Packages

class ParHashMap[K, +V] extends ParMap[K, V] with GenericParMapTemplate[K, V, ParHashMap] with ParMapLike[K, V, ParHashMap, ParHashMap[K, V], OldHashMap[K, V]] with Serializable

Immutable parallel hash map, based on hash tries.

This is a base trait for Scala parallel collections. It defines behaviour common to all parallel collections. Concrete parallel collections should inherit this trait and ParIterable if they want to define specific combiner factories.

Parallel operations are implemented with divide and conquer style algorithms that parallelize well. The basic idea is to split the collection into smaller parts until they are small enough to be operated on sequentially.

All of the parallel operations are implemented as tasks within this trait. Tasks rely on the concept of splitters, which extend iterators. Every parallel collection defines:

def splitter: IterableSplitter[T]

which returns an instance of IterableSplitter[T], which is a subtype of Splitter[T]. Splitters have a method remaining to check the remaining number of elements, and method split which is defined by splitters. Method split divides the splitters iterate over into disjunct subsets:

def split: Seq[Splitter]

which splits the splitter into a sequence of disjunct subsplitters. This is typically a very fast operation which simply creates wrappers around the receiver collection. This can be repeated recursively.

Tasks are scheduled for execution through a scala.collection.parallel.TaskSupport object, which can be changed through the tasksupport setter of the collection.

Method newCombiner produces a new combiner. Combiners are an extension of builders. They provide a method combine which combines two combiners and returns a combiner containing elements of both combiners. This method can be implemented by aggressively copying all the elements into the new combiner or by lazily binding their results. It is recommended to avoid copying all of the elements for performance reasons, although that cost might be negligible depending on the use case. Standard parallel collection combiners avoid copying when merging results, relying either on a two-step lazy construction or specific data-structure properties.

Methods:

def seq: Sequential
def par: Repr

produce the sequential or parallel implementation of the collection, respectively. Method par just returns a reference to this parallel collection. Method seq is efficient - it will not copy the elements. Instead, it will create a sequential version of the collection using the same underlying data structure. Note that this is not the case for sequential collections in general - they may copy the elements and produce a different underlying data structure.

The combination of methods toMap, toSeq or toSet along with par and seq is a flexible way to change between different collection types.

Since this trait extends the GenIterable trait, methods like size must also be implemented in concrete collections, while iterator forwards to splitter by default.

Each parallel collection is bound to a specific fork/join pool, on which dormant worker threads are kept. The fork/join pool contains other information such as the parallelism level, that is, the number of processors used. When a collection is created, it is assigned the default fork/join pool found in the scala.parallel package object.

Parallel collections are not necessarily ordered in terms of the foreach operation (see Traversable). Parallel sequences have a well defined order for iterators - creating an iterator and traversing the elements linearly will always yield the same order. However, bulk operations such as foreach, map or filter always occur in undefined orders for all parallel collections.

Existing parallel collection implementations provide strict parallel iterators. Strict parallel iterators are aware of the number of elements they have yet to traverse. It's also possible to provide non-strict parallel iterators, which do not know the number of elements remaining. To do this, the new collection implementation must override isStrictSplitterCollection to false. This will make some operations unavailable.

To create a new parallel collection, extend the ParIterable trait, and implement size, splitter, newCombiner and seq. Having an implicit combiner factory requires extending this trait in addition, as well as providing a companion object, as with regular collections.

Method size is implemented as a constant time operation for parallel collections, and parallel collection operations rely on this assumption.

The higher-order functions passed to certain operations may contain side-effects. Since implementations of bulk operations may not be sequential, this means that side-effects may not be predictable and may produce data-races, deadlocks or invalidation of state if care is not taken. It is up to the programmer to either avoid using side-effects or to use some form of synchronization when accessing mutable data.

K

the key type of the map

V

the value type of the map

Self Type
ParHashMap[K, V]
Annotations
@SerialVersionUID()
See also

Scala's Parallel Collections Library overview section on Parallel Hash Tries for more information.

Linear Supertypes
java.io.Serializable, ParMap[K, V], ParMapLike[K, V, [X, Y]ParHashMap[X, Y], ParHashMap[K, V], OldHashMap[K, V]], ParIterable[(K, V)], parallel.ParMap[K, V], parallel.ParMapLike[K, V, [X, Y]ParHashMap[X, Y], ParHashMap[K, V], OldHashMap[K, V]], Equals, parallel.ParIterable[(K, V)], ParIterableLike[(K, V), [X]ParIterable[X], ParHashMap[K, V], OldHashMap[K, V]], Parallel, CustomParallelizable[(K, V) @scala.annotation.unchecked.uncheckedVariance, ParHashMap[K, V]], Parallelizable[(K, V) @scala.annotation.unchecked.uncheckedVariance, ParHashMap[K, V]], IterableOnce[(K, V) @scala.annotation.unchecked.uncheckedVariance], GenericParMapTemplate[K, V, [X, Y]ParHashMap[X, Y]], GenericParTemplate[(K, V), [X]ParIterable[X]], HasNewCombiner[(K, V) @scala.annotation.unchecked.uncheckedVariance, ParHashMap[K, V]], GenericTraversableTemplate[(K, V), [X]ParIterable[X]], HasNewBuilder[(K, V), scala.collection.parallel.immutable.ParIterable[(K, V)] @scala.annotation.unchecked.uncheckedVariance], AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ParHashMap
  2. Serializable
  3. ParMap
  4. ParMapLike
  5. ParIterable
  6. ParMap
  7. ParMapLike
  8. Equals
  9. ParIterable
  10. ParIterableLike
  11. Parallel
  12. CustomParallelizable
  13. Parallelizable
  14. IterableOnce
  15. GenericParMapTemplate
  16. GenericParTemplate
  17. HasNewCombiner
  18. GenericTraversableTemplate
  19. HasNewBuilder
  20. AnyRef
  21. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Instance Constructors

  1. new ParHashMap()

Type Members

  1. trait Accessor[R, Tp] extends StrictSplitterCheckTask[R, Tp]

    Standard accessor task that iterates over the elements of the collection.

