A B C F G I L N O R S T U 
All Classes All Packages

A

AbstractCrossover<ST,​PT> - Class in science.aist.machinelearning.algorithm.ga.crossover
 
AbstractCrossover() - Constructor for class science.aist.machinelearning.algorithm.ga.crossover.AbstractCrossover
 
addIndividual(Solution<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Adds an inidivual to the population only if the population size was not yet exceeded

B

bestQuality(Solution<GT, PT>, Solution<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Calculate the bestQuality of the two solutions.
bestSolution - Variable in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Best currently known solution
breed(List<Solution<ST, PT>>, Selector<ST, PT>) - Method in class science.aist.machinelearning.algorithm.ga.crossover.AbstractCrossover
 
breed(List<Solution<ST, PT>>, Selector<ST, PT>) - Method in interface science.aist.machinelearning.algorithm.ga.Crossover
 
breedTwo(Solution<ST, PT>, Solution<ST, PT>) - Method in class science.aist.machinelearning.algorithm.ga.crossover.AbstractCrossover
 
breedTwo(Solution<ST, PT>, Solution<ST, PT>) - Method in class science.aist.machinelearning.algorithm.ga.crossover.OnePointCrossover
 
breedTwo(Solution<ST, PT>, Solution<ST, PT>) - Method in class science.aist.machinelearning.algorithm.ga.crossover.UniformCrossover
 

C

Crossover<ST,​PT> - Interface in science.aist.machinelearning.algorithm.ga
 
crossoverRate - Variable in class science.aist.machinelearning.algorithm.ga.crossover.UniformCrossover
 

F

finalizeLog(Problem<PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Helper function that is called after the last generation was created

G

GeneticAlgorithm<GT,​PT> - Class in science.aist.machinelearning.algorithm.ga
Standard genetic algorithm implementation
GeneticAlgorithm() - Constructor for class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
 
getCrossover() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
 
getCrossoverPoint() - Method in class science.aist.machinelearning.algorithm.ga.crossover.OnePointCrossover
 
getCrossoverRate() - Method in class science.aist.machinelearning.algorithm.ga.crossover.UniformCrossover
 
getElites() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
 
getMaximumGenerations() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
 
getMutationProbability() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
 
getMutator() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
 
getOptions() - Method in class science.aist.machinelearning.algorithm.ga.crossover.OnePointCrossover
 
getOptions() - Method in class science.aist.machinelearning.algorithm.ga.crossover.UniformCrossover
 
getOptions() - Method in class science.aist.machinelearning.algorithm.ga.selector.TournamentSelector
 
getPopulation() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Returns a COPY of the current population.
getPopulationSize() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
 
getSelector() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
 
getSpecificOptions() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
 
getTournamentSize() - Method in class science.aist.machinelearning.algorithm.ga.selector.TournamentSelector
 

I

initializeLog(Problem<PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Creates the log headers, and logs the current algorithm configuration

L

logSolution(Solution<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Log the given mapping with analytics.

N

nextGeneration(Problem<PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Calculates one single generation until all generations are full If all generations have been calculated, it returns null

O

OnePointCrossover<ST,​PT> - Class in science.aist.machinelearning.algorithm.ga.crossover
GenericCrossover that splits both individuals by half.
OnePointCrossover() - Constructor for class science.aist.machinelearning.algorithm.ga.crossover.OnePointCrossover
 

R

removeIndividual(Solution<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Removes an individual from the population.
reset() - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Helper function that resets the state of the genetic algorithm as if it never did anything NOTE: This does not currently reset the analytics.
runs - Static variable in class science.aist.machinelearning.algorithm.ga.crossover.OnePointCrossover
 

S

science.aist.machinelearning.algorithm.ga - package science.aist.machinelearning.algorithm.ga
 
science.aist.machinelearning.algorithm.ga.crossover - package science.aist.machinelearning.algorithm.ga.crossover
 
science.aist.machinelearning.algorithm.ga.selector - package science.aist.machinelearning.algorithm.ga.selector
 
select(List<Solution<GT, PT>>) - Method in class science.aist.machinelearning.algorithm.ga.selector.TournamentSelector
 
select(List<Solution<ST, PT>>) - Method in interface science.aist.machinelearning.algorithm.ga.Selector
 
Selector<ST,​PT> - Interface in science.aist.machinelearning.algorithm.ga
 
setCrossover(Crossover<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Setter for dependency injection
setCrossoverPoint(double) - Method in class science.aist.machinelearning.algorithm.ga.crossover.OnePointCrossover
 
setCrossoverRate(double) - Method in class science.aist.machinelearning.algorithm.ga.crossover.UniformCrossover
 
setElites(int) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Setter for configuration
setGenMutator(Mutator<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Setter for dependency injection
setMaximumGenerations(int) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Setter for configuration
setMutationProbability(double) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Setter for configuration
setOption(String, Descriptor) - Method in class science.aist.machinelearning.algorithm.ga.crossover.OnePointCrossover
 
setOption(String, Descriptor) - Method in class science.aist.machinelearning.algorithm.ga.crossover.UniformCrossover
 
setOption(String, Descriptor) - Method in class science.aist.machinelearning.algorithm.ga.selector.TournamentSelector
 
setPopulationSize(int) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Setter for configuration
setSelector(Selector<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
Setter for dependency injection
setSpecificOption(String, Descriptor) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
 
setTournamentSize(int) - Method in class science.aist.machinelearning.algorithm.ga.selector.TournamentSelector
 
solve(Problem<PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
 
solve(Problem<PT>, Solution<GT, PT>) - Method in class science.aist.machinelearning.algorithm.ga.GeneticAlgorithm
 

T

TournamentSelector<GT,​PT> - Class in science.aist.machinelearning.algorithm.ga.selector
The tournament selector "holds a tournament" by randomly selecting solutions from the population.
TournamentSelector() - Constructor for class science.aist.machinelearning.algorithm.ga.selector.TournamentSelector
 

U

UniformCrossover<ST,​PT> - Class in science.aist.machinelearning.algorithm.ga.crossover
 
UniformCrossover() - Constructor for class science.aist.machinelearning.algorithm.ga.crossover.UniformCrossover
 
A B C F G I L N O R S T U 
All Classes All Packages