Bracket

trait Bracket[F <: ([_$1] =>> Any), E] extends MonadError[F, E]
An extension of MonadError exposing the bracket operation,
a generalized abstracted pattern of safe resource acquisition and
release in the face of errors or interruption.
Companion
object
trait MonadError[F, E]
trait Monad[F]
trait FlatMap[F]
trait ApplicativeError[F, E]
trait Applicative[F]
trait InvariantMonoidal[F]
trait Apply[F]
trait ApplyArityFunctions[F]
trait InvariantSemigroupal[F]
trait Semigroupal[F]
trait Functor[F]
trait Invariant[F]
trait Serializable
class Object
trait Matchable
class Any
trait Async[F]
trait Concurrent[F]
trait Effect[F]
trait Sync[F]
trait SyncEffect[F]

Document{}

def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def ap22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[Z]
Inhertied from
ApplyArityFunctions
def ap10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[Z]
Inhertied from
ApplyArityFunctions
def tuple15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14)]
Inhertied from
ApplyArityFunctions
def ap9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[Z]
Inhertied from
ApplyArityFunctions
def ap17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[Z]
Inhertied from
ApplyArityFunctions
def map19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def tuple6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[(A0, A1, A2, A3, A4, A5)]
Inhertied from
ApplyArityFunctions
def ap5[A0, A1, A2, A3, A4, Z](f: F[(A0, A1, A2, A3, A4) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[Z]
Inhertied from
ApplyArityFunctions
def map4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3])(f: (A0, A1, A2, A3) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def ap15[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14]): F[Z]
Inhertied from
ApplyArityFunctions
def map21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def ap3[A0, A1, A2, Z](f: F[(A0, A1, A2) => Z])(f0: F[A0], f1: F[A1], f2: F[A2]): F[Z]
Inhertied from
ApplyArityFunctions
def ap6[A0, A1, A2, A3, A4, A5, Z](f: F[(A0, A1, A2, A3, A4, A5) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5]): F[Z]
Inhertied from
ApplyArityFunctions
def tuple14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13)]
Inhertied from
ApplyArityFunctions
def tuple17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16)]
Inhertied from
ApplyArityFunctions
def tuple4[A0, A1, A2, A3, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[(A0, A1, A2, A3)]
Inhertied from
ApplyArityFunctions
def map5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4])(f: (A0, A1, A2, A3, A4) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map17[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def ap19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[Z]
Inhertied from
ApplyArityFunctions
def map10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6])(f: (A0, A1, A2, A3, A4, A5, A6) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def tuple8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[(A0, A1, A2, A3, A4, A5, A6, A7)]
Inhertied from
ApplyArityFunctions
def ap8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7]): F[Z]
Inhertied from
ApplyArityFunctions
def map11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def ap7[A0, A1, A2, A3, A4, A5, A6, Z](f: F[(A0, A1, A2, A3, A4, A5, A6) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[Z]
Inhertied from
ApplyArityFunctions
def map3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2])(f: (A0, A1, A2) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def tuple9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8)]
Inhertied from
ApplyArityFunctions
def ap16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[Z]
Inhertied from
ApplyArityFunctions
def tuple10[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)]
Inhertied from
ApplyArityFunctions
def ap21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[Z]
Inhertied from
ApplyArityFunctions
def ap12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[Z]
Inhertied from
ApplyArityFunctions
def tuple18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17)]
Inhertied from
ApplyArityFunctions
def tuple3[A0, A1, A2, Z](f0: F[A0], f1: F[A1], f2: F[A2]): F[(A0, A1, A2)]
Inhertied from
ApplyArityFunctions
def tuple7[A0, A1, A2, A3, A4, A5, A6, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6]): F[(A0, A1, A2, A3, A4, A5, A6)]
Inhertied from
ApplyArityFunctions
def ap20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[Z]
Inhertied from
ApplyArityFunctions
def tuple13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12)]
Inhertied from
ApplyArityFunctions
def map8[A0, A1, A2, A3, A4, A5, A6, A7, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7])(f: (A0, A1, A2, A3, A4, A5, A6, A7) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def tuple21[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20)]
Inhertied from
ApplyArityFunctions
def ap18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17]): F[Z]
Inhertied from
ApplyArityFunctions
def ap11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[Z]
Inhertied from
ApplyArityFunctions
def map14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def ap4[A0, A1, A2, A3, Z](f: F[(A0, A1, A2, A3) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3]): F[Z]
Inhertied from
ApplyArityFunctions
def tuple19[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18)]
Inhertied from
ApplyArityFunctions
def ap14[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13]): F[Z]
Inhertied from
ApplyArityFunctions
def map18[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def tuple5[A0, A1, A2, A3, A4, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4]): F[(A0, A1, A2, A3, A4)]
Inhertied from
ApplyArityFunctions
def tuple22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21)]
Inhertied from
ApplyArityFunctions
def tuple16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15)]
Inhertied from
ApplyArityFunctions
def tuple11[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)]
Inhertied from
ApplyArityFunctions
def map22[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19], f20: F[A20], f21: F[A21])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map16[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def ap13[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, Z](f: F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12) => Z])(f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12]): F[Z]
Inhertied from
ApplyArityFunctions
def tuple20[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11], f12: F[A12], f13: F[A13], f14: F[A14], f15: F[A15], f16: F[A16], f17: F[A17], f18: F[A18], f19: F[A19]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19)]
Inhertied from
ApplyArityFunctions
def map6[A0, A1, A2, A3, A4, A5, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5])(f: (A0, A1, A2, A3, A4, A5) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def map9[A0, A1, A2, A3, A4, A5, A6, A7, A8, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8])(f: (A0, A1, A2, A3, A4, A5, A6, A7, A8) => Z): F[Z]
Inhertied from
ApplyArityFunctions
def tuple12[A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, Z](f0: F[A0], f1: F[A1], f2: F[A2], f3: F[A3], f4: F[A4], f5: F[A5], f6: F[A6], f7: F[A7], f8: F[A8], f9: F[A9], f10: F[A10], f11: F[A11]): F[(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11)]
Inhertied from
ApplyArityFunctions

Value members

Methods

def bracketCase[A, B](acquire: F[A])(use: A => F[B])(release: (A, ExitCase[E]) => F[Unit]): F[B]
Implicitly added by catsKleisliBracket
A generalized version of bracket which uses ExitCase
to distinguish between different exit cases when releasing
the acquired resource.
Value Params
acquire
is an action that "acquires" some expensive
resource, that needs to be used and then discarded
release
is the action that's supposed to release the
allocated resource after use is done, by observing
and acting on its exit condition. Throwing inside
this function leads to undefined behavior since it's
left to the implementation.
use
is the action that uses the newly allocated
resource and that will provide the final result
def bracket[A, B](acquire: F[A])(use: A => F[B])(release: A => F[Unit]): F[B]
Implicitly added by catsKleisliBracket
Operation meant for specifying tasks with safe resource
acquisition and release in the face of errors and interruption.
This operation provides the equivalent of try/catch/finally
statements in mainstream imperative languages for resource
acquisition and release.
Value Params
acquire
is an action that "acquires" some expensive
resource, that needs to be used and then discarded
release
is the action that's supposed to release the
allocated resource after use is done, regardless of
its exit condition. Throwing inside this function
is undefined behavior since it's left to the implementation.
use
is the action that uses the newly allocated
resource and that will provide the final result
def uncancelable[A](fa: F[A]): F[A]
Implicitly added by catsKleisliBracket
Operation meant for ensuring a given task continues execution even
when interrupted.
def guarantee[A](fa: F[A])(finalizer: F[Unit]): F[A]
Implicitly added by catsKleisliBracket
Executes the given finalizer when the source is finished,
either in success or in error, or if canceled.
This variant of guaranteeCase evaluates the given finalizer
regardless of how the source gets terminated:
  • normal completion
  • completion in error
  • cancelation
This equivalence always holds:
{{{
F.guarantee(fa)(f) <-> F.bracket(F.unit)(_ => fa)(_ => f)
}}}
As best practice, it's not a good idea to release resources
via guaranteeCase in polymorphic code. Prefer bracket
for the acquisition and release of resources.
See also
guaranteeCase for the version that can discriminate
between termination conditions
bracket for the more general operation
def guaranteeCase[A](fa: F[A])(finalizer: ExitCase[E] => F[Unit]): F[A]
Implicitly added by catsKleisliBracket
Executes the given finalizer when the source is finished,
either in success or in error, or if canceled, allowing
for differentiating between exit conditions.
This variant of guarantee injects an ExitCase in
the provided function, allowing one to make a difference
between:
  • normal completion
  • completion in error
  • cancelation
This equivalence always holds:
{{{
F.guaranteeCase(fa)(f) <-> F.bracketCase(F.unit)(_ => fa)((_, e) => f(e))
}}}
As best practice, it's not a good idea to release resources
via guaranteeCase in polymorphic code. Prefer bracketCase
for the acquisition and release of resources.