    Standard accessor task that iterates over the elements of the collection.

    R

    type of the result of this method (R for result).

    Tp

    the representation type of the task at hand.

    Attributes
    protected
    Definition Classes
    ParIterableLike
  2. class Aggregate[S] extends Accessor[S, Aggregate[S]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  3. trait BuilderOps[Elem, To] extends AnyRef
    Definition Classes
    ParIterableLike
  4. class Collect[S, That] extends Transformer[Combiner[S, That], Collect[S, That]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  5. abstract class Composite[FR, SR, R, First <: StrictSplitterCheckTask[FR, _], Second <: StrictSplitterCheckTask[SR, _]] extends NonDivisibleTask[R, Composite[FR, SR, R, First, Second]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  6. class Copy[U >: T, That] extends Transformer[Combiner[U, That], Copy[U, That]]
    Attributes
    protected
    Definition Classes
    ParIterableLike
  7. class CopyToArray[U >: T, This >: Repr] extends Accessor[Unit, CopyToArray[U, This]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  8. class Count extends Accessor[Int, Count]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  9. class CreateScanTree[U >: T] extends Transformer[ScanTree[U], CreateScanTree[U]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  10. class Drop[U >: T, This >: Repr] extends Transformer[Combiner[U, This], Drop[U, This]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  11. class Exists extends Accessor[Boolean, Exists]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  12. class Filter[U >: T, This >: Repr] extends Transformer[Combiner[U, This], Filter[U, This]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  13. class FilterNot[U >: T, This >: Repr] extends Transformer[Combiner[U, This], FilterNot[U, This]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  14. class Find[U >: T] extends Accessor[Option[U], Find[U]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  15. class FlatMap[S, That] extends Transformer[Combiner[S, That], FlatMap[S, That]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  16. class Fold[U >: T] extends Accessor[U, Fold[U]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  17. class Forall extends Accessor[Boolean, Forall]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  18. class Foreach[S] extends Accessor[Unit, Foreach[S]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  19. class FromScanTree[U >: T, That] extends StrictSplitterCheckTask[Combiner[U, That], FromScanTree[U, That]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  20. class GroupBy[K, U >: T] extends Transformer[HashMapCombiner[K, U], GroupBy[K, U]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  21. class Map[S, That] extends Transformer[Combiner[S, That], Map[S, That]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  22. class Max[U >: T] extends Accessor[Option[U], Max[U]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  23. class Min[U >: T] extends Accessor[Option[U], Min[U]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  24. trait NonDivisible[R] extends NonDivisibleTask[R, NonDivisible[R]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  25. trait NonDivisibleTask[R, Tp] extends StrictSplitterCheckTask[R, Tp]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  26. abstract class ParComposite[FR, SR, R, First <: StrictSplitterCheckTask[FR, _], Second <: StrictSplitterCheckTask[SR, _]] extends Composite[FR, SR, R, First, Second]

    Performs two tasks in parallel, and waits for both to finish.

    Performs two tasks in parallel, and waits for both to finish.

    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  27. class Partition[U >: T, This >: Repr] extends Transformer[(Combiner[U, This], Combiner[U, This]), Partition[U, This]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  28. class Product[U >: T] extends Accessor[U, Product[U]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  29. class Reduce[U >: T] extends Accessor[Option[U], Reduce[U]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  30. abstract class ResultMapping[R, Tp, R1] extends NonDivisibleTask[R1, ResultMapping[R, Tp, R1]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  31. case class ScanLeaf[U >: T](pit: IterableSplitter[U], op: (U, U) => U, from: Int, len: Int, prev: Option[ScanLeaf[U]], acc: U) extends ScanTree[U] with scala.Product with Serializable
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  32. case class ScanNode[U >: T](left: ScanTree[U], right: ScanTree[U]) extends ScanTree[U] with scala.Product with Serializable
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  33. sealed trait ScanTree[U >: T] extends AnyRef
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  34. abstract class SeqComposite[FR, SR, R, First <: StrictSplitterCheckTask[FR, _], Second <: StrictSplitterCheckTask[SR, _]] extends Composite[FR, SR, R, First, Second]

    Sequentially performs one task after another.

    Sequentially performs one task after another.

    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  35. trait SignallingOps[PI <: DelegatedSignalling] extends AnyRef
    Definition Classes
    ParIterableLike
  36. class Slice[U >: T, This >: Repr] extends Transformer[Combiner[U, This], Slice[U, This]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  37. class Span[U >: T, This >: Repr] extends Transformer[(Combiner[U, This], Combiner[U, This]), Span[U, This]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  38. class SplitAt[U >: T, This >: Repr] extends Transformer[(Combiner[U, This], Combiner[U, This]), SplitAt[U, This]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  39. trait StrictSplitterCheckTask[R, Tp] extends Task[R, Tp]
    Attributes
    protected
    Definition Classes
    ParIterableLike
  40. class Sum[U >: T] extends Accessor[U, Sum[U]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  41. class Take[U >: T, This >: Repr] extends Transformer[Combiner[U, This], Take[U, This]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  42. class TakeWhile[U >: T, This >: Repr] extends Transformer[(Combiner[U, This], Boolean), TakeWhile[U, This]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  43. trait TaskOps[R, Tp] extends AnyRef
    Definition Classes
    ParIterableLike
  44. class ToParCollection[U >: T, That] extends Transformer[Combiner[U, That], ToParCollection[U, That]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  45. class ToParMap[K, V, That] extends Transformer[Combiner[(K, V), That], ToParMap[K, V, That]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  46. trait Transformer[R, Tp] extends Accessor[R, Tp]
    Attributes
    protected
    Definition Classes
    ParIterableLike
  47. class Zip[U >: T, S, That] extends Transformer[Combiner[(U, S), That], Zip[U, S, That]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  48. class ZipAll[U >: T, S, That] extends Transformer[Combiner[(U, S), That], ZipAll[U, S, That]]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  49. class DefaultKeySet extends ParSet[K]
    Attributes
    protected
    Definition Classes
    ParMapLike
  50. class DefaultValuesIterable extends ParIterable[V]
    Attributes
    protected
    Definition Classes
    ParMapLike
  51. class ParHashMapIterator extends IterableSplitter[(K, V)]
  52. type SSCTask[R, Tp] = StrictSplitterCheckTask[R, Tp]
    Definition Classes
    ParIterableLike

