A B C F G I L N O R S T U
All Classes All Packages
All Classes All Packages
All Classes All Packages
A
- AbstractCrossover<ST,PT> - Class in science.aist.machinelearning.algorithm.ga.crossover
- AbstractCrossover() - Constructor for class science.aist.machinelearning.algorithm.ga.crossover.AbstractCrossover
- addIndividual(Solution<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Adds an inidivual to the population only if the population size was not yet exceeded
B
- bestQuality(Solution<GT, PT>, Solution<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Calculate the bestQuality of the two solutions.
- bestSolution - Variable in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Best currently known solution
- breed(List<Solution<ST, PT>>, Selector<ST, PT>) - Method in class science.aist.machinelearning.algorithm.ga.crossover.AbstractCrossover
- breed(List<Solution<ST, PT>>, Selector<ST, PT>) - Method in interface science.aist.machinelearning.algorithm.ga.Crossover
- breedTwo(Solution<ST, PT>, Solution<ST, PT>) - Method in class science.aist.machinelearning.algorithm.ga.crossover.AbstractCrossover
- breedTwo(Solution<ST, PT>, Solution<ST, PT>) - Method in class science.aist.machinelearning.algorithm.ga.crossover.OnePointCrossover
- breedTwo(Solution<ST, PT>, Solution<ST, PT>) - Method in class science.aist.machinelearning.algorithm.ga.crossover.UniformCrossover
C
- Crossover<ST,PT> - Interface in science.aist.machinelearning.algorithm.ga
- crossoverRate - Variable in class science.aist.machinelearning.algorithm.ga.crossover.UniformCrossover
F
- finalizeLog(Problem<PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Helper function that is called after the last generation was created
G
- GeneticAlgorithm<GT,PT> - Class in science.aist.machinelearning.algorithm.ga
-
Standard genetic algorithm implementation
- GeneticAlgorithm() - Constructor for class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
- getCrossover() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
- getCrossoverPoint() - Method in class science.aist.machinelearning.algorithm.ga.crossover.OnePointCrossover
- getCrossoverRate() - Method in class science.aist.machinelearning.algorithm.ga.crossover.UniformCrossover
- getElites() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
- getMaximumGenerations() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
- getMutationProbability() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
- getMutator() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
- getOptions() - Method in class science.aist.machinelearning.algorithm.ga.crossover.OnePointCrossover
- getOptions() - Method in class science.aist.machinelearning.algorithm.ga.crossover.UniformCrossover
- getOptions() - Method in class science.aist.machinelearning.algorithm.ga.selector.TournamentSelector
- getPopulation() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Returns a COPY of the current population.
- getPopulationSize() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
- getSelector() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
- getSpecificOptions() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
- getTournamentSize() - Method in class science.aist.machinelearning.algorithm.ga.selector.TournamentSelector
I
- initializeLog(Problem<PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Creates the log headers, and logs the current algorithm configuration
L
- logSolution(Solution<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Log the given mapping with analytics.
N
- nextGeneration(Problem<PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Calculates one single generation until all generations are full If all generations have been calculated, it returns null
O
- OnePointCrossover<ST,PT> - Class in science.aist.machinelearning.algorithm.ga.crossover
-
GenericCrossover that splits both individuals by half.
- OnePointCrossover() - Constructor for class science.aist.machinelearning.algorithm.ga.crossover.OnePointCrossover
R
- removeIndividual(Solution<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Removes an individual from the population.
- reset() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Helper function that resets the state of the genetic algorithm as if it never did anything NOTE: This does not currently reset the analytics.
- runs - Static variable in class science.aist.machinelearning.algorithm.ga.crossover.OnePointCrossover
S
- science.aist.machinelearning.algorithm.ga - package science.aist.machinelearning.algorithm.ga
- science.aist.machinelearning.algorithm.ga.crossover - package science.aist.machinelearning.algorithm.ga.crossover
- science.aist.machinelearning.algorithm.ga.selector - package science.aist.machinelearning.algorithm.ga.selector
- select(List<Solution<GT, PT>>) - Method in class science.aist.machinelearning.algorithm.ga.selector.TournamentSelector
- select(List<Solution<ST, PT>>) - Method in interface science.aist.machinelearning.algorithm.ga.Selector
- Selector<ST,PT> - Interface in science.aist.machinelearning.algorithm.ga
- setCrossover(Crossover<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Setter for dependency injection
- setCrossoverPoint(double) - Method in class science.aist.machinelearning.algorithm.ga.crossover.OnePointCrossover
- setCrossoverRate(double) - Method in class science.aist.machinelearning.algorithm.ga.crossover.UniformCrossover
- setElites(int) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Setter for configuration
- setGenMutator(Mutator<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Setter for dependency injection
- setMaximumGenerations(int) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Setter for configuration
- setMutationProbability(double) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Setter for configuration
- setOption(String, Descriptor) - Method in class science.aist.machinelearning.algorithm.ga.crossover.OnePointCrossover
- setOption(String, Descriptor) - Method in class science.aist.machinelearning.algorithm.ga.crossover.UniformCrossover
- setOption(String, Descriptor) - Method in class science.aist.machinelearning.algorithm.ga.selector.TournamentSelector
- setPopulationSize(int) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Setter for configuration
- setSelector(Selector<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
-
Setter for dependency injection
- setSpecificOption(String, Descriptor) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
- setTournamentSize(int) - Method in class science.aist.machinelearning.algorithm.ga.selector.TournamentSelector
- solve(Problem<PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
- solve(Problem<PT>, Solution<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
T
- TournamentSelector<GT,PT> - Class in science.aist.machinelearning.algorithm.ga.selector
-
The tournament selector "holds a tournament" by randomly selecting solutions from the population.
- TournamentSelector() - Constructor for class science.aist.machinelearning.algorithm.ga.selector.TournamentSelector
U
- UniformCrossover<ST,PT> - Class in science.aist.machinelearning.algorithm.ga.crossover
- UniformCrossover() - Constructor for class science.aist.machinelearning.algorithm.ga.crossover.UniformCrossover
All Classes All Packages