See also
guarantee for the simpler version
bracketCase for the more general operation
def onCancel[A](fa: F[A])(finalizer: F[Unit]): F[A]
Implicitly added by catsKleisliBracket
Executes the given finalizer when the source is canceled.
The typical use case for this function arises in the
implementation of concurrent abstractions, which generally
consist of operations that perform asynchronous waiting after
concurrently modifying some state: in case the user asks for
cancelation, we want to interrupt the waiting operation, and
restore the state to its previous value.
{{{
waitingOp.onCancel(restoreState)
}}}
A direct use of bracket is not a good fit for this case as it
would make the waiting action uncancelable.
NOTE: This function handles interruption only, you need to take
care of the success and error case elsewhere in your code
See also
guaranteeCase for the version that can discriminate
between termination conditions
bracket for the more general operation
Concurrent.continual when you have a use case similar to
the cancel/restore example above, but require access to the
result of F[A]
def bracketCase[A, B](acquire: F[A])(use: A => F[B])(release: (A, ExitCase[E]) => F[Unit]): F[B]
A generalized version of bracket which uses ExitCase
to distinguish between different exit cases when releasing
the acquired resource.
Value Params
acquire
is an action that "acquires" some expensive
resource, that needs to be used and then discarded
release
is the action that's supposed to release the
allocated resource after use is done, by observing
and acting on its exit condition. Throwing inside
this function leads to undefined behavior since it's
left to the implementation.
use
is the action that uses the newly allocated
resource and that will provide the final result
def bracket[A, B](acquire: F[A])(use: A => F[B])(release: A => F[Unit]): F[B]
Operation meant for specifying tasks with safe resource
acquisition and release in the face of errors and interruption.
This operation provides the equivalent of try/catch/finally
statements in mainstream imperative languages for resource
acquisition and release.
Value Params
acquire
is an action that "acquires" some expensive
resource, that needs to be used and then discarded
release
is the action that's supposed to release the
allocated resource after use is done, regardless of
its exit condition. Throwing inside this function
is undefined behavior since it's left to the implementation.
use
is the action that uses the newly allocated
resource and that will provide the final result
def uncancelable[A](fa: F[A]): F[A]
Operation meant for ensuring a given task continues execution even
when interrupted.
def guarantee[A](fa: F[A])(finalizer: F[Unit]): F[A]
Executes the given finalizer when the source is finished,
either in success or in error, or if canceled.
This variant of guaranteeCase evaluates the given finalizer
regardless of how the source gets terminated:
  • normal completion
  • completion in error
  • cancelation
This equivalence always holds:
{{{
F.guarantee(fa)(f) <-> F.bracket(F.unit)(_ => fa)(_ => f)
}}}
As best practice, it's not a good idea to release resources
via guaranteeCase in polymorphic code. Prefer bracket
for the acquisition and release of resources.
See also
guaranteeCase for the version that can discriminate
between termination conditions
bracket for the more general operation
def guaranteeCase[A](fa: F[A])(finalizer: ExitCase[E] => F[Unit]): F[A]
Executes the given finalizer when the source is finished,
either in success or in error, or if canceled, allowing
for differentiating between exit conditions.
This variant of guarantee injects an ExitCase in
the provided function, allowing one to make a difference
between:
  • normal completion
  • completion in error
  • cancelation
This equivalence always holds:
{{{
F.guaranteeCase(fa)(f) <-> F.bracketCase(F.unit)(_ => fa)((_, e) => f(e))
}}}
As best practice, it's not a good idea to release resources
via guaranteeCase in polymorphic code. Prefer bracketCase
for the acquisition and release of resources.
See also
guarantee for the simpler version
bracketCase for the more general operation
def onCancel[A](fa: F[A])(finalizer: F[Unit]): F[A]
Executes the given finalizer when the source is canceled.
The typical use case for this function arises in the
implementation of concurrent abstractions, which generally
consist of operations that perform asynchronous waiting after
concurrently modifying some state: in case the user asks for
cancelation, we want to interrupt the waiting operation, and
restore the state to its previous value.
{{{
waitingOp.onCancel(restoreState)
}}}
A direct use of bracket is not a good fit for this case as it
would make the waiting action uncancelable.
NOTE: This function handles interruption only, you need to take
care of the success and error case elsewhere in your code
See also
guaranteeCase for the version that can discriminate
between termination conditions
bracket for the more general operation
Concurrent.continual when you have a use case similar to
the cancel/restore example above, but require access to the
result of F[A]

Inherited methods

def attempt[A](fa: F[A]): F[Either[E, A]]
Implicitly added by catsKleisliBracket
Handle errors by turning them into scala.util.Either values.
If there is no error, then an scala.util.Right value will be returned instead.
All non-fatal errors should be handled by this method.
Inhertied from
ApplicativeError
def composeFunctor[G <: ([_$3] =>> Any)](evidence$2: Functor[G]): Invariant[[α] =>> F[G[α]]]
Implicitly added by catsKleisliBracket
Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]]
using F's imap and G's map.
Example:
{{{
scala> import cats.implicits._
scala> import scala.concurrent.duration._
scala> val durSemigroupList: Semigroup[List[FiniteDuration] ] =
| Invariant[Semigroup]
| .composeFunctor[List]
| .imap(Semigroup[List[Long] ])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
}}}
Inhertied from
Invariant
@inline
final def <*[A, B](fa: F[A])(fb: F[B]): F[A]
Implicitly added by catsKleisliBracket
Alias for productL.
Inhertied from
Apply
def as[A, B](fa: F[A], b: B): F[B]
Implicitly added by catsKleisliBracket
Replaces the A value in F[A] with the supplied value.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
}}}
Inhertied from
Functor
@noop
def iterateForeverM[A, B](a: A)(f: A => F[A]): F[B]
Implicitly added by catsKleisliBracket
iterateForeverM is almost exclusively useful for effect types. For instance,
A may be some state, we may take the current state, run some effect to get
a new state and repeat.
Inhertied from
FlatMap
def recover[A](fa: F[A])(pf: PartialFunction[E, A]): F[A]
Implicitly added by catsKleisliBracket
Recover from certain errors by mapping them to an A value.
See also
handleError to handle any/all errors.
recoverWith to recover from certain errors by mapping them to
F[A] values.
Inhertied from
ApplicativeError
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
Implicitly added by catsKleisliBracket
Inhertied from
FlatMap
def redeem[A, B](fa: F[A])(recover: E => B, f: A => B): F[B]
Implicitly added by catsKleisliBracket
Returns a new value that transforms the result of the source,
given the recover or map functions, which get executed depending
on whether the result is successful or if it ends in error.
This is an optimization on usage of attempt and map,
this equivalence being available:
{{{
fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))
}}}
Usage of redeem subsumes handleError because:
{{{
fa.redeem(fe, id) <-> fa.handleError(fe)
}}}
Implementations are free to override it in order to optimize
error recovery.
Value Params
fa
is the source whose result is going to get transformed
recover
is the function that gets called to recover the source
in case of error
See also
MonadError.redeemWith, attempt and handleError
Inhertied from
ApplicativeError
final def fmap[A, B](fa: F[A])(f: A => B): F[B]
Implicitly added by catsKleisliBracket
Alias for map, since map can't be injected as syntax if
the implementing type already had a built-in .map method.
Example:
{{{
scala> import cats.implicits._
scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")
scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
}}}
Inhertied from
Functor
@noop
def whileM[G <: ([_$2] =>> Any), A](p: F[Boolean])(body: => F[A])(G: Alternative[G]): F[G[A]]
Implicitly added by catsKleisliBracket
Execute an action repeatedly as long as the given Boolean expression
returns true. The condition is evaluated before the loop body.
Collects the results into an arbitrary Alternative value, such as a Vector.
This implementation uses append on each evaluation result,
so avoid data structures with non-constant append performance, e.g. List.
Inhertied from
Monad
def composeApply[G <: ([_$2] =>> Any)](evidence$1: Apply[G]): InvariantSemigroupal[[α] =>> F[G[α]]]
Implicitly added by catsKleisliBracket
Inhertied from
InvariantSemigroupal
def fromTry[A](t: Try[A])(ev: Throwable <:< E): F[A]
Implicitly added by catsKleisliBracket
If the error type is Throwable, we can convert from a scala.util.Try
Inhertied from
ApplicativeError
def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]
Implicitly added by catsKleisliBracket
Tuples the A value in F[A] with the supplied B value, with the B value on the left.