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##: Int
    Definition Classes
    AnyRef → Any
  3. def +[U >: V](kv: (K, U)): ParHashMap[K, U]
    Definition Classes
    ParHashMapParMapLikeParMapLike
  4. final def ++[V2 >: V](xs: IterableOnce[(K, V2)]): ParHashMap[K, V2]

    Alias for concat

    Alias for concat

    Definition Classes
    ParMapLike
    Annotations
    @inline()
  5. def ++[U >: (K, V)](that: scala.IterableOnce[U]): ParIterable[U]
    Definition Classes
    ParIterableLike
  6. def -(k: K): ParHashMap[K, V]
    Definition Classes
    ParHashMapParMapLikeParMapLike
  7. def /:[S](z: S)(op: (S, (K, V)) => S): S
    Definition Classes
    ParIterableLike
  8. def :\[S](z: S)(op: ((K, V), S) => S): S
    Definition Classes
    ParIterableLike
  9. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  10. def aggregate[S](z: => S)(seqop: (S, (K, V)) => S, combop: (S, S) => S): S

    Aggregates the results of applying an operator to subsequent elements.

    Aggregates the results of applying an operator to subsequent elements.

    This is a more general form of fold and reduce. It has similar semantics, but does not require the result to be a supertype of the element type. It traverses the elements in different partitions sequentially, using seqop to update the result, and then applies combop to results from different partitions. The implementation of this operation may operate on an arbitrary number of collection partitions, so combop may be invoked arbitrary number of times.

    For example, one might want to process some elements and then produce a Set. In this case, seqop would process an element and append it to the set, while combop would concatenate two sets from different partitions together. The initial value z would be an empty set.

    pc.aggregate(Set[Int]())(_ += process(_), _ ++ _)

    Another example is calculating geometric mean from a collection of doubles (one would typically require big doubles for this).

    S

    the type of accumulated results

    z

    the initial value for the accumulated result of the partition - this will typically be the neutral element for the seqop operator (e.g. Nil for list concatenation or 0 for summation) and may be evaluated more than once

    seqop

    an operator used to accumulate results within a partition

    combop

    an associative operator used to combine results from different partitions

    Definition Classes
    ParIterableLike
  11. def apply(key: K): V
    Definition Classes
    ParMapLike
  12. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  13. implicit def builder2ops[Elem, To](cb: Builder[Elem, To]): BuilderOps[Elem, To]
    Attributes
    protected
    Definition Classes
    ParIterableLike
  14. def canEqual(that: Any): Boolean
    Definition Classes
    ParMapLike → Equals
  15. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native()
  16. def collect[K2, V2](pf: PartialFunction[(K, V), (K2, V2)]): ParHashMap[K2, V2]

    Builds a new collection by applying a partial function to all elements of this immutable parallel hash map on which the function is defined.

    Builds a new collection by applying a partial function to all elements of this immutable parallel hash map on which the function is defined.

    K2

    the key type of the returned immutable parallel hash map.

    V2

    the value type of the returned immutable parallel hash map.

    pf

    the partial function which filters and maps the immutable parallel hash map.

    returns

    a new immutable parallel hash map resulting from applying the given partial function pf to each element on which it is defined and collecting the results. The order of the elements is preserved.

    Definition Classes
    ParMapLike
  17. def collect[S](pf: PartialFunction[(K, V), S]): ParIterable[S]
    Definition Classes
    ParIterableLike
  18. def combinerFactory[S, That](cbf: () => Combiner[S, That]): CombinerFactory[S, That]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  19. def combinerFactory: CombinerFactory[(K, V), ParHashMap[K, V]]

    Creates a combiner factory.

    Creates a combiner factory. Each combiner factory instance is used once per invocation of a parallel transformer method for a single collection.

    The default combiner factory creates a new combiner every time it is requested, unless the combiner is thread-safe as indicated by its canBeShared method. In this case, the method returns a factory which returns the same combiner each time. This is typically done for concurrent parallel collections, the combiners of which allow thread safe access.

    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  20. def companion: GenericParCompanion[ParIterable]

    The factory companion object that builds instances of class immutable.ParHashMap.

    The factory companion object that builds instances of class immutable.ParHashMap. (or its Iterable superclass where class immutable.ParHashMap is not a Seq.)

    Definition Classes
    ParIterableParIterableParIterableLikeGenericParTemplateGenericTraversableTemplate
  21. def concat[V2 >: V](that: IterableOnce[(K, V2)]): ParHashMap[K, V2]

    Returns a new immutable parallel hash map containing the elements from the left hand operand followed by the elements from the right hand operand.

    Returns a new immutable parallel hash map containing the elements from the left hand operand followed by the elements from the right hand operand. The element type of the immutable parallel hash map is the most specific superclass encompassing the element types of the two operands.

    that

    the collection or iterator to append.

    returns

    a new immutable parallel hash map which contains all elements of this immutable parallel hash map followed by all elements of suffix.

    Definition Classes
    ParMapLike
  22. def contains(key: K): Boolean
    Definition Classes
    ParMapLike
  23. def copyToArray[U >: (K, V)](xs: Array[U], start: Int, len: Int): Unit
    Definition Classes
    ParIterableLike
  24. def copyToArray[U >: (K, V)](xs: Array[U], start: Int): Unit
    Definition Classes
    ParIterableLike
  25. def copyToArray[U >: (K, V)](xs: Array[U]): Unit
    Definition Classes
    ParIterableLike
  26. def count(p: ((K, V)) => Boolean): Int
    Definition Classes
    ParIterableLike
  27. def debugBuffer: ArrayBuffer[String]
    Definition Classes
    ParIterableLike
  28. def default(key: K): V
    Definition Classes
    ParMapLike
  29. implicit def delegatedSignalling2ops[PI <: DelegatedSignalling](it: PI): SignallingOps[PI]
    Attributes
    protected
    Definition Classes
    ParIterableLike
  30. def drop(n: Int): ParHashMap[K, V]
    Definition Classes
    ParIterableLike
  31. def dropWhile(pred: ((K, V)) => Boolean): ParHashMap[K, V]

    Drops all elements in the longest prefix of elements that satisfy the predicate, and returns a collection composed of the remaining elements.

