sealed abstract class PLensFamily[A1, A2, B1, B2] extends AnyRef
Partial Lens Families, offering a purely functional means to access and retrieve
an optional field transitioning from type B1
to type B2
in a record that is
simultaneously transitioning from type A1
to type A2
. scalaz.PLens is a
convenient alias for when A1 =:= A2
, and B1 =:= B2
.
The term field should not be interpreted restrictively to mean a member of a class. For example, a partial lens
family can address the nth element of a List
.
- A1
The initial type of the record
- A2
The final type of the record
- B1
The initial type of the optional field
- B2
The final type of the optional field
- Source
- PLens.scala
- See also
- Alphabetic
- By Inheritance
- PLensFamily
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Abstract Value Members
- abstract def run(a: A1): Option[IndexedStore[B1, B2, A2]]
Concrete Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
- def %%=[A >: A2 <: A1, C](s: IndexedState[B1, B2, C]): PState[A, C]
- def %=[A >: A2 <: A1](f: (B1) ⇒ B2): PState[A, B2]
- def %==[A >: A2 <: A1](f: (B1) ⇒ B2): State[A, Unit]
-
def
***[C1, C2, D1, D2](that: PLensFamily[C1, C2, D1, D2]): PLensFamily[(A1, C1), (A2, C2), (B1, D1), (B2, D2)]
alias for
product
- def ->>-[A >: A2 <: A1, C](f: ⇒ State[A, C]): PState[A, C]
- def :=[A >: A2 <: A1](b: ⇒ B2): PState[A, B2]
-
def
<=<[C1, C2](that: PLensFamily[C1, C2, A1, A2]): PLensFamily[C1, C2, B1, B2]
alias for
compose
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def =>=[A >: A2 <: A1](f: (B1) ⇒ B2): (A) ⇒ A
- def =?>=(f: (B1) ⇒ B2): (A1) ⇒ Option[A2]
- def >-[A >: A2 <: A1, C](f: (B1) ⇒ C): PState[A, C]
-
def
>=>[C1, C2](that: PLensFamily[B1, B2, C1, C2]): PLensFamily[A1, A2, C1, C2]
alias for
andThen
- def >>-[A >: A2 <: A1, C](f: (B1) ⇒ State[A, C]): PState[A, C]
- def andThen[C1, C2](that: PLensFamily[B1, B2, C1, C2]): PLensFamily[A1, A2, C1, C2]
- def apply(a: A1): Option[IndexedStore[B1, B2, A2]]
-
def
as(f: (B1) ⇒ A1, a: A1): A1
If the Partial Lens is null, then return the target object, otherwise run the function on its projection.
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
compose[C1, C2](that: PLensFamily[C1, C2, A1, A2]): PLensFamily[C1, C2, B1, B2]
Partial Lenses can be composed
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def exists(p: (B1) ⇒ Boolean, a: A1): Boolean
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
- def forall(p: (B1) ⇒ Boolean, a: A1): Boolean
- def get(a: A1): Option[B1]
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def getK: Kleisli[Option, A1, B1]
-
def
getOr(a: A1, b: ⇒ B1): B1
If the Partial Lens is null, then return the given default value.
- def getOrZ(a: A1)(implicit M: Monoid[B1]): B1
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def is(a: A1): Boolean
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def isNot(a: A1): Boolean
- def kleisli: Kleisli[Option, A1, IndexedStore[B1, B2, A2]]
-
def
mod[A >: A2 <: A1](f: (B1) ⇒ B2, a: A): A
Modify the potential value viewed through the partial lens
- def modg(f: (B1) ⇒ B2, a: A1): Option[A2]
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
def
product[C1, C2, D1, D2](that: PLensFamily[C1, C2, D1, D2]): PLensFamily[(A1, C1), (A2, C2), (B1, D1), (B2, D2)]
Two disjoint partial lenses can be paired
- def set(a: A1, b: B2): Option[A2]
- def setK(a: A1): Kleisli[Option, B2, A2]
- def setOr(a: A1, b: B2, d: ⇒ A2): A2
- def setOrZ(a: A1, b: B2)(implicit M: Monoid[A2]): A2
- def st: PState[A1, B1]
-
def
sum[C1, C2](that: ⇒ PLensFamily[C1, C2, B1, B2]): PLensFamily[\/[A1, C1], \/[A2, C2], B1, B2]
Two partial lenses that view a value of the same type can be joined
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
- def trySet(a: A1): Option[(B2) ⇒ A2]
- def trySetK: Kleisli[Option, A1, (B2) ⇒ A2]
- def trySetOr(a: A1, d: ⇒ (B2) ⇒ A2): (B2) ⇒ A2
- def trySetOrZ(a: A1)(implicit M: Monoid[A2]): (B2) ⇒ A2
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
- def xmapA[X1, X2](f: (A2) ⇒ X2)(g: (X1) ⇒ A1): PLensFamily[X1, X2, B1, B2]
- def xmapB[X1, X2](f: (B1) ⇒ X1)(g: (X2) ⇒ B2): PLensFamily[A1, A2, X1, X2]
- def xmapbA[X, A >: A2 <: A1](b: Bijection[A, X]): PLensFamily[X, X, B1, B2]
- def xmapbB[X, B >: B1 <: B2](b: Bijection[B, X]): PLensFamily[A1, A2, X, X]
-
def
|||[C1, C2](that: ⇒ PLensFamily[C1, C2, B1, B2]): PLensFamily[\/[A1, C1], \/[A2, C2], B1, B2]
Alias for
sum