Example:
{{{
scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue
scala> Functor[Queue] .tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
}}}
Inhertied from
Functor
def untilM_[A](f: F[A])(cond: => F[Boolean]): F[Unit]
Implicitly added by catsKleisliBracket
Execute an action repeatedly until the Boolean condition returns true.
The condition is evaluated after the loop body. Discards results.
Inhertied from
Monad
def flatten[A](ffa: F[F[A]]): F[A]
Implicitly added by catsKleisliBracket
"flatten" a nested F of F structure into a single-layer F structure.
This is also commonly called join.
Example:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> val nested: Eval[Eval[Int] ] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3
}}}
Inhertied from
FlatMap
def point[A](a: A): F[A]
Implicitly added by catsKleisliBracket
point lifts any value into a Monoidal Functor.
Example:
{{{
scala> import cats.implicits._
scala> InvariantMonoidal[Option] .point(10)
res0: Option[Int] = Some(10)
}}}
Inhertied from
InvariantMonoidal
def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]
Implicitly added by catsKleisliBracket
Sequentially compose two actions, discarding any value produced by the second. This variant of
productL also lets you define the evaluation strategy of the second action. For instance
you can evaluate it only ''after'' the first action has finished:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int] .productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
}}}
Inhertied from
FlatMap
def attemptT[A](fa: F[A]): EitherT[F, E, A]
Implicitly added by catsKleisliBracket
Similar to attempt, but wraps the result in a data.EitherT for
convenience.
Inhertied from
ApplicativeError
@noop
def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
Implicitly added by catsKleisliBracket
An if-then-else lifted into the F context.
This function combines the effects of the fcond condition and of the two branches,
in the order in which they are given.
The value of the result is, depending on the value of the condition,
the value of the first argument, or the value of the second argument.
Example:
{{{
scala> import cats.implicits._
scala> val b1: Option[Boolean] = Some(true)
scala> val asInt1: Option[Int] = Apply[Option] .ifA(b1)(Some(1), Some(0))
scala> asInt1.get
res0: Int = 1
scala> val b2: Option[Boolean] = Some(false)
scala> val asInt2: Option[Int] = Apply[Option] .ifA(b2)(Some(1), Some(0))
scala> asInt2.get
res1: Int = 0
scala> val b3: Option[Boolean] = Some(true)
scala> val asInt3: Option[Int] = Apply[Option] .ifA(b3)(Some(1), None)
asInt2: Option[Int] = None
}}}
Inhertied from
Apply
@noop
def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]
Implicitly added by catsKleisliBracket
Lifts if to Functor
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
}}}
Inhertied from
Functor
def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by catsKleisliBracket
Returns the given argument (mapped to Unit) if cond is true, otherwise,
unit lifted into F.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[List] .whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())
scala> Applicative[List] .whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())
scala> Applicative[List] .whenA(true)(List.empty[Int] )
res2: List[Unit] = List()
scala> Applicative[List] .whenA(false)(List.empty[Int] )
res3: List[Unit] = List(())
}}}
Inhertied from
Applicative
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]
Implicitly added by catsKleisliBracket
Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.
Inhertied from
MonadError
def attemptTap[A, B](fa: F[A])(f: Either[E, A] => F[B]): F[A]
Implicitly added by catsKleisliBracket
Reifies the value or error of the source and performs an effect on the result,
then recovers the original value or error back into F.
Note that if the effect returned by f fails, the resulting effect will fail too.
Alias for fa.attempt.flatTap(f).rethrow for convenience.
Example:
{{{
scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}
scala> def checkError(result: Either[Throwable, Int] ): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))
scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)
scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
}}}
Inhertied from
MonadError
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by catsKleisliBracket
Execute an action repeatedly until its result fails to satisfy the given predicate
and return that result, discarding all others.
Inhertied from
Monad
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]
Implicitly added by catsKleisliBracket
Tuple the values in fa with the result of applying a function
with the value
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> Functor[Option] .fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
}}}
Inhertied from
Functor
def fromEither[A](x: Either[E, A]): F[A]
Implicitly added by catsKleisliBracket
Convert from scala.Either
Example:
{{{
scala> import cats.ApplicativeError
scala> import cats.instances.option._
scala> ApplicativeError[Option, Unit] .fromEither(Right(1))
res0: scala.Option[Int] = Some(1)
scala> ApplicativeError[Option, Unit] .fromEither(Left(()))
res1: scala.Option[Nothing] = None
}}}
Inhertied from
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => E): F[A]
Implicitly added by catsKleisliBracket
Convert from scala.Option
Example:
{{{
scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *] , String]
scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)
scala> F.fromOption(Option.empty[Int] , "Empty")
res1: scala.Either[String, Int] = Left(Empty)
}}}
Inhertied from
ApplicativeError
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, F, E]
Implicitly added by catsKleisliBracket
Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.
Inhertied from
ApplicativeError
def compose[G <: ([_$2] =>> Any)](evidence$1: Applicative[G]): Applicative[[α] =>> F[G[α]]]
Implicitly added by catsKleisliBracket
Compose an Applicative[F] and an Applicative[G] into an
Applicative[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.implicits._
scala> val alo = Applicative[List] .compose[Option]
scala> alo.pure(3)
res0: List[Option[Int] ] = List(Some(3))
scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)] ] = List(None, None, Some((true,2)), None, Some((false,2)), None)
}}}
Inhertied from
Applicative
def compose[G <: ([_$2] =>> Any)](evidence$1: Invariant[G]): Invariant[[α] =>> F[G[α]]]
Implicitly added by catsKleisliBracket
Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.
Example:
{{{
scala> import cats.implicits._
scala> import scala.concurrent.duration._
scala> val durSemigroupList: Semigroup[List[FiniteDuration] ] =
| Invariant[Semigroup] .compose[List] .imap(Semigroup[List[Long] ])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
}}}
Inhertied from
Invariant
def compose[G <: ([_$3] =>> Any)](evidence$1: Apply[G]): Apply[[α] =>> F[G[α]]]
Implicitly added by catsKleisliBracket
Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.implicits._
scala> val alo = Apply[List] .compose[Option]
scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)] ] = List(None, None, Some((true,2)), None, Some((false,2)), None)
}}}
Inhertied from
Apply
def compose[G <: ([_$6] =>> Any)](evidence$1: Functor[G]): Functor[[α] =>> F[G[α]]]
Implicitly added by catsKleisliBracket
Inhertied from
Functor
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]
Implicitly added by catsKleisliBracket
Turns a successful value into an error if it does not satisfy a given predicate.
Inhertied from
MonadError
def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]
Implicitly added by catsKleisliBracket
Tuples the A value in F[A] with the supplied B value, with the B value on the right.
Example:
{{{
scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue
scala> Functor[Queue] .tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
}}}
Inhertied from
Functor
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]
Implicitly added by catsKleisliBracket
Execute an action repeatedly until its result satisfies the given predicate
and return that result, discarding all others.
Inhertied from
Monad
@noop
def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])
Implicitly added by catsKleisliBracket
Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.
NOTE: Check for effect duplication, possibly memoize before
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .unzip(List((1,2), (3, 4)))
res0: (List[Int] , List[Int] ) = (List(1, 3),List(2, 4))
}}}
Inhertied from
Functor
def catchNonFatal[A](a: => A)(ev: Throwable <:< E): F[A]
Implicitly added by catsKleisliBracket
Often E is Throwable. Here we try to call pure or catch
and raise.
Inhertied from
ApplicativeError
def recoverWith[A](fa: F[A])(pf: PartialFunction[E, F[A]]): F[A]
Implicitly added by catsKleisliBracket
Recover from certain errors by mapping them to an F[A] value.
See also
handleErrorWith to handle any/all errors.
recover to recover from certain errors by mapping them to A
values.
Inhertied from
ApplicativeError
def fproductLeft[A, B](fa: F[A])(f: A => B): F[(B, A)]
Implicitly added by catsKleisliBracket
Pair the result of function application with A.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> Functor[Option] .fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
}}}
Inhertied from
Functor
def handleError[A](fa: F[A])(f: E => A): F[A]
Implicitly added by catsKleisliBracket
Handle any error, by mapping it to an A value.
See also
handleErrorWith to map to an F[A] value instead of simply an
A value.
recover to only recover from certain errors.
Inhertied from
ApplicativeError
@noop
def ifM[B](fa: F[Boolean])(ifTrue: => F[B], ifFalse: => F[B]): F[B]
Implicitly added by catsKleisliBracket
if lifted into monad.
Inhertied from
FlatMap
def lift[A, B](f: A => B): F[A] => F[B]
Implicitly added by catsKleisliBracket
Lift a function f to operate on Functors
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> val o = Option(42)
scala> Functor[Option] .lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
}}}
Inhertied from
Functor
@noop
def ifElseM[A](branches: (F[Boolean], F[A])*)(els: F[A]): F[A]
Implicitly added by catsKleisliBracket
Simulates an if/else-if/else in the context of an F. It evaluates conditions until
one evaluates to true, and returns the associated F[A] . If no condition is true,
returns els.