    Drops all elements in the longest prefix of elements that satisfy the predicate, and returns a collection composed of the remaining elements.

    This method will use indexFlag signalling capabilities. This means that splitters may set and read the indexFlag state. The index flag is initially set to maximum integer value.

    pred

    the predicate used to test the elements

    returns

    a collection composed of all the elements after the longest prefix of elements in this immutable parallel hash map that satisfy the predicate pred

    Definition Classes
    ParIterableLike
  32. def empty: ParHashMap[K, V]
    Definition Classes
    ParHashMapParMapParMapLikeParMapParMapLike
  33. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  34. def equals(that: Any): Boolean

    Compares two maps structurally; i.e., checks if all mappings contained in this map are also contained in the other map, and vice versa.

    Compares two maps structurally; i.e., checks if all mappings contained in this map are also contained in the other map, and vice versa.

    that

    the other map

    returns

    true if both maps contain exactly the same mappings, false otherwise.

    Definition Classes
    ParMapLike → Equals → AnyRef → Any
  35. def exists(p: ((K, V)) => Boolean): Boolean

    Tests whether a predicate holds for some element of this immutable parallel hash map.

    Tests whether a predicate holds for some element of this immutable parallel hash map.

    This method will use abort signalling capabilities. This means that splitters may send and read abort signals.

    p

    a predicate used to test elements

    returns

    true if p holds for some element, false otherwise

    Definition Classes
    ParIterableLike
  36. def filter(pred: ((K, V)) => Boolean): ParHashMap[K, V]
    Definition Classes
    ParIterableLike
  37. def filterKeys(p: (K) => Boolean): parallel.ParMap[K, V]
    Definition Classes
    ParMapLike
  38. def filterNot(pred: ((K, V)) => Boolean): ParHashMap[K, V]
    Definition Classes
    ParIterableLike
  39. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable])
  40. def find(p: ((K, V)) => Boolean): Option[(K, V)]

    Finds some element in the collection for which the predicate holds, if such an element exists.

    Finds some element in the collection for which the predicate holds, if such an element exists. The element may not necessarily be the first such element in the iteration order.

    If there are multiple elements obeying the predicate, the choice is nondeterministic.

    This method will use abort signalling capabilities. This means that splitters may send and read abort signals.

    p

    predicate used to test the elements

    returns

    an option value with the element if such an element exists, or None otherwise

    Definition Classes
    ParIterableLike
  41. def flatMap[K2, V2](f: ((K, V)) => IterableOnce[(K2, V2)]): ParHashMap[K2, V2]

    Builds a new map by applying a function to all elements of this immutable parallel hash map and using the elements of the resulting collections.

    Builds a new map by applying a function to all elements of this immutable parallel hash map and using the elements of the resulting collections.

    f

    the function to apply to each element.

    returns

    a new immutable parallel hash map resulting from applying the given collection-valued function f to each element of this immutable parallel hash map and concatenating the results.

    Definition Classes
    ParMapLike
  42. def flatMap[S](f: ((K, V)) => scala.IterableOnce[S]): ParIterable[S]
    Definition Classes
    ParIterableLike
  43. def flatten[B]: <error>

    [use case] Converts this immutable parallel hash map of traversable collections into a immutable parallel hash map formed by the elements of these traversable collections.

    [use case]

    Converts this immutable parallel hash map of traversable collections into a immutable parallel hash map formed by the elements of these traversable collections.

    The resulting collection's type will be guided by the static type of immutable parallel hash map. For example:

    val xs = List(
               Set(1, 2, 3),
               Set(1, 2, 3)
             ).flatten
    // xs == List(1, 2, 3, 1, 2, 3)
    
    val ys = Set(
               List(1, 2, 3),
               List(3, 2, 1)
             ).flatten
    // ys == Set(1, 2, 3)
    B

    the type of the elements of each traversable collection.

    returns

    a new immutable parallel hash map resulting from concatenating all element immutable parallel hash maps.

    Definition Classes
    GenericTraversableTemplate
    Full Signature

    def flatten[B](implicit asTraversable: ((K, V)) => scala.IterableOnce[B]): ParIterable[B]

  44. def fold[U >: (K, V)](z: U)(op: (U, U) => U): U

    Folds the elements of this sequence using the specified associative binary operator.

    Folds the elements of this sequence using the specified associative binary operator. The order in which the elements are reduced is unspecified and may be nondeterministic.

    Note this method has a different signature than the foldLeft and foldRight methods of the trait Traversable. The result of folding may only be a supertype of this parallel collection's type parameter T.

    U

    a type parameter for the binary operator, a supertype of T.

    z

    a neutral element for the fold operation, it may be added to the result an arbitrary number of times, not changing the result (e.g. Nil for list concatenation, 0 for addition, or 1 for multiplication)

    op

    a binary operator that must be associative

    returns

    the result of applying fold operator op between all the elements and z

    Definition Classes
    ParIterableLike
  45. def foldLeft[S](z: S)(op: (S, (K, V)) => S): S
    Definition Classes
    ParIterableLike
  46. def foldRight[S](z: S)(op: ((K, V), S) => S): S
    Definition Classes
    ParIterableLike
  47. def forall(p: ((K, V)) => Boolean): Boolean

    Tests whether a predicate holds for all elements of this immutable parallel hash map.

    Tests whether a predicate holds for all elements of this immutable parallel hash map.

    This method will use abort signalling capabilities. This means that splitters may send and read abort signals.

    p

    a predicate used to test elements

    returns

    true if p holds for all elements, false otherwise

    Definition Classes
    ParIterableLike
  48. def foreach[U](f: ((K, V)) => U): Unit

    Applies a function f to all the elements of immutable parallel hash map in an undefined order.

