR, but suppresses short-circuiting behavior
except for cancellation.
Inhertied from
MonadCancel
@inline
final def <*>[A, B](ff: F[A => B])(fa: F[A]): F[B]
Implicitly added by genConcurrentForKleisli
Alias for ap.
Inhertied from
Apply
def bracket[A, B](acquire: F[A])(use: A => F[B])(release: A => F[Unit]): F[B]
Implicitly added by genConcurrentForKleisli
A pattern for safely interacting with effectful lifecycles.
If acquire completes successfully, use is called. If use succeeds,
fails, or is canceled, release is guaranteed to be called exactly once.
acquire is uncancelable.
release is uncancelable.
use is cancelable by default, but can be masked.
Value Params
acquire
the lifecycle acquisition action
release
the lifecycle release action
use
the effect to which the lifecycle is scoped, whose result
is the return value of this function
See also
bracketCase for a more powerful variant
Resource for a composable datatype encoding of effectful lifecycles
Inhertied from
MonadCancel
def pure[A](x: A): F[A]
Implicitly added by genConcurrentForKleisli
pure lifts any value into the Applicative Functor.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[Option] .pure(10)
res0: Option[Int] = Some(10)
}}}
Inhertied from
Applicative
def fproductLeft[A, B](fa: F[A])(f: A => B): F[(B, A)]
Pair the result of function application with A.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> Functor[Option] .fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
}}}
Inhertied from
Functor
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]
Pair A with the result of function application.
Example:
{{{
scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
}}}
Inhertied from
FlatMap
@noop
def whileM_[A](p: F[Boolean])(body: => F[A]): F[Unit]
Execute an action repeatedly as long as the given Boolean expression
returns true. The condition is evaluated before the loop body.
Discards results.
Inhertied from
Monad
def raceOutcome[A, B](fa: F[A], fb: F[B]): F[Either[Outcome[F, E, A], Outcome[F, E, B]]]
Races the evaluation of two fibers that returns the Outcome of the
winner. The winner of the race is considered to be the first fiber that
completes with an outcome. The loser of the race is canceled before
returning.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
race for a simpler variant that returns the successful outcome.
Inhertied from
GenSpawn
@inline
final def *>[A, B](fa: F[A])(fb: F[B]): F[B]
Alias for productR.
Inhertied from
Apply
@noop
def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])
Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.
NOTE: Check for effect duplication, possibly memoize before
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .unzip(List((1,2), (3, 4)))
res0: (List[Int] , List[Int] ) = (List(1, 3),List(2, 4))
}}}
Inhertied from
Functor
def handleError[A](fa: F[A])(f: E => A): F[A]
Handle any error, by mapping it to an A value.
See also
handleErrorWith to map to an F[A] value instead of simply an
A value.
recover to only recover from certain errors.
Inhertied from
ApplicativeError
def as[A, B](fa: F[A], b: B): F[B]
Replaces the A value in F[A] with the supplied value.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
}}}
Inhertied from
Functor
override def composeContravariant[G <: ([_$7] =>> Any)](evidence$2: Contravariant[G]): Contravariant[[α] =>> F[G[α]]]
Definition Classes
Functor -> Invariant
Inhertied from
Functor
def attemptNarrow[EE <: Throwable, A](fa: F[A])(tag: ClassTag[EE], ev: EE <:< E): F[Either[EE, A]]
Similar to attempt, but it only handles errors of type EE.
Inhertied from
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => E): F[A]
Convert from scala.Option
Example:
{{{
scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *] , String]
scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)
scala> F.fromOption(Option.empty[Int] , "Empty")
res1: scala.Either[String, Int] = Left(Empty)
}}}
Inhertied from
ApplicativeError
def fromEither[A](x: Either[E, A]): F[A]
Convert from scala.Either
Example:
{{{
scala> import cats.ApplicativeError
scala> import cats.instances.option._
scala> ApplicativeError[Option, Unit] .fromEither(Right(1))
res0: scala.Option[Int] = Some(1)
scala> ApplicativeError[Option, Unit] .fromEither(Left(()))
res1: scala.Option[Nothing] = None
}}}
Inhertied from
ApplicativeError
def guarantee[A](fa: F[A], fin: F[Unit]): F[A]
Specifies an effect that is always invoked after evaluation of fa
completes, regardless of the outcome.
This function can be thought of as a combination of
flatTap, onError, and
onCancel.
Value Params
fa
The effect that is run after fin is registered.
fin
The effect to run in the event of a cancellation or error.