{{{
scala> import cats._
scala> Monad[Eval] .ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2
}}}
Based on a gist by Daniel Spiewak with a stack-safe
implementation due to P. Oscar Boykin
See also
Inhertied from
Monad
@noop
def untilDefinedM[A](foa: F[Option[A]]): F[A]
Implicitly added by catsKleisliBracket
This repeats an F until we get defined values. This can be useful
for polling type operations on State (or RNG) Monads, or in effect
monads.
Inhertied from
FlatMap
def iterateUntilM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by catsKleisliBracket
Apply a monadic function iteratively until its result satisfies
the given predicate and return that result.
Inhertied from
Monad
def unit: F[Unit]
Implicitly added by catsKleisliBracket
Returns an F[Unit] value, equivalent with pure(()).
A useful shorthand, also allowing implementations to optimize the
returned reference (e.g. it can be a val).
Example:
{{{
scala> import cats.implicits._
scala> Applicative[Option] .unit
res0: Option[Unit] = Some(())
}}}
Inhertied from
Applicative
def pure[A](x: A): F[A]
Implicitly added by catsKleisliBracket
pure lifts any value into the Applicative Functor.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[Option] .pure(10)
res0: Option[Int] = Some(10)
}}}
Inhertied from
Applicative
def replicateA[A](n: Int, fa: F[A]): F[List[A]]
Implicitly added by catsKleisliBracket
Given fa and n, apply fa n times to construct an F[List[A]] value.
Example:
{{{
scala> import cats.data.State
scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int] ] =
| Applicative[Counter] .replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int] ) = (5,List(0, 1, 2, 3, 4))
}}}
Inhertied from
Applicative
def fromValidated[A](x: Validated[E, A]): F[A]
Implicitly added by catsKleisliBracket
Convert from cats.data.Validated
Example:
{{{
scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> ApplicativeError[Option, Unit] .fromValidated(1.valid[Unit] )
res0: scala.Option[Int] = Some(1)
scala> ApplicativeError[Option, Unit] .fromValidated(().invalid[Int] )
res1: scala.Option[Int] = None
}}}
Inhertied from
ApplicativeError
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]
Implicitly added by catsKleisliBracket
Pair A with the result of function application.
Example:
{{{
scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
}}}
Inhertied from
FlatMap
def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]
Implicitly added by catsKleisliBracket
Returns the given argument (mapped to Unit) if cond is false,
otherwise, unit lifted into F.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[List] .unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())
scala> Applicative[List] .unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())
scala> Applicative[List] .unlessA(true)(List.empty[Int] )
res2: List[Unit] = List(())
scala> Applicative[List] .unlessA(false)(List.empty[Int] )
res3: List[Unit] = List()
}}}
Inhertied from
Applicative
def map2Eval[A, B, Z](fa: F[A], fb: Eval[F[B]])(f: (A, B) => Z): Eval[F[Z]]
Implicitly added by catsKleisliBracket
Similar to map2 but uses Eval to allow for laziness in the F[B]
argument. This can allow for "short-circuiting" of computations.
NOTE: the default implementation of map2Eval does not short-circuit
computations. For data structures that can benefit from laziness, Apply
instances should override this method.
In the following example, x.map2(bomb)(_ + _) would result in an error,
but map2Eval "short-circuits" the computation. x is None and thus the
result of bomb doesn't even need to be evaluated in order to determine
that the result of map2Eval should be None.
{{{
scala> import cats.{Eval, Later}
scala> import cats.implicits._
scala> val bomb: Eval[Option[Int] ] = Later(sys.error("boom"))
scala> val x: Option[Int] = None
scala> x.map2Eval(bomb)(_ + _).value
res0: Option[Int] = None
}}}
Inhertied from
Apply
def untilM[G <: ([_$4] =>> Any), A](f: F[A])(cond: => F[Boolean])(G: Alternative[G]): F[G[A]]
Implicitly added by catsKleisliBracket
Execute an action repeatedly until the Boolean condition returns true.
The condition is evaluated after the loop body. Collects results into an
arbitrary Alternative value, such as a Vector.
This implementation uses append on each evaluation result,
so avoid data structures with non-constant append performance, e.g. List.
Inhertied from
Monad
def flatTap[A, B](fa: F[A])(f: A => F[B]): F[A]
Implicitly added by catsKleisliBracket
Apply a monadic function and discard the result while keeping the effect.
{{{
scala> import cats., implicits.
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> ListInt.flatTap(nCats)
res2: List[Int] = List()
scala> ListInt.flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
}}}
Inhertied from
FlatMap
def onError[A](fa: F[A])(pf: PartialFunction[E, F[Unit]]): F[A]
Implicitly added by catsKleisliBracket
Execute a callback on certain errors, then rethrow them.
Any non matching error is rethrown as well.
In the following example, only one of the errors is logged,
but they are both rethrown, to be possibly handled by another
layer of the program:
{{{
scala> import cats., data., implicits._
scala> case class Err(msg: String)
scala> type F[A] = EitherT[State[String, *] , Err, A]
scala> val action: PartialFunction[Err, F[Unit] ] = {
| case Err("one") => EitherT.liftF(State.set("one"))
| }
scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]
scala> prog1.onError(action).value.run("").value
res0: (String, Either[Err,Int] ) = (one,Left(Err(one)))
scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int] ) = ("",Left(Err(two)))
}}}
Inhertied from
ApplicativeError
@noop
def foreverM[A, B](fa: F[A]): F[B]
Implicitly added by catsKleisliBracket
Like an infinite loop of >> calls. This is most useful effect loops
that you want to run forever in for instance a server.
This will be an infinite loop, or it will return an F[Nothing] .
Be careful using this.
For instance, a List of length k will produce a list of length k^n at iteration
n. This means if k = 0, we return an empty list, if k = 1, we loop forever
allocating single element lists, but if we have a k > 1, we will allocate
exponentially increasing memory and very quickly OOM.
Inhertied from
FlatMap
def rethrow[A, EE <: E](fa: F[Either[EE, A]]): F[A]
Implicitly added by catsKleisliBracket
Inverse of attempt
Example:
{{{
scala> import cats.implicits._
scala> import scala.util.{Try, Success}
scala> val a: Try[Either[Throwable, Int] ] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)
scala> val b: Try[Either[Throwable, Int] ] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
}}}
Inhertied from
MonadError
def iterateWhileM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Implicitly added by catsKleisliBracket
Apply a monadic function iteratively until its result fails
to satisfy the given predicate and return that result.
Inhertied from
Monad
@noop
def whileM_[A](p: F[Boolean])(body: => F[A]): F[Unit]
Implicitly added by catsKleisliBracket
Execute an action repeatedly as long as the given Boolean expression
returns true. The condition is evaluated before the loop body.
Discards results.
Inhertied from
Monad
def void[A](fa: F[A]): F[Unit]
Implicitly added by catsKleisliBracket
Empty the fa of the values, preserving the structure
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .void(List(1,2,3))
res0: List[Unit] = List((), (), ())
}}}
Inhertied from
Functor
def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Implicitly added by catsKleisliBracket
Inhertied from
ApplyArityFunctions
def catchNonFatalEval[A](a: Eval[A])(ev: Throwable <:< E): F[A]
Implicitly added by catsKleisliBracket
Often E is Throwable. Here we try to call pure or catch
and raise
Inhertied from
ApplicativeError
def redeemWith[A, B](fa: F[A])(recover: E => F[B], bind: A => F[B]): F[B]
Implicitly added by catsKleisliBracket
Returns a new value that transforms the result of the source,
given the recover or bind functions, which get executed depending
on whether the result is successful or if it ends in error.
This is an optimization on usage of attempt and flatMap,
this equivalence being available:
{{{
fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))
}}}
Usage of redeemWith subsumes handleErrorWith because:
{{{
fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)
}}}
Usage of redeemWith also subsumes flatMap because:
{{{
fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)
}}}
Implementations are free to override it in order to optimize
error recovery.
Value Params
bind
is the function that gets to transform the source
in case of success
fa
is the source whose result is going to get transformed
recover
is the function that gets called to recover the source
in case of error
See also
Inhertied from
MonadError
def widen[A, B >: A](fa: F[A]): F[B]
Implicitly added by catsKleisliBracket
Lifts natural subtyping covariance of covariant Functors.
NOTE: In certain (perhaps contrived) situations that rely on universal
equality this can result in a ClassCastException, because it is
implemented as a type cast. It could be implemented as map(identity), but
according to the functor laws, that should be equal to fa, and a type
cast is often much more performant.