    Applies a function f to all the elements of immutable parallel hash map in an undefined order.

    U

    the result type of the function applied to each element, which is always discarded

    f

    function applied to each element

    Definition Classes
    ParIterableLike
  49. def genericBuilder[B]: Combiner[B, ParIterable[B]]

    The generic builder that builds instances of immutable.ParHashMap at arbitrary element types.

    The generic builder that builds instances of immutable.ParHashMap at arbitrary element types.

    Definition Classes
    GenericParTemplateGenericTraversableTemplate
  50. def genericCombiner[B]: Combiner[B, ParIterable[B]]
    Definition Classes
    GenericParTemplate
  51. def genericMapCombiner[P, Q]: Combiner[(P, Q), ParHashMap[P, Q]]
    Definition Classes
    GenericParMapTemplate
  52. def get(k: K): Option[V]
    Definition Classes
    ParHashMapParMapLike
  53. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  54. def getOrElse[U >: V](key: K, default: => U): U
    Definition Classes
    ParMapLike
  55. def groupBy[K](f: ((K, V)) => K): ParMap[K, ParHashMap[K, V]]
    Definition Classes
    ParIterableLike
  56. def hasDefiniteSize: Boolean
    Definition Classes
    ParIterableLike
  57. def hashCode(): Int
    Definition Classes
    ParMapLike → AnyRef → Any
  58. def head: (K, V)
    Definition Classes
    ParIterableLike
  59. def headOption: Option[(K, V)]
    Definition Classes
    ParIterableLike
  60. def init: ParHashMap[K, V]
    Definition Classes
    ParIterableLike
  61. def initTaskSupport(): Unit
    Attributes
    protected
    Definition Classes
    ParIterableLike
  62. def isDefinedAt(key: K): Boolean
    Definition Classes
    ParMapLike
  63. def isEmpty: Boolean
    Definition Classes
    ParIterableLike
  64. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  65. def isStrictSplitterCollection: Boolean

    Denotes whether this parallel collection has strict splitters.

    Denotes whether this parallel collection has strict splitters.

    This is true in general, and specific collection instances may choose to override this method. Such collections will fail to execute methods which rely on splitters being strict, i.e. returning a correct value in the remaining method.

    This method helps ensure that such failures occur on method invocations, rather than later on and in unpredictable ways.

    Definition Classes
    ParIterableLike
  66. final def isTraversableAgain: Boolean
    Definition Classes
    ParIterableLike
  67. def iterator: Splitter[(K, V)]

    Creates a new split iterator used to traverse the elements of this collection.

    Creates a new split iterator used to traverse the elements of this collection.

    By default, this method is implemented in terms of the protected splitter method.

    returns

    a split iterator

    Definition Classes
    ParIterableLike → IterableOnce
  68. def keySet: parallel.ParSet[K]
    Definition Classes
    ParMapLike
  69. def keys: parallel.ParIterable[K]
    Definition Classes
    ParMapLike
  70. def keysIterator: IterableSplitter[K]
    Definition Classes
    ParMapLike
  71. def knownSize: Int
    Definition Classes
    ParHashMap → IterableOnce
  72. def last: (K, V)
    Definition Classes
    ParIterableLike
  73. def lastOption: Option[(K, V)]
    Definition Classes
    ParIterableLike
  74. def map[K2, V2](f: ((K, V)) => (K2, V2)): ParHashMap[K2, V2]

    Builds a new map by applying a function to all elements of this immutable parallel hash map.

    Builds a new map by applying a function to all elements of this immutable parallel hash map.

    f

    the function to apply to each element.

    returns

    a new immutable parallel hash map resulting from applying the given function f to each element of this immutable parallel hash map and collecting the results.

    Definition Classes
    ParMapLike
  75. def map[S](f: ((K, V)) => S): ParIterable[S]
    Definition Classes
    ParIterableLike
  76. def mapCompanion: GenericParMapCompanion[ParHashMap]
    Definition Classes
    ParHashMapParMapParMapLikeParMapParMapLikeGenericParMapTemplate
  77. def mapValues[S](f: (V) => S): parallel.ParMap[K, S]
    Definition Classes
    ParMapLike
  78. def max[U >: (K, V)](implicit ord: Ordering[U]): (K, V)
    Definition Classes
    ParIterableLike
  79. def maxBy[S](f: ((K, V)) => S)(implicit cmp: Ordering[S]): (K, V)
    Definition Classes
    ParIterableLike
  80. def min[U >: (K, V)](implicit ord: Ordering[U]): (K, V)
    Definition Classes
    ParIterableLike
  81. def minBy[S](f: ((K, V)) => S)(implicit cmp: Ordering[S]): (K, V)
    Definition Classes
    ParIterableLike
  82. def mkString: String
    Definition Classes
    ParIterableLike
  83. def mkString(sep: String): String
    Definition Classes
    ParIterableLike
  84. def mkString(start: String, sep: String, end: String): String
    Definition Classes
    ParIterableLike
  85. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  86. def newBuilder: Combiner[(K, V), ParIterable[(K, V)]]

    The builder that builds instances of type immutable.ParHashMap[A]

    The builder that builds instances of type immutable.ParHashMap[A]

    Attributes
    protected[this]
    Definition Classes
    GenericParTemplateGenericTraversableTemplateHasNewBuilder
  87. def newCombiner: HashMapCombiner[K, V]
    Attributes
    protected[this]
    Definition Classes
    ParHashMapGenericParMapTemplateGenericParTemplateHasNewCombiner
  88. def nonEmpty: Boolean
    Definition Classes
    ParIterableLike
  89. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  90. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  91. def par: ParHashMap[K, V]

    Returns a parallel implementation of this collection.

    Returns a parallel implementation of this collection.

    For most collection types, this method creates a new parallel collection by copying all the elements. For these collection, par takes linear time. Mutable collections in this category do not produce a mutable parallel collection that has the same underlying dataset, so changes in one collection will not be reflected in the other one.

    Specific collections (e.g. ParArray or mutable.ParHashMap) override this default behaviour by creating a parallel collection which shares the same underlying dataset. For these collections, par takes constant or sublinear time.