See also
guaranteeCase for a more powerful variant
Outcome for the various outcomes of evaluation
Inhertied from
MonadCancel
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
Inhertied from
FlatMap
def bracketCase[A, B](acquire: F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
A pattern for safely interacting with effectful lifecycles.
If acquire completes successfully, use is called. If use succeeds,
fails, or is canceled, release is guaranteed to be called exactly once.
acquire is uncancelable.
release is uncancelable.
use is cancelable by default, but can be masked.
Value Params
acquire
the lifecycle acquisition action
release
the lifecycle release action which depends on the outcome of use
use
the effect to which the lifecycle is scoped, whose result
is the return value of this function
See also
bracketFull for a more powerful variant
Resource for a composable datatype encoding of effectful lifecycles
Inhertied from
MonadCancel
@noop
def whileM[G <: ([_$2] =>> Any), A](p: F[Boolean])(body: => F[A])(G: Alternative[G]): F[G[A]]
Execute an action repeatedly as long as the given Boolean expression
returns true. The condition is evaluated before the loop body.
Collects the results into an arbitrary Alternative value, such as a Vector.
This implementation uses append on each evaluation result,
so avoid data structures with non-constant append performance, e.g. List.
Inhertied from
Monad
@noop
def untilDefinedM[A](foa: F[Option[A]]): F[A]
This repeats an F until we get defined values. This can be useful
for polling type operations on State (or RNG) Monads, or in effect
monads.
Inhertied from
FlatMap
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]
Tuple the values in fa with the result of applying a function
with the value
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> Functor[Option] .fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
}}}
Inhertied from
Functor
@noop
def ifElseM[A](branches: (F[Boolean], F[A])*)(els: F[A]): F[A]
Simulates an if/else-if/else in the context of an F. It evaluates conditions until
one evaluates to true, and returns the associated F[A] . If no condition is true,
returns els.
{{{
scala> import cats._
scala> Monad[Eval] .ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2
}}}
Based on a gist by Daniel Spiewak with a stack-safe
implementation due to P. Oscar Boykin
See also
Inhertied from
Monad
def onCancel[A](fa: F[A], fin: F[Unit]): F[A]
Registers a finalizer that is invoked if cancellation is observed
during the evaluation of fa. If the evaluation of fa completes
without encountering a cancellation, the finalizer is unregistered
before proceeding.
During finalization, all actively registered finalizers are run exactly
once. The order by which finalizers are run is dictated by nesting:
innermost finalizers are run before outermost finalizers. For example,
in the following program, the finalizer f1 is run before the finalizer
f2:
{{{
F.onCancel(F.onCancel(F.canceled, f1), f2)
}}}
If a finalizer throws an error during evaluation, the error is suppressed,
and implementations may choose to report it via a side channel. Finalizers
are always uncancelable, so cannot otherwise be interrupted.
Value Params
fa
The effect that is evaluated after fin is registered.
fin
The finalizer to register before evaluating fa.
Inhertied from
MonadCancel
def point[A](a: A): F[A]
point lifts any value into a Monoidal Functor.
Example:
{{{
scala> import cats.implicits._
scala> InvariantMonoidal[Option] .point(10)
res0: Option[Int] = Some(10)
}}}
Inhertied from
InvariantMonoidal
def map2Eval[A, B, Z](fa: F[A], fb: Eval[F[B]])(f: (A, B) => Z): Eval[F[Z]]
Similar to map2 but uses Eval to allow for laziness in the F[B]
argument. This can allow for "short-circuiting" of computations.
NOTE: the default implementation of map2Eval does not short-circuit
computations. For data structures that can benefit from laziness, Apply
instances should override this method.
In the following example, x.map2(bomb)(_ + _) would result in an error,
but map2Eval "short-circuits" the computation. x is None and thus the
result of bomb doesn't even need to be evaluated in order to determine
that the result of map2Eval should be None.
{{{
scala> import cats.{Eval, Later}
scala> import cats.implicits._
scala> val bomb: Eval[Option[Int] ] = Later(sys.error("boom"))
scala> val x: Option[Int] = None
scala> x.map2Eval(bomb)(_ + _).value
res0: Option[Int] = None
}}}
Inhertied from
Apply
def fromValidated[A](x: Validated[E, A]): F[A]
Convert from cats.data.Validated
Example:
{{{
scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> ApplicativeError[Option, Unit] .fromValidated(1.valid[Unit] )
res0: scala.Option[Int] = Some(1)
scala> ApplicativeError[Option, Unit] .fromValidated(().invalid[Int] )
res1: scala.Option[Int] = None
}}}
Inhertied from
ApplicativeError
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]
Execute an action repeatedly until its result fails to satisfy the given predicate
and return that result, discarding all others.