See this example
of widen creating a ClassCastException.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> val s = Some(42)
scala> Functor[Option] .widen(s)
res0: Option[Int] = Some(42)
}}}
Inhertied from
Functor
@inline
final def *>[A, B](fa: F[A])(fb: F[B]): F[B]
Implicitly added by catsKleisliBracket
Alias for productR.
Inhertied from
Apply
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]
Implicitly added by catsKleisliBracket
Handle any error, potentially recovering from it, by mapping it to an
F[A] value.
See also
handleError to handle any error by simply mapping it to an A
value instead of an F[A].
recoverWith to recover from only certain errors.
Inhertied from
ApplicativeError
def attemptNarrow[EE <: Throwable, A](fa: F[A])(tag: ClassTag[EE], ev: EE <:< E): F[Either[EE, A]]
Implicitly added by catsKleisliBracket
Similar to attempt, but it only handles errors of type EE.
Inhertied from
ApplicativeError
def raiseError[A](e: E): F[A]
Implicitly added by catsKleisliBracket
Lift an error into the F context.
Example:
{{{
scala> import cats.implicits._
// integer-rounded division
scala> def divide[F[_] ](dividend: Int, divisor: Int)(implicit F: ApplicativeError[F, String] ): F[Int] =
| if (divisor === 0) F.raiseError("division by zero")
| else F.pure(dividend / divisor)
scala> type ErrorOr[A] = Either[String, A]
scala> divide[ErrorOr] (6, 3)
res0: ErrorOr[Int] = Right(2)
scala> divide[ErrorOr] (6, 0)
res1: ErrorOr[Int] = Left(division by zero)
}}}
Inhertied from
ApplicativeError
def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]
Implicitly added by catsKleisliBracket
Sequentially compose two actions, discarding any value produced by the first. This variant of
productR also lets you define the evaluation strategy of the second action. For instance
you can evaluate it only ''after'' the first action has finished:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
}}}
Inhertied from
FlatMap
def tailRecM[A, B](a: A)(f: A => F[Either[A, B]]): F[B]
Implicitly added by catsKleisliBracket
Keeps calling f until a scala.util.Right[B] is returned.
Based on Phil Freeman's
Stack Safety for Free.
Implementations of this method should use constant stack space relative to f.
Inhertied from
FlatMap
def composeContravariantMonoidal[G <: ([_$3] =>> Any)](evidence$2: ContravariantMonoidal[G]): ContravariantMonoidal[[α] =>> F[G[α]]]
Implicitly added by catsKleisliBracket
Compose an Applicative[F] and a ContravariantMonoidal[G] into a
ContravariantMonoidal[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.kernel.Comparison
scala> import cats.implicits._
// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]
// compares strings by their length
scala> val strLength: Order[String] = Order.byString, Int
scala> val stringOrders: List[Order[String] ] = List(alpha, strLength)
// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)
scala> val le = Applicative[List] .composeContravariantMonoidal[Order]
// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int] ] = le.contramap(stringOrders)(_.toString)
// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)
// create the product of the string order list and the int order list
// p contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)] ] = le.product(stringOrders, intOrders)
scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
}}}
Inhertied from
Applicative
@inline
final def <*>[A, B](ff: F[A => B])(fa: F[A]): F[B]
Implicitly added by catsKleisliBracket
Alias for ap.
Inhertied from
Apply
override def imap[A, B](fa: F[A])(f: A => B)(g: B => A): F[B]
Definition Classes
Functor -> Invariant
Inhertied from
Functor
def attempt[A](fa: F[A]): F[Either[E, A]]
Handle errors by turning them into scala.util.Either values.
If there is no error, then an scala.util.Right value will be returned instead.
All non-fatal errors should be handled by this method.
Inhertied from
ApplicativeError
def composeFunctor[G <: ([_$3] =>> Any)](evidence$2: Functor[G]): Invariant[[α] =>> F[G[α]]]
Compose Invariant F[_] and Functor G[_] then produce Invariant[F[G[_]]]
using F's imap and G's map.
Example:
{{{
scala> import cats.implicits._
scala> import scala.concurrent.duration._
scala> val durSemigroupList: Semigroup[List[FiniteDuration] ] =
| Invariant[Semigroup]
| .composeFunctor[List]
| .imap(Semigroup[List[Long] ])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
}}}
Inhertied from
Invariant
@inline
final def <*[A, B](fa: F[A])(fb: F[B]): F[A]
Alias for productL.
Inhertied from
Apply
def as[A, B](fa: F[A], b: B): F[B]
Replaces the A value in F[A] with the supplied value.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .as(List(1,2,3), "hello")
res0: List[String] = List(hello, hello, hello)
}}}
Inhertied from
Functor
@noop
def iterateForeverM[A, B](a: A)(f: A => F[A]): F[B]
iterateForeverM is almost exclusively useful for effect types. For instance,
A may be some state, we may take the current state, run some effect to get
a new state and repeat.
Inhertied from
FlatMap
def recover[A](fa: F[A])(pf: PartialFunction[E, A]): F[A]
Recover from certain errors by mapping them to an A value.
See also
handleError to handle any/all errors.
recoverWith to recover from certain errors by mapping them to
F[A] values.
Inhertied from
ApplicativeError
override def productL[A, B](fa: F[A])(fb: F[B]): F[A]
Definition Classes
FlatMap -> Apply
Inhertied from
FlatMap
def flatMap[A, B](fa: F[A])(f: A => F[B]): F[B]
Inhertied from
FlatMap
def redeem[A, B](fa: F[A])(recover: E => B, f: A => B): F[B]
Returns a new value that transforms the result of the source,
given the recover or map functions, which get executed depending
on whether the result is successful or if it ends in error.
This is an optimization on usage of attempt and map,
this equivalence being available:
{{{
fa.redeem(fe, fs) <-> fa.attempt.map(_.fold(fe, fs))
}}}
Usage of redeem subsumes handleError because:
{{{
fa.redeem(fe, id) <-> fa.handleError(fe)
}}}
Implementations are free to override it in order to optimize
error recovery.
Value Params
fa
is the source whose result is going to get transformed
recover
is the function that gets called to recover the source
in case of error
See also
MonadError.redeemWith, attempt and handleError
Inhertied from
ApplicativeError
final def fmap[A, B](fa: F[A])(f: A => B): F[B]
Alias for map, since map can't be injected as syntax if
the implementing type already had a built-in .map method.
Example:
{{{
scala> import cats.implicits._
scala> val m: Map[Int, String] = Map(1 -> "hi", 2 -> "there", 3 -> "you")
scala> m.fmap(_ ++ "!")
res0: Map[Int,String] = Map(1 -> hi!, 2 -> there!, 3 -> you!)
}}}
Inhertied from
Functor
@noop
def whileM[G <: ([_$2] =>> Any), A](p: F[Boolean])(body: => F[A])(G: Alternative[G]): F[G[A]]
Execute an action repeatedly as long as the given Boolean expression
returns true. The condition is evaluated before the loop body.
Collects the results into an arbitrary Alternative value, such as a Vector.
This implementation uses append on each evaluation result,
so avoid data structures with non-constant append performance, e.g. List.
Inhertied from
Monad
def composeApply[G <: ([_$2] =>> Any)](evidence$1: Apply[G]): InvariantSemigroupal[[α] =>> F[G[α]]]
Inhertied from
InvariantSemigroupal
def fromTry[A](t: Try[A])(ev: Throwable <:< E): F[A]
If the error type is Throwable, we can convert from a scala.util.Try
Inhertied from
ApplicativeError
def tupleLeft[A, B](fa: F[A], b: B): F[(B, A)]
Tuples the A value in F[A] with the supplied B value, with the B value on the left.
Example:
{{{
scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue
scala> Functor[Queue] .tupleLeft(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(Int, String)] = Queue((42,hello), (42,world))
}}}
Inhertied from
Functor
def untilM_[A](f: F[A])(cond: => F[Boolean]): F[Unit]
Execute an action repeatedly until the Boolean condition returns true.
The condition is evaluated after the loop body. Discards results.
Inhertied from
Monad
override def adaptError[A](fa: F[A])(pf: PartialFunction[E, E]): F[A]
Definition Classes
MonadError -> ApplicativeError
Inhertied from
MonadError
def flatten[A](ffa: F[F[A]]): F[A]
"flatten" a nested F of F structure into a single-layer F structure.
This is also commonly called join.
Example:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> val nested: Eval[Eval[Int] ] = Eval.now(Eval.now(3))
scala> val flattened: Eval[Int] = nested.flatten
scala> flattened.value
res0: Int = 3
}}}
Inhertied from
FlatMap
def point[A](a: A): F[A]
point lifts any value into a Monoidal Functor.