    All parallel collections return a reference to themselves.

    returns

    a parallel implementation of this collection

    Definition Classes
    ParIterableLikeCustomParallelizableParallelizable
  92. def parCombiner: Nothing

    The default par implementation uses the combiner provided by this method to create a new parallel collection.

    The default par implementation uses the combiner provided by this method to create a new parallel collection.

    returns

    a combiner for the parallel collection of type ParRepr

    Attributes
    protected[this]
    Definition Classes
    CustomParallelizableParallelizable
  93. def partition(pred: ((K, V)) => Boolean): (ParHashMap[K, V], ParHashMap[K, V])
    Definition Classes
    ParIterableLike
  94. def product[U >: (K, V)](implicit num: Numeric[U]): U
    Definition Classes
    ParIterableLike
  95. def reduce[U >: (K, V)](op: (U, U) => U): U

    Reduces the elements of this sequence using the specified associative binary operator.

    Reduces the elements of this sequence using the specified associative binary operator.

    The order in which operations are performed on elements is unspecified and may be nondeterministic.

    Note this method has a different signature than the reduceLeft and reduceRight methods of the trait Traversable. The result of reducing may only be a supertype of this parallel collection's type parameter T.

    U

    A type parameter for the binary operator, a supertype of T.

    op

    A binary operator that must be associative.

    returns

    The result of applying reduce operator op between all the elements if the collection is nonempty.

    Definition Classes
    ParIterableLike
    Exceptions thrown

    UnsupportedOperationException if this immutable parallel hash map is empty.

  96. def reduceLeft[U >: (K, V)](op: (U, (K, V)) => U): U
    Definition Classes
    ParIterableLike
  97. def reduceLeftOption[U >: (K, V)](op: (U, (K, V)) => U): Option[U]
    Definition Classes
    ParIterableLike
  98. def reduceOption[U >: (K, V)](op: (U, U) => U): Option[U]

    Optionally reduces the elements of this sequence using the specified associative binary operator.

    Optionally reduces the elements of this sequence using the specified associative binary operator.

    The order in which operations are performed on elements is unspecified and may be nondeterministic.

    Note this method has a different signature than the reduceLeftOption and reduceRightOption methods of the trait Traversable. The result of reducing may only be a supertype of this parallel collection's type parameter T.

    U

    A type parameter for the binary operator, a supertype of T.

    op

    A binary operator that must be associative.

    returns

    An option value containing result of applying reduce operator op between all the elements if the collection is nonempty, and None otherwise.

    Definition Classes
    ParIterableLike
  99. def reduceRight[U >: (K, V)](op: ((K, V), U) => U): U
    Definition Classes
    ParIterableLike
  100. def reduceRightOption[U >: (K, V)](op: ((K, V), U) => U): Option[U]
    Definition Classes
    ParIterableLike
  101. def repr: ParHashMap[K, V]
    Definition Classes
    ParIterableLike
  102. def reuse[S, That](oldc: Option[Combiner[S, That]], newc: Combiner[S, That]): Combiner[S, That]

    Optionally reuses an existing combiner for better performance.

    Optionally reuses an existing combiner for better performance. By default it doesn't - subclasses may override this behaviour. The provided combiner oldc that can potentially be reused will be either some combiner from the previous computational task, or None if there was no previous phase (in which case this method must return newc).

    oldc

    The combiner that is the result of the previous task, or None if there was no previous task.

    newc

    The new, empty combiner that can be used.

    returns

    Either newc or oldc.

    Attributes
    protected
    Definition Classes
    ParHashMapParIterableLike
  103. def sameElements[U >: (K, V)](that: scala.IterableOnce[U]): Boolean
    Definition Classes
    ParIterableLike
  104. def scan[U >: (K, V)](z: U)(op: (U, U) => U): ParIterable[U]

    Computes a prefix scan of the elements of the collection.

    Computes a prefix scan of the elements of the collection.

    Note: The neutral element z may be applied more than once.

    U

    element type of the resulting collection

    z

    neutral element for the operator op

    op

    the associative operator for the scan

    returns

    a new immutable parallel hash map containing the prefix scan of the elements in this immutable parallel hash map

    Definition Classes
    ParIterableLike
  105. def scanBlockSize: Int
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  106. def scanLeft[S](z: S)(op: (S, (K, V)) => S): scala.Iterable[S]
    Definition Classes
    ParIterableLike
  107. def scanRight[S](z: S)(op: ((K, V), S) => S): scala.Iterable[S]
    Definition Classes
    ParIterableLike
  108. def seq: OldHashMap[K, V]

    A sequential collection containing the same elements as this collection

    A sequential collection containing the same elements as this collection

    Definition Classes
    ParHashMapParIterableLikeParallelizableGenericTraversableTemplate
  109. def sequentially[S, That <: Parallel](b: (OldHashMap[K, V]) => OldHashMap[K, V]): ParHashMap[K, V]
    Attributes
    protected[this]
    Definition Classes
    ParIterableLike
  110. def size: Int
    Definition Classes
    ParHashMapParIterableLike
  111. def slice(unc_from: Int, unc_until: Int): ParHashMap[K, V]
    Definition Classes
    ParIterableLike
  112. def span(pred: ((K, V)) => Boolean): (ParHashMap[K, V], ParHashMap[K, V])

    Splits this immutable parallel hash map into a prefix/suffix pair according to a predicate.

    Splits this immutable parallel hash map into a prefix/suffix pair according to a predicate.

    This method will use indexFlag signalling capabilities. This means that splitters may set and read the indexFlag state. The index flag is initially set to maximum integer value.

    pred

    the predicate used to test the elements

    returns

    a pair consisting of the longest prefix of the collection for which all the elements satisfy pred, and the rest of the collection

    Definition Classes
    ParIterableLike
  113. def splitAt(n: Int): (ParHashMap[K, V], ParHashMap[K, V])
    Definition Classes
    ParIterableLike
  114. def splitter: IterableSplitter[(K, V)]

    Creates a new parallel iterator used to traverse the elements of this parallel collection.