Inhertied from
Monad
def raiseError[A](e: E): F[A]
Lift an error into the F context.
Example:
{{{
scala> import cats.implicits._
// integer-rounded division
scala> def divide[F[_] ](dividend: Int, divisor: Int)(implicit F: ApplicativeError[F, String] ): F[Int] =
| if (divisor === 0) F.raiseError("division by zero")
| else F.pure(dividend / divisor)
scala> type ErrorOr[A] = Either[String, A]
scala> divide[ErrorOr] (6, 3)
res0: ErrorOr[Int] = Right(2)
scala> divide[ErrorOr] (6, 0)
res1: ErrorOr[Int] = Left(division by zero)
}}}
Inhertied from
ApplicativeError
def fromTry[A](t: Try[A])(ev: Throwable <:< E): F[A]
If the error type is Throwable, we can convert from a scala.util.Try
Inhertied from
ApplicativeError
def composeFunctor[G <: ([_$3] =>> Any)](evidence$2: Functor[G]): Invariant[[α] =>> F[G[α]]]
Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]]
using F's imap and G's map.
Example:
{{{
scala> import cats.implicits._
scala> import scala.concurrent.duration._
scala> val durSemigroupList: Semigroup[List[FiniteDuration] ] =
| Invariant[Semigroup]
| .composeFunctor[List]
| .imap(Semigroup[List[Long] ])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
}}}
Inhertied from
Invariant
def composeApply[G <: ([_$2] =>> Any)](evidence$1: Apply[G]): InvariantSemigroupal[[α] =>> F[G[α]]]
Inhertied from
InvariantSemigroupal
def recoverWith[A](fa: F[A])(pf: PartialFunction[E, F[A]]): F[A]
Recover from certain errors by mapping them to an F[A] value.
See also
handleErrorWith to handle any/all errors.
recover to recover from certain errors by mapping them to A
values.
Inhertied from
ApplicativeError
override def imap[A, B](fa: F[A])(f: A => B)(g: B => A): F[B]
Definition Classes
Functor -> Invariant
Inhertied from
Functor
override def map[A, B](fa: F[A])(f: A => B): F[B]
Definition Classes
Monad -> Applicative -> Functor
Inhertied from
Monad
def flatten[A](ffa: F[F[A]]): F[A]
"flatten" a nested F of F structure into a single-layer F structure.
This is also commonly called join.
Example:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> val nested: Eval[Eval[Int] ] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3
}}}
Inhertied from
FlatMap
def untilM[G <: ([_$4] =>> Any), A](f: F[A])(cond: => F[Boolean])(G: Alternative[G]): F[G[A]]
Execute an action repeatedly until the Boolean condition returns true.
The condition is evaluated after the loop body. Collects results into an
arbitrary Alternative value, such as a Vector.
This implementation uses append on each evaluation result,
so avoid data structures with non-constant append performance, e.g. List.
Inhertied from
Monad
def unit: F[Unit]
Returns an F[Unit] value, equivalent with pure(()).
A useful shorthand, also allowing implementations to optimize the
returned reference (e.g. it can be a val).
Example:
{{{
scala> import cats.implicits._
scala> Applicative[Option] .unit
res0: Option[Unit] = Some(())
}}}
Inhertied from
Applicative
def untilM_[A](f: F[A])(cond: => F[Boolean]): F[Unit]
Execute an action repeatedly until the Boolean condition returns true.
The condition is evaluated after the loop body. Discards results.
Inhertied from
Monad
def background[A](fa: F[A]): Resource[F, F[Outcome[F, E, A]]]
Returns a Resource that manages the concurrent execution of a fiber.
The inner effect can be used to wait on the outcome of the child fiber;
it is effectively a join.
The child fiber is canceled in two cases: either the resource goes out
of scope or the parent fiber is cancelled. If the child fiber terminates
before one of these cases occurs, then cancellation is a no-op. This
avoids fiber leaks because the child fiber is always canceled before
the parent fiber drops the reference to it.
{{{
// Starts a fiber that continously prints "A".
// After 10 seconds, the resource scope exits so the fiber is canceled.