Example:
{{{
scala> import cats.implicits._
scala> InvariantMonoidal[Option] .point(10)
res0: Option[Int] = Some(10)
}}}
Inhertied from
InvariantMonoidal
override def map[A, B](fa: F[A])(f: A => B): F[B]
Definition Classes
Monad -> Applicative -> Functor
Inhertied from
Monad
def productLEval[A, B](fa: F[A])(fb: Eval[F[B]]): F[A]
Sequentially compose two actions, discarding any value produced by the second. This variant of
productL also lets you define the evaluation strategy of the second action. For instance
you can evaluate it only ''after'' the first action has finished:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> var count = 0
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[Unit] = Some(count += 1)
scala> fa.productLEval(Eval.later(fb))
res0: Option[Int] = Some(3)
scala> assert(count == 1)
scala> none[Int] .productLEval(Eval.later(fb))
res1: Option[Int] = None
scala> assert(count == 1)
}}}
Inhertied from
FlatMap
def attemptT[A](fa: F[A]): EitherT[F, E, A]
Similar to attempt, but wraps the result in a data.EitherT for
convenience.
Inhertied from
ApplicativeError
@noop
def ifA[A](fcond: F[Boolean])(ifTrue: F[A], ifFalse: F[A]): F[A]
An if-then-else lifted into the F context.
This function combines the effects of the fcond condition and of the two branches,
in the order in which they are given.
The value of the result is, depending on the value of the condition,
the value of the first argument, or the value of the second argument.
Example:
{{{
scala> import cats.implicits._
scala> val b1: Option[Boolean] = Some(true)
scala> val asInt1: Option[Int] = Apply[Option] .ifA(b1)(Some(1), Some(0))
scala> asInt1.get
res0: Int = 1
scala> val b2: Option[Boolean] = Some(false)
scala> val asInt2: Option[Int] = Apply[Option] .ifA(b2)(Some(1), Some(0))
scala> asInt2.get
res1: Int = 0
scala> val b3: Option[Boolean] = Some(true)
scala> val asInt3: Option[Int] = Apply[Option] .ifA(b3)(Some(1), None)
asInt2: Option[Int] = None
}}}
Inhertied from
Apply
@noop
def ifF[A](fb: F[Boolean])(ifTrue: => A, ifFalse: => A): F[A]
Lifts if to Functor
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .ifF(List(true, false, false))(1, 0)
res0: List[Int] = List(1, 0, 0)
}}}
Inhertied from
Functor
def whenA[A](cond: Boolean)(f: => F[A]): F[Unit]
Returns the given argument (mapped to Unit) if cond is true, otherwise,
unit lifted into F.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[List] .whenA(true)(List(1, 2, 3))
res0: List[Unit] = List((), (), ())
scala> Applicative[List] .whenA(false)(List(1, 2, 3))
res1: List[Unit] = List(())
scala> Applicative[List] .whenA(true)(List.empty[Int] )
res2: List[Unit] = List()
scala> Applicative[List] .whenA(false)(List.empty[Int] )
res3: List[Unit] = List(())
}}}
Inhertied from
Applicative
def ensureOr[A](fa: F[A])(error: A => E)(predicate: A => Boolean): F[A]
Turns a successful value into an error specified by the error function if it does not satisfy a given predicate.
Inhertied from
MonadError
def attemptTap[A, B](fa: F[A])(f: Either[E, A] => F[B]): F[A]
Reifies the value or error of the source and performs an effect on the result,
then recovers the original value or error back into F.
Note that if the effect returned by f fails, the resulting effect will fail too.
Alias for fa.attempt.flatTap(f).rethrow for convenience.
Example:
{{{
scala> import cats.implicits._
scala> import scala.util.{Try, Success, Failure}
scala> def checkError(result: Either[Throwable, Int] ): Try[String] = result.fold(_ => Failure(new java.lang.Exception), _ => Success("success"))
scala> val a: Try[Int] = Failure(new Throwable("failed"))
scala> a.attemptTap(checkError)
res0: scala.util.Try[Int] = Failure(java.lang.Exception)
scala> val b: Try[Int] = Success(1)
scala> b.attemptTap(checkError)
res1: scala.util.Try[Int] = Success(1)
}}}
Inhertied from
MonadError
def iterateWhile[A](f: F[A])(p: A => Boolean): F[A]
Execute an action repeatedly until its result fails to satisfy the given predicate
and return that result, discarding all others.
Inhertied from
Monad
def fproduct[A, B](fa: F[A])(f: A => B): F[(A, B)]
Tuple the values in fa with the result of applying a function
with the value
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> Functor[Option] .fproduct(Option(42))(_.toString)
res0: Option[(Int, String)] = Some((42,42))
}}}
Inhertied from
Functor
def fromEither[A](x: Either[E, A]): F[A]
Convert from scala.Either
Example:
{{{
scala> import cats.ApplicativeError
scala> import cats.instances.option._
scala> ApplicativeError[Option, Unit] .fromEither(Right(1))
res0: scala.Option[Int] = Some(1)
scala> ApplicativeError[Option, Unit] .fromEither(Left(()))
res1: scala.Option[Nothing] = None
}}}
Inhertied from
ApplicativeError
def fromOption[A](oa: Option[A], ifEmpty: => E): F[A]
Convert from scala.Option
Example:
{{{
scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> val F = ApplicativeError[Either[String, *] , String]
scala> F.fromOption(Some(1), "Empty")
res0: scala.Either[String, Int] = Right(1)
scala> F.fromOption(Option.empty[Int] , "Empty")
res1: scala.Either[String, Int] = Left(Empty)
}}}
Inhertied from
ApplicativeError
def catchOnly[T >: Null <: Throwable]: CatchOnlyPartiallyApplied[T, F, E]
Evaluates the specified block, catching exceptions of the specified type. Uncaught exceptions are propagated.
Inhertied from
ApplicativeError
def compose[G <: ([_$2] =>> Any)](evidence$1: Applicative[G]): Applicative[[α] =>> F[G[α]]]
Compose an Applicative[F] and an Applicative[G] into an
Applicative[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.implicits._
scala> val alo = Applicative[List] .compose[Option]
scala> alo.pure(3)
res0: List[Option[Int] ] = List(Some(3))
scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)] ] = List(None, None, Some((true,2)), None, Some((false,2)), None)
}}}
Inhertied from
Applicative
def compose[G <: ([_$2] =>> Any)](evidence$1: Invariant[G]): Invariant[[α] =>> F[G[α]]]
Compose Invariant F[_] and G[_] then produce Invariant[F[G[_]]] using their imap.
Example:
{{{
scala> import cats.implicits._
scala> import scala.concurrent.duration._
scala> val durSemigroupList: Semigroup[List[FiniteDuration] ] =
| Invariant[Semigroup] .compose[List] .imap(Semigroup[List[Long] ])(Duration.fromNanos)(_.toNanos)
scala> durSemigroupList.combine(List(2.seconds, 3.seconds), List(4.seconds))
res1: List[FiniteDuration] = List(2 seconds, 3 seconds, 4 seconds)
}}}
Inhertied from
Invariant
def compose[G <: ([_$3] =>> Any)](evidence$1: Apply[G]): Apply[[α] =>> F[G[α]]]
Compose an Apply[F] and an Apply[G] into an Apply[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.implicits._
scala> val alo = Apply[List] .compose[Option]
scala> alo.product(List(None, Some(true), Some(false)), List(Some(2), None))
res1: List[Option[(Boolean, Int)] ] = List(None, None, Some((true,2)), None, Some((false,2)), None)
}}}
Inhertied from
Apply
def compose[G <: ([_$6] =>> Any)](evidence$1: Functor[G]): Functor[[α] =>> F[G[α]]]
Inhertied from
Functor
def ensure[A](fa: F[A])(error: => E)(predicate: A => Boolean): F[A]
Turns a successful value into an error if it does not satisfy a given predicate.
Inhertied from
MonadError
def tupleRight[A, B](fa: F[A], b: B): F[(A, B)]
Tuples the A value in F[A] with the supplied B value, with the B value on the right.
Example:
{{{
scala> import scala.collection.immutable.Queue
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForQueue
scala> Functor[Queue] .tupleRight(Queue("hello", "world"), 42)
res0: scala.collection.immutable.Queue[(String, Int)] = Queue((hello,42), (world,42))
}}}
Inhertied from
Functor
override def map2[A, B, Z](fa: F[A], fb: F[B])(f: (A, B) => Z): F[Z]
Definition Classes
FlatMap -> Apply
Inhertied from
FlatMap
def iterateUntil[A](f: F[A])(p: A => Boolean): F[A]
Execute an action repeatedly until its result satisfies the given predicate
and return that result, discarding all others.