    Creates a new parallel iterator used to traverse the elements of this parallel collection. This iterator is more specific than the iterator of the returned by iterator, and augmented with additional accessor and transformer methods.

    returns

    a parallel iterator

    Definition Classes
    ParHashMapParIterableLike
  115. def stepper[S <: Stepper[_]](implicit shape: StepperShape[(K, V) @scala.annotation.unchecked.uncheckedVariance, S]): S
    Definition Classes
    IterableOnce
  116. def stringPrefix: String
    Definition Classes
    ParMapParMapParIterableParIterableLike
  117. def sum[U >: (K, V)](implicit num: Numeric[U]): U
    Definition Classes
    ParIterableLike
  118. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  119. def tail: ParHashMap[K, V]
    Definition Classes
    ParIterableLike
  120. def take(n: Int): ParHashMap[K, V]
    Definition Classes
    ParIterableLike
  121. def takeWhile(pred: ((K, V)) => Boolean): ParHashMap[K, V]

    Takes the longest prefix of elements that satisfy the predicate.

    Takes the longest prefix of elements that satisfy the predicate.

    This method will use indexFlag signalling capabilities. This means that splitters may set and read the indexFlag state. The index flag is initially set to maximum integer value.

    pred

    the predicate used to test the elements

    returns

    the longest prefix of this immutable parallel hash map of elements that satisfy the predicate pred

    Definition Classes
    ParIterableLike
  122. implicit def task2ops[R, Tp](tsk: SSCTask[R, Tp]): TaskOps[R, Tp]
    Attributes
    protected
    Definition Classes
    ParIterableLike
  123. def tasksupport: TaskSupport

    The task support object which is responsible for scheduling and load-balancing tasks to processors.

    The task support object which is responsible for scheduling and load-balancing tasks to processors.

    Definition Classes
    ParIterableLike
    See also

    scala.collection.parallel.TaskSupport

  124. def tasksupport_=(ts: TaskSupport): Unit

    Changes the task support object which is responsible for scheduling and load-balancing tasks to processors.

    Changes the task support object which is responsible for scheduling and load-balancing tasks to processors.

    A task support object can be changed in a parallel collection after it has been created, but only during a quiescent period, i.e. while there are no concurrent invocations to parallel collection methods.

    Here is a way to change the task support of a parallel collection:

    import scala.collection.parallel._
    val pc = mutable.ParArray(1, 2, 3)
    pc.tasksupport = new ForkJoinTaskSupport(
      new java.util.concurrent.ForkJoinPool(2))
    Definition Classes
    ParIterableLike
    See also

    scala.collection.parallel.TaskSupport

  125. def to[C](factory: Factory[(K, V), C]): C
    Definition Classes
    ParIterableLike
  126. def toArray[U >: (K, V)](implicit arg0: ClassTag[U]): Array[U]
    Definition Classes
    ParIterableLike
  127. def toBuffer[U >: (K, V)]: Buffer[U]
    Definition Classes
    ParIterableLike
  128. def toIndexedSeq: immutable.IndexedSeq[(K, V)]
    Definition Classes
    ParIterableLike
  129. def toIterable: ParIterable[(K, V)]
    Definition Classes
    ParIterableParIterableLike
  130. def toIterator: scala.Iterator[(K, V)]
    Definition Classes
    ParIterableLike
  131. def toList: List[(K, V)]
    Definition Classes
    ParIterableLike
  132. def toMap[P, Q](implicit ev: <:<[(K, V), (P, Q)]): ParMap[P, Q]
    Definition Classes
    ParMapLikeParIterableLike
  133. def toParCollection[U >: (K, V), That](cbf: () => Combiner[U, That]): That
    Attributes
    protected
    Definition Classes
    ParIterableLike
  134. def toParMap[K, V, That](cbf: () => Combiner[(K, V), That])(implicit ev: <:<[(K, V), (K, V)]): That
    Attributes
    protected
    Definition Classes
    ParIterableLike
  135. def toSeq: ParSeq[(K, V)]
    Definition Classes
    ParIterableParIterableLike
  136. def toSet[U >: (K, V)]: ParSet[U]
    Definition Classes
    ParIterableLike
  137. def toString(): String
    Definition Classes
    ParIterableLike → AnyRef → Any
  138. def toVector: Vector[(K, V)]
    Definition Classes
    ParIterableLike
  139. def transpose[B](implicit asTraversable: ((K, V)) => scala.IterableOnce[B]): ParIterable[ParIterable[B]]

    Transposes this immutable parallel hash map of traversable collections into a immutable parallel hash map of immutable parallel hash maps.

    Transposes this immutable parallel hash map of traversable collections into a immutable parallel hash map of immutable parallel hash maps.

    The resulting collection's type will be guided by the static type of immutable parallel hash map. For example:

    val xs = List(
               Set(1, 2, 3),
               Set(4, 5, 6)).transpose
    // xs == List(
    //         List(1, 4),
    //         List(2, 5),
    //         List(3, 6))
    
    val ys = Vector(
               List(1, 2, 3),
               List(4, 5, 6)).transpose
    // ys == Vector(
    //         Vector(1, 4),
    //         Vector(2, 5),
    //         Vector(3, 6))
    B

    the type of the elements of each traversable collection.

    asTraversable

    an implicit conversion which asserts that the element type of this immutable parallel hash map is a Traversable.

    returns

    a two-dimensional immutable parallel hash map of immutable parallel hash maps which has as nth row the nth column of this immutable parallel hash map.

    Definition Classes
    GenericTraversableTemplate
    Annotations
    @migration
    Migration

    (Changed in version 2.9.0) transpose throws an IllegalArgumentException if collections are not uniformly sized.

    Exceptions thrown

    IllegalArgumentException if all collections in this immutable parallel hash map are not of the same size.

  140. def unzip[A1, A2](implicit asPair: ((K, V)) => (A1, A2)): (ParIterable[A1], ParIterable[A2])

    Converts this immutable parallel hash map of pairs into two collections of the first and second half of each pair.