F.background(F.delay(println("A")).foreverM).use { _ =>
F.sleep(10.seconds)
}
}}}
Value Params
fa
the effect for the spawned fiber
Inhertied from
GenSpawn
override def product[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Definition Classes
FlatMap -> Apply -> Semigroupal
Inhertied from
FlatMap
def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]
Tuples the A value in F[A] with the supplied B value, with the B value on the left.
Example:
{{{
scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue
scala> Functor[Queue] .tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
}}}
Inhertied from
Functor
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]
Handle any error, potentially recovering from it, by mapping it to an
F[A] value.
See also
handleError to handle any error by simply mapping it to an A
value instead of an F[A].
recoverWith to recover from only certain errors.
Inhertied from
ApplicativeError
def flatTap[A, B](fa: F[A])(f: A => F[B]): F[A]
Apply a monadic function and discard the result while keeping the effect.
{{{
scala> import cats., implicits.
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> ListInt.flatTap(nCats)
res2: List[Int] = List()
scala> ListInt.flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
}}}
Inhertied from
FlatMap
def uncancelable[A](body: Poll[F] => F[A]): F[A]
Masks cancellation on the current fiber. The argument to body of type
Poll[F] is a natural transformation F ~> F that enables polling.
Polling causes a fiber to unmask within a masked region so that
cancellation can be observed again.
In the following example, cancellation can be observed only within fb
and nowhere else:
{{{
F.uncancelable { poll =>
fa *> poll(fb) *> fc
}
}}}
If a fiber is canceled while it is masked, the cancellation is suppressed
for as long as the fiber remains masked. Whenever the fiber is completely
unmasked again, the cancellation will be respected.
Masks can also be stacked or nested within each other. If multiple masks
are active, all masks must be undone so that cancellation can be observed.
In order to completely unmask within a multi-masked region, the poll
corresponding to each mask must be applied, innermost-first.
{{{
F.uncancelable { p1 =>
F.uncancelable { p2 =>
fa *> p2(p1(fb)) *> fc
}
}
}}}
The following operations are no-ops:
  1. Polling in the wrong order
  2. Applying the same poll more than once: poll(poll(fa))
  3. Applying a poll bound to one fiber within another fiber
Inhertied from
MonadCancel
Inhertied from
GenSpawn
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]
Turns a successful value into an error if it does not satisfy a given predicate.
Inhertied from
MonadError
def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]
Sequentially compose two actions, discarding any value produced by the second. This variant of
productL also lets you define the evaluation strategy of the second action. For instance
you can evaluate it only ''after'' the first action has finished:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int] .productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
}}}
Inhertied from
FlatMap
def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]
Sequentially compose two actions, discarding any value produced by the first. This variant of
productR also lets you define the evaluation strategy of the second action. For instance
you can evaluate it only ''after'' the first action has finished:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
}}}
Inhertied from
FlatMap
def onError[A](fa: F[A])(pf: PartialFunction[E, F[Unit]]): F[A]
Execute a callback on certain errors, then rethrow them.
Any non matching error is rethrown as well.
In the following example, only one of the errors is logged,
but they are both rethrown, to be possibly handled by another
layer of the program:
{{{
scala> import cats., data., implicits._
scala> case class Err(msg: String)
scala> type F[A] = EitherT[State[String, *] , Err, A]
scala> val action: PartialFunction[Err, F[Unit] ] = {
| case Err("one") => EitherT.liftF(State.set("one"))
| }
scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]
scala> prog1.onError(action).value.run("").value
res0: (String, Either[Err,Int] ) = (one,Left(Err(one)))
scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int] ) = ("",Left(Err(two)))
}}}
Inhertied from
ApplicativeError
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, F, E]
Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.
Inhertied from
ApplicativeError
override def adaptError[A](fa: F[A])(pf: PartialFunction[E, E]): F[A]
Definition Classes
MonadError -> ApplicativeError
Inhertied from
MonadError
def redeem[A, B](fa: F[A])(recover: E => B, f: A => B): F[B]
Returns a new value that transforms the result of the source,
given the recover or map functions, which get executed depending
on whether the result is successful or if it ends in error.
This is an optimization on usage of attempt and map,
this equivalence being available:
{{{
fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))
}}}
Usage of redeem subsumes handleError because:
{{{
fa.redeem(fe, id) <-> fa.handleError(fe)
}}}
Implementations are free to override it in order to optimize
error recovery.