Inhertied from
Monad
@noop
def unzip[A, B](fab: F[(A, B)]): (F[A], F[B])
Un-zips an F[(A, B)] consisting of element pairs or Tuple2 into two separate F's tupled.
NOTE: Check for effect duplication, possibly memoize before
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .unzip(List((1,2), (3, 4)))
res0: (List[Int] , List[Int] ) = (List(1, 3),List(2, 4))
}}}
Inhertied from
Functor
def catchNonFatal[A](a: => A)(ev: Throwable <:< E): F[A]
Often E is Throwable. Here we try to call pure or catch
and raise.
Inhertied from
ApplicativeError
override def productR[A, B](fa: F[A])(fb: F[B]): F[B]
Definition Classes
FlatMap -> Apply
Inhertied from
FlatMap
def recoverWith[A](fa: F[A])(pf: PartialFunction[E, F[A]]): F[A]
Recover from certain errors by mapping them to an F[A] value.
See also
handleErrorWith to handle any/all errors.
recover to recover from certain errors by mapping them to A
values.
Inhertied from
ApplicativeError
def fproductLeft[A, B](fa: F[A])(f: A => B): F[(B, A)]
Pair the result of function application with A.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> Functor[Option] .fproductLeft(Option(42))(_.toString)
res0: Option[(String, Int)] = Some((42,42))
}}}
Inhertied from
Functor
def handleError[A](fa: F[A])(f: E => A): F[A]
Handle any error, by mapping it to an A value.
See also
handleErrorWith to map to an F[A] value instead of simply an
A value.
recover to only recover from certain errors.
Inhertied from
ApplicativeError
@noop
def ifM[B](fa: F[Boolean])(ifTrue: => F[B], ifFalse: => F[B]): F[B]
if lifted into monad.
Inhertied from
FlatMap
def lift[A, B](f: A => B): F[A] => F[B]
Lift a function f to operate on Functors
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> val o = Option(42)
scala> Functor[Option] .lift((x: Int) => x + 10)(o)
res0: Option[Int] = Some(52)
}}}
Inhertied from
Functor
@noop
def ifElseM[A](branches: (F[Boolean], F[A])*)(els: F[A]): F[A]
Simulates an if/else-if/else in the context of an F. It evaluates conditions until
one evaluates to true, and returns the associated F[A] . If no condition is true,
returns els.
{{{
scala> import cats._
scala> Monad[Eval] .ifElseM(Eval.later(false) -> Eval.later(1), Eval.later(true) -> Eval.later(2))(Eval.later(5)).value
res0: Int = 2
}}}
Based on a gist by Daniel Spiewak with a stack-safe
implementation due to P. Oscar Boykin
See also
Inhertied from
Monad
@noop
def untilDefinedM[A](foa: F[Option[A]]): F[A]
This repeats an F until we get defined values. This can be useful
for polling type operations on State (or RNG) Monads, or in effect
monads.
Inhertied from
FlatMap
override def composeContravariant[G <: ([_$7] =>> Any)](evidence$2: Contravariant[G]): Contravariant[[α] =>> F[G[α]]]
Definition Classes
Functor -> Invariant
Inhertied from
Functor
def iterateUntilM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Apply a monadic function iteratively until its result satisfies
the given predicate and return that result.
Inhertied from
Monad
override def ap[A, B](ff: F[A => B])(fa: F[A]): F[B]
Definition Classes
FlatMap -> Apply
Inhertied from
FlatMap
def unit: F[Unit]
Returns an F[Unit] value, equivalent with pure(()).
A useful shorthand, also allowing implementations to optimize the
returned reference (e.g. it can be a val).
Example:
{{{
scala> import cats.implicits._
scala> Applicative[Option] .unit
res0: Option[Unit] = Some(())
}}}
Inhertied from
Applicative
def pure[A](x: A): F[A]
pure lifts any value into the Applicative Functor.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[Option] .pure(10)
res0: Option[Int] = Some(10)
}}}
Inhertied from
Applicative
def replicateA[A](n: Int, fa: F[A]): F[List[A]]
Given fa and n, apply fa n times to construct an F[List[A]] value.
Example:
{{{
scala> import cats.data.State
scala> type Counter[A] = State[Int, A]
scala> val getAndIncrement: Counter[Int] = State { i => (i + 1, i) }
scala> val getAndIncrement5: Counter[List[Int] ] =
| Applicative[Counter] .replicateA(5, getAndIncrement)
scala> getAndIncrement5.run(0).value
res0: (Int, List[Int] ) = (5,List(0, 1, 2, 3, 4))
}}}
Inhertied from
Applicative
def fromValidated[A](x: Validated[E, A]): F[A]
Convert from cats.data.Validated
Example:
{{{
scala> import cats.implicits._
scala> import cats.ApplicativeError
scala> ApplicativeError[Option, Unit] .fromValidated(1.valid[Unit] )
res0: scala.Option[Int] = Some(1)
scala> ApplicativeError[Option, Unit] .fromValidated(().invalid[Int] )
res1: scala.Option[Int] = None
}}}
Inhertied from
ApplicativeError
def mproduct[A, B](fa: F[A])(f: A => F[B]): F[(A, B)]
Pair A with the result of function application.
Example:
{{{
scala> import cats.implicits._
scala> List("12", "34", "56").mproduct(_.toList)
res0: List[(String, Char)] = List((12,1), (12,2), (34,3), (34,4), (56,5), (56,6))
}}}
Inhertied from
FlatMap
def unlessA[A](cond: Boolean)(f: => F[A]): F[Unit]
Returns the given argument (mapped to Unit) if cond is false,
otherwise, unit lifted into F.
Example:
{{{
scala> import cats.implicits._
scala> Applicative[List] .unlessA(true)(List(1, 2, 3))
res0: List[Unit] = List(())
scala> Applicative[List] .unlessA(false)(List(1, 2, 3))
res1: List[Unit] = List((), (), ())
scala> Applicative[List] .unlessA(true)(List.empty[Int] )
res2: List[Unit] = List(())
scala> Applicative[List] .unlessA(false)(List.empty[Int] )
res3: List[Unit] = List()
}}}
Inhertied from
Applicative
def map2Eval[A, B, Z](fa: F[A], fb: Eval[F[B]])(f: (A, B) => Z): Eval[F[Z]]
Similar to map2 but uses Eval to allow for laziness in the F[B]
argument. This can allow for "short-circuiting" of computations.
NOTE: the default implementation of map2Eval does not short-circuit
computations. For data structures that can benefit from laziness, Apply
instances should override this method.
In the following example, x.map2(bomb)(_ + _) would result in an error,
but map2Eval "short-circuits" the computation. x is None and thus the
result of bomb doesn't even need to be evaluated in order to determine
that the result of map2Eval should be None.
{{{
scala> import cats.{Eval, Later}
scala> import cats.implicits._
scala> val bomb: Eval[Option[Int] ] = Later(sys.error("boom"))
scala> val x: Option[Int] = None
scala> x.map2Eval(bomb)(_ + _).value
res0: Option[Int] = None
}}}
Inhertied from
Apply
def untilM[G <: ([_$4] =>> Any), A](f: F[A])(cond: => F[Boolean])(G: Alternative[G]): F[G[A]]
Execute an action repeatedly until the Boolean condition returns true.
The condition is evaluated after the loop body. Collects results into an
arbitrary Alternative value, such as a Vector.
This implementation uses append on each evaluation result,
so avoid data structures with non-constant append performance, e.g. List.
Inhertied from
Monad
def flatTap[A, B](fa: F[A])(f: A => F[B]): F[A]
Apply a monadic function and discard the result while keeping the effect.
{{{
scala> import cats., implicits.
scala> Option(1).flatTap(_ => None)
res0: Option[Int] = None
scala> Option(1).flatTap(_ => Some("123"))
res1: Option[Int] = Some(1)
scala> def nCats(n: Int) = List.fill(n)("cat")
nCats: (n: Int)List[String]
scala> ListInt.flatTap(nCats)
res2: List[Int] = List()
scala> ListInt.flatTap(nCats)
res3: List[Int] = List(4, 4, 4, 4)
}}}
Inhertied from
FlatMap
def onError[A](fa: F[A])(pf: PartialFunction[E, F[Unit]]): F[A]
Execute a callback on certain errors, then rethrow them.
Any non matching error is rethrown as well.