    Converts this immutable parallel hash map of pairs into two collections of the first and second half of each pair.

    val xs = `immutable.ParHashMap`(
               (1, "one"),
               (2, "two"),
               (3, "three")).unzip
    // xs == (`immutable.ParHashMap`(1, 2, 3),
    //        `immutable.ParHashMap`(one, two, three))
    A1

    the type of the first half of the element pairs

    A2

    the type of the second half of the element pairs

    asPair

    an implicit conversion which asserts that the element type of this immutable parallel hash map is a pair.

    returns

    a pair of immutable parallel hash maps, containing the first, respectively second half of each element pair of this immutable parallel hash map.

    Definition Classes
    GenericTraversableTemplate
  141. def unzip3[A1, A2, A3](implicit asTriple: ((K, V)) => (A1, A2, A3)): (ParIterable[A1], ParIterable[A2], ParIterable[A3])

    Converts this immutable parallel hash map of triples into three collections of the first, second, and third element of each triple.

    Converts this immutable parallel hash map of triples into three collections of the first, second, and third element of each triple.

    val xs = `immutable.ParHashMap`(
               (1, "one", '1'),
               (2, "two", '2'),
               (3, "three", '3')).unzip3
    // xs == (`immutable.ParHashMap`(1, 2, 3),
    //        `immutable.ParHashMap`(one, two, three),
    //        `immutable.ParHashMap`(1, 2, 3))
    A1

    the type of the first member of the element triples

    A2

    the type of the second member of the element triples

    A3

    the type of the third member of the element triples

    asTriple

    an implicit conversion which asserts that the element type of this immutable parallel hash map is a triple.

    returns

    a triple of immutable parallel hash maps, containing the first, second, respectively third member of each element triple of this immutable parallel hash map.

    Definition Classes
    GenericTraversableTemplate
  142. def updated[U >: V](key: K, value: U): ParHashMap[K, U]
    Definition Classes
    ParMapLikeParMapLike
  143. def values: parallel.ParIterable[V]
    Definition Classes
    ParMapLike
  144. def valuesIterator: IterableSplitter[V]
    Definition Classes
    ParMapLike
  145. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  146. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  147. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()
  148. def withDefault[U >: V](d: (K) => U): ParMap[K, U]

    The same map with a given default function.

    The same map with a given default function. Note: get, contains, iterator, keys, etc are not affected by withDefault.

    Invoking transformer methods (e.g. map) will not preserve the default value.

    d

    the function mapping keys to values, used for non-present keys

    returns

    a wrapper of the map with a default value

    Definition Classes
    ParMap
  149. def withDefaultValue[U >: V](d: U): ParMap[K, U]

    The same map with a given default value.

    The same map with a given default value.

    Invoking transformer methods (e.g. map) will not preserve the default value.

    d

    default value used for non-present keys

    returns

    a wrapper of the map with a default value

    Definition Classes
    ParMap
  150. def withFilter(pred: ((K, V)) => Boolean): ParHashMap[K, V]
    Definition Classes
    ParIterableLike
  151. def wrap[R](body: => R): NonDivisible[R]
    Attributes
    protected
    Definition Classes
    ParIterableLike
  152. def zip[U >: (K, V), S](that: scala.Iterable[S]): ParIterable[(U, S)]
    Definition Classes
    ParIterableLike
  153. def zip[U >: (K, V), S](that: parallel.ParIterable[S]): ParIterable[(U, S)]
    Definition Classes
    ParIterableLike
  154. def zipAll[S, U >: (K, V)](that: parallel.ParIterable[S], thisElem: U, thatElem: S): ParIterable[(U, S)]
    Definition Classes
    ParIterableLike
  155. def zipWithIndex[U >: (K, V)]: ParIterable[(U, Int)]

    Zips this immutable parallel hash map with its indices.

    Zips this immutable parallel hash map with its indices.

    U

    the type of the first half of the returned pairs (this is always a supertype of the collection's element type T).

    returns

    A new collection of type immutable.ParHashMap containing pairs consisting of all elements of this immutable parallel hash map paired with their index. Indices start at 0.

    Definition Classes
    ParIterableLike

Deprecated Value Members

  1. def toStream: Stream[(K, V)]
    Definition Classes
    ParIterableLike
    Annotations
    @deprecated
    Deprecated

    (Since version 0.1.3) Use to(LazyList) instead.

  2. def toTraversable: parallel.ParIterable[(K, V)]
    Definition Classes
    ParIterableLike
    Annotations
    @deprecated
    Deprecated

    (Since version 0.1.3) Use toIterable instead

Inherited from java.io.Serializable

Inherited from ParMap[K, V]

Inherited from ParMapLike[K, V, [X, Y]ParHashMap[X, Y], ParHashMap[K, V], OldHashMap[K, V]]

Inherited from ParIterable[(K, V)]

Inherited from parallel.ParMap[K, V]

Inherited from parallel.ParMapLike[K, V, [X, Y]ParHashMap[X, Y], ParHashMap[K, V], OldHashMap[K, V]]

Inherited from Equals

Inherited from parallel.ParIterable[(K, V)]

Inherited from ParIterableLike[(K, V), [X]ParIterable[X], ParHashMap[K, V], OldHashMap[K, V]]

Inherited from Parallel

Inherited from CustomParallelizable[(K, V) @scala.annotation.unchecked.uncheckedVariance, ParHashMap[K, V]]

Inherited from Parallelizable[(K, V) @scala.annotation.unchecked.uncheckedVariance, ParHashMap[K, V]]

Inherited from IterableOnce[(K, V) @scala.annotation.unchecked.uncheckedVariance]

Inherited from GenericParMapTemplate[K, V, [X, Y]ParHashMap[X, Y]]

Inherited from GenericParTemplate[(K, V), [X]ParIterable[X]]

Inherited from HasNewCombiner[(K, V) @scala.annotation.unchecked.uncheckedVariance, ParHashMap[K, V]]

Inherited from GenericTraversableTemplate[(K, V), [X]ParIterable[X]]

Inherited from HasNewBuilder[(K, V), scala.collection.parallel.immutable.ParIterable[(K, V)] @scala.annotation.unchecked.uncheckedVariance]

Inherited from AnyRef

Inherited from Any

Ungrouped