Value Params
fa
is the source whose result is going to get transformed
recover
is the function that gets called to recover the source
in case of error
See also
MonadError.redeemWith, attempt and handleError
Inhertied from
ApplicativeError
def lift[A, B](f: A => B): F[A] => F[B]
Lift a function f to operate on Functors
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> val o = Option(42)
scala> Functor[Option] .lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
}}}
Inhertied from
Functor
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]
Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.
Inhertied from
MonadError
def iterateUntilM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Apply a monadic function iteratively until its result satisfies
the given predicate and return that result.
Inhertied from
Monad
def redeemWith[A, B](fa: F[A])(recover: E => F[B], bind: A => F[B]): F[B]
Returns a new value that transforms the result of the source,
given the recover or bind functions, which get executed depending
on whether the result is successful or if it ends in error.
This is an optimization on usage of attempt and flatMap,
this equivalence being available:
{{{
fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))
}}}
Usage of redeemWith subsumes handleErrorWith because:
{{{
fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)
}}}
Usage of redeemWith also subsumes flatMap because:
{{{
fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)
}}}
Implementations are free to override it in order to optimize
error recovery.
Value Params
bind
is the function that gets to transform the source
in case of success
fa
is the source whose result is going to get transformed
recover
is the function that gets called to recover the source
in case of error
See also
Inhertied from
MonadError
override def productR[A, B](fa: F[A])(fb: F[B]): F[B]
Definition Classes
FlatMap -> Apply
Inhertied from
FlatMap
def replicateA[A](n: Int, fa: F[A]): F[List[A]]
Given fa and n, apply fa n times to construct an F[List[A]] value.
Example:
{{{
scala> import cats.data.State
scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int] ] =
| Applicative[Counter] .replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int] ) = (5,List(0, 1, 2, 3, 4))
}}}
Inhertied from
Applicative
def start[A](fa: F[A]): F[Fiber[F, E, A]]
A low-level primitive for starting the concurrent evaluation of a fiber.
Returns a Fiber that can be used to wait for a fiber or cancel it.
start is a cancellation-unsafe function; it is recommended to
use the safer variant, background, to spawn fibers.
Value Params
fa
the effect for the fiber
See also
background for the safer, recommended variant
Inhertied from
GenSpawn
def iterateWhileM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Apply a monadic function iteratively until its result fails
to satisfy the given predicate and return that result.
Inhertied from
Monad
def composeContravariantMonoidal[G <: ([_$3] =>> Any)](evidence$2: ContravariantMonoidal[G]): ContravariantMonoidal[[α] =>> F[G[α]]]
Compose an Applicative[F] and a ContravariantMonoidal[G] into a
ContravariantMonoidal[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.kernel.Comparison
scala> import cats.implicits._
// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]
// compares strings by their length
scala> val strLength: Order[String] = Order.byString, Int
scala> val stringOrders: List[Order[String] ] = List(alpha, strLength)
// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)
scala> val le = Applicative[List] .composeContravariantMonoidal[Order]
// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int] ] = le.contramap(stringOrders)(_.toString)
// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)
// create the product of the string order list and the int order list
// p contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)] ] = le.product(stringOrders, intOrders)
scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
}}}
Inhertied from
Applicative
def bracketFull[A, B](acquire: Poll[F] => F[A])(use: A => F[B])(release: (A, Outcome[F, E, B]) => F[Unit]): F[B]
A pattern for safely interacting with effectful lifecycles.
If acquire completes successfully, use is called. If use succeeds,
fails, or is canceled, release is guaranteed to be called exactly once.
If use succeeds the returned value B is returned. If use returns
an exception, the exception is returned.
acquire is uncancelable by default, but can be unmasked.
release is uncancelable.
use is cancelable by default, but can be masked.
Value Params
acquire
the lifecycle acquisition action which can be canceled
release
the lifecycle release action which depends on the outcome of use
use
the effect to which the lifecycle is scoped, whose result
is the return value of this function
Inhertied from
MonadCancel
@noop
def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
An if-then-else lifted into the F context.
This function combines the effects of the fcond condition and of the two branches,
in the order in which they are given.
The value of the result is, depending on the value of the condition,
the value of the first argument, or the value of the second argument.