In the following example, only one of the errors is logged,
but they are both rethrown, to be possibly handled by another
layer of the program:
{{{
scala> import cats., data., implicits._
scala> case class Err(msg: String)
scala> type F[A] = EitherT[State[String, *] , Err, A]
scala> val action: PartialFunction[Err, F[Unit] ] = {
| case Err("one") => EitherT.liftF(State.set("one"))
| }
scala> val prog1: F[Int] = (Err("one")).raiseError[F, Int]
scala> val prog2: F[Int] = (Err("two")).raiseError[F, Int]
scala> prog1.onError(action).value.run("").value
res0: (String, Either[Err,Int] ) = (one,Left(Err(one)))
scala> prog2.onError(action).value.run("").value
res1: (String, Either[Err,Int] ) = ("",Left(Err(two)))
}}}
Inhertied from
ApplicativeError
@noop
def foreverM[A, B](fa: F[A]): F[B]
Like an infinite loop of >> calls. This is most useful effect loops
that you want to run forever in for instance a server.
This will be an infinite loop, or it will return an F[Nothing] .
Be careful using this.
For instance, a List of length k will produce a list of length k^n at iteration
n. This means if k = 0, we return an empty list, if k = 1, we loop forever
allocating single element lists, but if we have a k > 1, we will allocate
exponentially increasing memory and very quickly OOM.
Inhertied from
FlatMap
def rethrow[A, EE <: E](fa: F[Either[EE, A]]): F[A]
Inverse of attempt
Example:
{{{
scala> import cats.implicits._
scala> import scala.util.{Try, Success}
scala> val a: Try[Either[Throwable, Int] ] = Success(Left(new java.lang.Exception))
scala> a.rethrow
res0: scala.util.Try[Int] = Failure(java.lang.Exception)
scala> val b: Try[Either[Throwable, Int] ] = Success(Right(1))
scala> b.rethrow
res1: scala.util.Try[Int] = Success(1)
}}}
Inhertied from
MonadError
def iterateWhileM[A](init: A)(f: A => F[A])(p: A => Boolean): F[A]
Apply a monadic function iteratively until its result fails
to satisfy the given predicate and return that result.
Inhertied from
Monad
@noop
def whileM_[A](p: F[Boolean])(body: => F[A]): F[Unit]
Execute an action repeatedly as long as the given Boolean expression
returns true. The condition is evaluated before the loop body.
Discards results.
Inhertied from
Monad
def void[A](fa: F[A]): F[Unit]
Empty the fa of the values, preserving the structure
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForList
scala> Functor[List] .void(List(1,2,3))
res0: List[Unit] = List((), (), ())
}}}
Inhertied from
Functor
def tuple2[A, B](f1: F[A], f2: F[B]): F[(A, B)]
Inhertied from
ApplyArityFunctions
def catchNonFatalEval[A](a: Eval[A])(ev: Throwable <:< E): F[A]
Often E is Throwable. Here we try to call pure or catch
and raise
Inhertied from
ApplicativeError
def redeemWith[A, B](fa: F[A])(recover: E => F[B], bind: A => F[B]): F[B]
Returns a new value that transforms the result of the source,
given the recover or bind functions, which get executed depending
on whether the result is successful or if it ends in error.
This is an optimization on usage of attempt and flatMap,
this equivalence being available:
{{{
fa.redeemWith(fe, fs) <-> fa.attempt.flatMap(_.fold(fe, fs))
}}}
Usage of redeemWith subsumes handleErrorWith because:
{{{
fa.redeemWith(fe, F.pure) <-> fa.handleErrorWith(fe)
}}}
Usage of redeemWith also subsumes flatMap because:
{{{
fa.redeemWith(F.raiseError, fs) <-> fa.flatMap(fs)
}}}
Implementations are free to override it in order to optimize
error recovery.
Value Params
bind
is the function that gets to transform the source
in case of success
fa
is the source whose result is going to get transformed
recover
is the function that gets called to recover the source
in case of error
See also
Inhertied from
MonadError
override def product[A, B](fa: F[A], fb: F[B]): F[(A, B)]
Definition Classes
FlatMap -> Apply -> Semigroupal
Inhertied from
FlatMap
def widen[A, B >: A](fa: F[A]): F[B]
Lifts natural subtyping covariance of covariant Functors.
NOTE: In certain (perhaps contrived) situations that rely on universal
equality this can result in a ClassCastException, because it is
implemented as a type cast. It could be implemented as map(identity), but
according to the functor laws, that should be equal to fa, and a type
cast is often much more performant.
See this example
of widen creating a ClassCastException.
Example:
{{{
scala> import cats.Functor
scala> import cats.implicits.catsStdInstancesForOption
scala> val s = Some(42)
scala> Functor[Option] .widen(s)
res0: Option[Int] = Some(42)
}}}
Inhertied from
Functor
@inline
final def *>[A, B](fa: F[A])(fb: F[B]): F[B]
Alias for productR.
Inhertied from
Apply
def handleErrorWith[A](fa: F[A])(f: E => F[A]): F[A]
Handle any error, potentially recovering from it, by mapping it to an
F[A] value.
See also
handleError to handle any error by simply mapping it to an A
value instead of an F[A].
recoverWith to recover from only certain errors.
Inhertied from
ApplicativeError
def attemptNarrow[EE <: Throwable, A](fa: F[A])(tag: ClassTag[EE], ev: EE <:< E): F[Either[EE, A]]
Similar to attempt, but it only handles errors of type EE.
Inhertied from
ApplicativeError
def raiseError[A](e: E): F[A]
Lift an error into the F context.
Example:
{{{
scala> import cats.implicits._
// integer-rounded division
scala> def divide[F[_] ](dividend: Int, divisor: Int)(implicit F: ApplicativeError[F, String] ): F[Int] =
| if (divisor === 0) F.raiseError("division by zero")
| else F.pure(dividend / divisor)
scala> type ErrorOr[A] = Either[String, A]
scala> divide[ErrorOr] (6, 3)
res0: ErrorOr[Int] = Right(2)
scala> divide[ErrorOr] (6, 0)
res1: ErrorOr[Int] = Left(division by zero)
}}}
Inhertied from
ApplicativeError
def productREval[A, B](fa: F[A])(fb: Eval[F[B]]): F[B]
Sequentially compose two actions, discarding any value produced by the first. This variant of
productR also lets you define the evaluation strategy of the second action. For instance
you can evaluate it only ''after'' the first action has finished:
{{{
scala> import cats.Eval
scala> import cats.implicits._
scala> val fa: Option[Int] = Some(3)
scala> def fb: Option[String] = Some("foo")
scala> fa.productREval(Eval.later(fb))
res0: Option[String] = Some(foo)
}}}
Inhertied from
FlatMap
def tailRecM[A, B](a: A)(f: A => F[Either[A, B]]): F[B]
Keeps calling f until a scala.util.Right[B] is returned.
Based on Phil Freeman's
Stack Safety for Free.
Implementations of this method should use constant stack space relative to f.
Inhertied from
FlatMap
override def ap2[A, B, Z](ff: F[(A, B) => Z])(fa: F[A], fb: F[B]): F[Z]
Definition Classes
FlatMap -> Apply
Inhertied from
FlatMap
def composeContravariantMonoidal[G <: ([_$3] =>> Any)](evidence$2: ContravariantMonoidal[G]): ContravariantMonoidal[[α] =>> F[G[α]]]
Compose an Applicative[F] and a ContravariantMonoidal[G] into a
ContravariantMonoidal[λ[α => F[G[α]]]].
Example:
{{{
scala> import cats.kernel.Comparison
scala> import cats.implicits._
// compares strings by alphabetical order
scala> val alpha: Order[String] = Order[String]
// compares strings by their length
scala> val strLength: Order[String] = Order.byString, Int
scala> val stringOrders: List[Order[String] ] = List(alpha, strLength)
// first comparison is with alpha order, second is with string length
scala> stringOrders.map(o => o.comparison("abc", "de"))
res0: List[Comparison] = List(LessThan, GreaterThan)
scala> val le = Applicative[List] .composeContravariantMonoidal[Order]
// create Int orders that convert ints to strings and then use the string orders
scala> val intOrders: List[Order[Int] ] = le.contramap(stringOrders)(_.toString)
// first comparison is with alpha order, second is with string length
scala> intOrders.map(o => o.comparison(12, 3))
res1: List[Comparison] = List(LessThan, GreaterThan)
// create the product of the string order list and the int order list
// p contains a list of the following orders:
// 1. (alpha comparison on strings followed by alpha comparison on ints)
// 2. (alpha comparison on strings followed by length comparison on ints)
// 3. (length comparison on strings followed by alpha comparison on ints)
// 4. (length comparison on strings followed by length comparison on ints)
scala> val p: List[Order[(String, Int)] ] = le.product(stringOrders, intOrders)
scala> p.map(o => o.comparison(("abc", 12), ("def", 3)))
res2: List[Comparison] = List(LessThan, LessThan, LessThan, GreaterThan)
}}}
Inhertied from
Applicative
@inline
final def <*>[A, B](ff: F[A => B])(fa: F[A]): F[B]
Alias for ap.
Inhertied from
Apply