Example:
{{{
scala> import cats.implicits._
scala> val b1: Option[Boolean] = Some(true)
scala> val asInt1: Option[Int] = Apply[Option] .ifA(b1)(Some(1), Some(0))
scala> asInt1.get
res0: Int = 1
scala> val b2: Option[Boolean] = Some(false)
scala> val asInt2: Option[Int] = Apply[Option] .ifA(b2)(Some(1), Some(0))
scala> asInt2.get
res1: Int = 0
scala> val b3: Option[Boolean] = Some(true)
scala> val asInt3: Option[Int] = Apply[Option] .ifA(b3)(Some(1), None)
asInt2: Option[Int] = None
}}}
Inhertied from
Apply
def catchNonFatal[A](a: => A)(ev: Throwable <:< E): F[A]
Often E is Throwable. Here we try to call pure or catch
and raise.
Inhertied from
ApplicativeError
override def map2[A, B, Z](fa: F[A], fb: F[B])(f: (A, B) => Z): F[Z]
Definition Classes
FlatMap -> Apply
Inhertied from
FlatMap
@noop
def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]
Lifts if to Functor
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
}}}
Inhertied from
Functor
def attemptT[A](fa: F[A]): EitherT[F, E, A]
Similar to attempt, but wraps the result in a data.EitherT for
convenience.
Inhertied from
ApplicativeError
def canceled: F[Unit]
An effect that requests self-cancellation on the current fiber.
In the following example, the fiber requests self-cancellation in a masked
region, so cancellation is suppressed until the fiber is completely
unmasked. fa will run but fb will not.
{{{
F.uncancelable { _ =>
F.canceled *> fa
} *> fb
}}}
Inhertied from
MonadCancel
def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]
Returns the given argument (mapped to Unit) if cond is true, otherwise,
unit lifted into F.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[List] .whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())
scala> Applicative[List] .whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())
scala> Applicative[List] .whenA(true)(List.empty[Int] )
res2: List[Unit] = List()
scala> Applicative[List] .whenA(false)(List.empty[Int] )
res3: List[Unit] = List(())
}}}
Inhertied from
Applicative
@noop
def iterateForeverM[A, B](a: A)(f: A => F[A]): F[B]
iterateForeverM is almost exclusively useful for effect types. For instance,
A may be some state, we may take the current state, run some effect to get
a new state and repeat.
Inhertied from
FlatMap
@noop
def foreverM[A, B](fa: F[A]): F[B]
Like an infinite loop of >> calls. This is most useful effect loops
that you want to run forever in for instance a server.
This will be an infinite loop, or it will return an F[Nothing] .
Be careful using this.
For instance, a List of length k will produce a list of length k^n at iteration
n. This means if k = 0, we return an empty list, if k = 1, we loop forever
allocating single element lists, but if we have a k > 1, we will allocate
exponentially increasing memory and very quickly OOM.
Inhertied from
FlatMap
def widen[A, B >: A](fa: F[A]): F[B]
Lifts natural subtyping covariance of covariant Functors.
NOTE: In certain (perhaps contrived) situations that rely on universal
equality this can result in a ClassCastException, because it is
implemented as a type cast. It could be implemented as map(identity), but
according to the functor laws, that should be equal to fa, and a type
cast is often much more performant.
See this example
of widen creating a ClassCastException.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> val s = Some(42)
scala> Functor[Option] .widen(s)
res0: Option[Int] = Some(42)
}}}
Inhertied from
Functor
def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Inhertied from
ApplyArityFunctions
def catchNonFatalEval[A](a: Eval[A])(ev: Throwable <:< E): F[A]
Often E is Throwable. Here we try to call pure or catch
and raise
Inhertied from
ApplicativeError
def attempt[A](fa: F[A]): F[Either[E, A]]
Handle errors by turning them into scala.util.Either values.
If there is no error, then an scala.util.Right value will be returned instead.
All non-fatal errors should be handled by this method.
Inhertied from
ApplicativeError
def cede: F[Unit]
Introduces a fairness boundary that yields control back to the scheduler
of the runtime system. This allows the carrier thread to resume execution
of another waiting fiber.
Note that cede is merely a hint to the runtime system; implementations
have the liberty to interpret this method to their liking as long as it
obeys the respective laws. For example, a lawful, but atypical,
implementation of this function is F.unit, in which case the fairness
boundary is a no-op.
Inhertied from
GenSpawn
final def fmap[A, B](fa: F[A])(f: A => B): F[B]
Alias for map, since map can't be injected as syntax if
the implementing type already had a built-in .map method.
Example:
{{{
scala> import cats.implicits._
scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")
scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
}}}
Inhertied from
Functor
def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]
Tuples the A value in F[A] with the supplied B value, with the B value on the right.
Example:
{{{
scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue
scala> Functor[Queue] .tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
}}}
Inhertied from
Functor
def tailRecM[A, B](a: A)(f: A => F[Either[A, B]]): F[B]
Keeps calling f until a scala.util.Right[B] is returned.
Based on Phil Freeman's
Stack Safety for Free.
Implementations of this method should use constant stack space relative to f.
Inhertied from
FlatMap
def rethrow[A, EE <: E](fa: F[Either[EE, A]]): F[A]
Inverse of attempt
Example:
{{{
scala> import cats.implicits._
scala> import scala.util.{Try, Success}
scala> val a: Try[Either[Throwable, Int] ] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)
scala> val b: Try[Either[Throwable, Int] ] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
}}}
Inhertied from
MonadError
def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]
Returns the given argument (mapped to Unit) if cond is false,
otherwise, unit lifted into F.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[List] .unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())
scala> Applicative[List] .unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())
scala> Applicative[List] .unlessA(true)(List.empty[Int] )
res2: List[Unit] = List(())
scala> Applicative[List] .unlessA(false)(List.empty[Int] )
res3: List[Unit] = List()
}}}
Inhertied from
Applicative
def attemptTap[A, B](fa: F[A])(f: Either[E, A] => F[B]): F[A]
Reifies the value or error of the source and performs an effect on the result,
then recovers the original value or error back into F.
Note that if the effect returned by f fails, the resulting effect will fail too.
Alias for fa.attempt.flatTap(f).rethrow for convenience.
Example:
{{{
scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}
scala> def checkError(result: Either[Throwable, Int] ): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))
scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)
scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
}}}
Inhertied from
MonadError
def void[A](fa: F[A]): F[Unit]
Empty the fa of the values, preserving the structure
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .void(List(1,2,3))
res0: List[Unit] = List((), (), ())
}}}
Inhertied from
Functor
@inline
final def <*[A, B](fa: F[A])(fb: F[B]): F[A]
Alias for productL.
Inhertied from
Apply
@noop
def ifM[B](fa: F[Boolean])(ifTrue: => F[B], ifFalse: => F[B]): F[B]
if lifted into monad.
Inhertied from
FlatMap
override def productL[A, B](fa: F[A])(fb: F[B]): F[A]
Definition Classes
FlatMap -> Apply
Inhertied from
FlatMap
def guaranteeCase[A](fa: F[A])(fin: Outcome[F, E, A] => F[Unit]): F[A]
Specifies an effect that is always invoked after evaluation of fa
completes, but depends on the outcome.
This function can be thought of as a combination of
flatTap, onError, and
onCancel.
Value Params
fa
The effect that is run after fin is registered.
fin
A function that returns the effect to run based on the
outcome.
See also
bracketCase for a more powerful variant
Outcome for the various outcomes of evaluation
Inhertied from
MonadCancel
def compose[G <: ([_$2] =>> Any)](evidence$1: Applicative[G]): Applicative[[α] =>> F[G[α]]]
Compose an Applicative[F] and an Applicative[G] into an
Applicative[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.implicits._
scala> val alo = Applicative[List] .compose[Option]
scala> alo.pure(3)
res0: List[Option[Int] ] = List(Some(3))
scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)] ] = List(None, None, Some((true,2)), None, Some((false,2)), None)
}}}
Inhertied from
Applicative
def compose[G <: ([_$2] =>> Any)](evidence$1: Invariant[G]): Invariant[[α] =>> F[G[α]]]
Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.
Example:
{{{
scala> import cats.implicits._
scala> import scala.concurrent.duration._
scala> val durSemigroupList: Semigroup[List[FiniteDuration] ] =
| Invariant[Semigroup] .compose[List] .imap(Semigroup[List[Long] ])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
}}}
Inhertied from
Invariant
def compose[G <: ([_$3] =>> Any)](evidence$1: Apply[G]): Apply[[α] =>> F[G[α]]]
Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.implicits._
scala> val alo = Apply[List] .compose[Option]
scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)] ] = List(None, None, Some((true,2)), None, Some((false,2)), None)
}}}
Inhertied from
Apply
def compose[G <: ([_$6] =>> Any)](evidence$1: Functor[G]): Functor[[α] =>> F[G[α]]]
Inhertied from
Functor
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]
Execute an action repeatedly until its result satisfies the given predicate
and return that result, discarding all others.
Inhertied from
Monad
def bothOutcome[A, B](fa: F[A], fb: F[B]): F[(Outcome[F, E, A], Outcome[F, E, B])]
Races the evaluation of two fibers and returns the Outcome of both. If
the race is canceled before one or both participants complete, then
then whichever ones are incomplete are canceled.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
both for a simpler variant that returns the results of both
fibers.
Inhertied from
GenSpawn
def race[A, B](fa: F[A], fb: F[B]): F[Either[A, B]]
Races the evaluation of two fibers that returns the result of the winner,
except in the case of cancellation.
The semantics of race are described by the following rules:
  1. If the winner completes with Succeeded, the race returns the
    successful value. The loser is canceled before returning.
  2. If the winner completes with Errored, the race raises the error.
    The loser is canceled before returning.
  3. If the winner completes with Canceled, the race returns the
    result of the loser, consistent with the first two rules.
  4. If both the winner and loser complete with Canceled, the race
    is canceled.
  5. If the race is masked and is canceled because both participants
    canceled, the fiber will block indefinitely.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
raceOutcome for a variant that returns the outcome of the winner.
Inhertied from
GenSpawn
def never[A]: F[A]
A non-terminating effect that never completes, which causes a fiber to
semantically block indefinitely. This is the purely functional,
asynchronous equivalent of an infinite while loop in Java, but no
native threads are blocked.
A fiber that is suspended in never can be canceled if it is
completely unmasked before it suspends:
{{{
// ignoring race conditions between start and cancel
F.never.start.flatMap(_.cancel) <-> F.unit
}}}
However, if the fiber is masked, cancellers will be semantically blocked
forever:
{{{
// ignoring race conditions between start and cancel
F.uncancelable(_ => F.never).start.flatMap(_.cancel) <-> F.never
}}}
Inhertied from
GenSpawn
override def ap[A, B](ff: F[A => B])(fa: F[A]): F[B]
Definition Classes
FlatMap -> Apply
Inhertied from
FlatMap
def both[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Races the evaluation of two fibers and returns the result of both.
The following rules describe the semantics of both:
  1. If the winner completes with Succeeded, the race waits for the
    loser to complete.
  2. If the winner completes with Errored, the race raises the error.
    The loser is canceled.
  3. If the winner completes with Canceled, the loser and the race
    are canceled as well.
  4. If the loser completes with Succeeded, the race returns the
    successful value of both fibers.
  5. If the loser completes with Errored, the race returns the error.
  6. If the loser completes with Canceled, the race is canceled.
  7. If the race is canceled before one or both participants complete,
    then whichever ones are incomplete are canceled.
  8. If the race is masked and is canceled because one or both
    participants canceled, the fiber will block indefinitely.
Value Params
fa
the effect for the first racing fiber
fb
the effect for the second racing fiber
See also
bothOutcome for a variant that returns the Outcome of both
fibers.
Inhertied from
GenSpawn
def recover[A](fa: F[A])(pf: PartialFunction[E, A]): F[A]
Recover from certain errors by mapping them to an A value.
See also
handleError to handle any/all errors.
recoverWith to recover from certain errors by mapping them to
F[A] values.
Inhertied from
ApplicativeError
def forceR[A, B](fa: F[A])(fb: F[B]): F[B]
Analogous to productR, but suppresses short-circuiting behavior
except for cancellation.
Inhertied from
MonadCancel
@inline
final def <*>[A, B](ff: F[A => B])(fa: F[A]): F[B]
Alias for ap.
Inhertied from
Apply
override def ap2[A, B, Z](ff: F[(A, B) => Z])(fa: F[A], fb: F[B]): F[Z]
Definition Classes
FlatMap -> Apply
Inhertied from
FlatMap
def bracket[A, B](acquire: F[A])(use: A => F[B])(release: A => F[Unit]): F[B]
A pattern for safely interacting with effectful lifecycles.
If acquire completes successfully, use is called. If use succeeds,
fails, or is canceled, release is guaranteed to be called exactly once.
acquire is uncancelable.
release is uncancelable.
use is cancelable by default, but can be masked.
Value Params
acquire
the lifecycle acquisition action
release
the lifecycle release action
use
the effect to which the lifecycle is scoped, whose result
is the return value of this function
See also
bracketCase for a more powerful variant
Resource for a composable datatype encoding of effectful lifecycles
Inhertied from
MonadCancel
def pure[A](x: A): F[A]
pure lifts any value into the Applicative Functor.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[Option] .pure(10)
res0: Option[Int] = Some(10)
}}}
Inhertied from
Applicative