trait Traverse1[F[_]] extends Traverse[F] with Foldable1[F]
A scalaz.Traverse where traverse
is total over
scalaz.Applys. That is, toList
cannot return an empty list.
- Self Type
- Traverse1[F]
- Source
- Traverse1.scala
- Alphabetic
- By Inheritance
- Traverse1
- Foldable1
- Traverse
- TraverseParent
- Foldable
- FoldableParent
- Functor
- InvariantFunctor
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
- trait FoldableLaw extends AnyRef
- Definition Classes
- Foldable
- trait Foldable1Law extends FoldableLaw
- Definition Classes
- Foldable1
- trait FunctorLaw extends InvariantFunctorLaw
- Definition Classes
- Functor
- trait InvariantFunctorLaw extends AnyRef
- Definition Classes
- InvariantFunctor
- class Traversal[G[_]] extends AnyRef
- Definition Classes
- Traverse
- trait TraverseLaw extends FunctorLaw
- Definition Classes
- Traverse
- trait Traverse1Law extends TraverseLaw
Abstract Value Members
- abstract def foldMapRight1[A, B](fa: F[A])(z: (A) => B)(f: (A, => B) => B): B
Right-associative fold of a structure.
Right-associative fold of a structure.
- Definition Classes
- Foldable1
- abstract def traverse1Impl[G[_], A, B](fa: F[A])(f: (A) => G[B])(implicit arg0: Apply[G]): G[F[B]]
Transform
fa
usingf
, collecting all theG
s withap
.
Concrete Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def all[A](fa: F[A])(p: (A) => Boolean): Boolean
Whether all
A
s infa
yield true fromp
.Whether all
A
s infa
yield true fromp
.- Definition Classes
- Foldable
- def allM[G[_], A](fa: F[A])(p: (A) => G[Boolean])(implicit G: Monad[G]): G[Boolean]
all
with monadic traversal.all
with monadic traversal.- Definition Classes
- Foldable
- def any[A](fa: F[A])(p: (A) => Boolean): Boolean
Whether any
A
s infa
yield true fromp
.Whether any
A
s infa
yield true fromp
.- Definition Classes
- Foldable
- def anyM[G[_], A](fa: F[A])(p: (A) => G[Boolean])(implicit G: Monad[G]): G[Boolean]
any
with monadic traversal.any
with monadic traversal.- Definition Classes
- Foldable
- def apply[A, B](fa: F[A])(f: (A) => B): F[B]
Alias for
map
.Alias for
map
.- Definition Classes
- Functor
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def bicompose[G[_, _]](implicit arg0: Bitraverse[G]): Bitraverse[[α, β]F[G[α, β]]]
The composition of Traverse
F
and BitraverseG
,[x, y]F[G[x, y]]
, is a BitraverseThe composition of Traverse
F
and BitraverseG
,[x, y]F[G[x, y]]
, is a Bitraverse- Definition Classes
- Traverse
- def bicompose[G[_, _]](implicit arg0: Bifoldable[G]): Bifoldable[[α, β]F[G[α, β]]]
The composition of Foldable
F
and BifoldableG
,[x, y]F[G[x, y]]
, is a BifoldableThe composition of Foldable
F
and BifoldableG
,[x, y]F[G[x, y]]
, is a Bifoldable- Definition Classes
- Foldable
- def bicompose[G[_, _]](implicit arg0: Bifunctor[G]): Bifunctor[[α, β]F[G[α, β]]]
The composition of Functor
F
and BifunctorG
,[x, y]F[G[x, y]]
, is a BifunctorThe composition of Functor
F
and BifunctorG
,[x, y]F[G[x, y]]
, is a Bifunctor- Definition Classes
- Functor
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native()
- def collapse[X[_], A](x: F[A])(implicit A: ApplicativePlus[X]): X[A]
- Definition Classes
- Foldable
- def compose[G[_]](implicit arg0: Traverse1[G]): Traverse1[[α]F[G[α]]]
The composition of Traverse1
F
andG
,[x]F[G[x]]
, is a Traverse1 - def compose[G[_]](implicit arg0: Foldable1[G]): Foldable1[[α]F[G[α]]]
The composition of Foldable1
F
andG
,[x]F[G[x]]
, is a Foldable1The composition of Foldable1
F
andG
,[x]F[G[x]]
, is a Foldable1- Definition Classes
- Foldable1
- def compose[G[_]](implicit G0: Traverse[G]): Traverse[[α]F[G[α]]]
The composition of Traverses
F
andG
,[x]F[G[x]]
, is a TraverseThe composition of Traverses
F
andG
,[x]F[G[x]]
, is a Traverse- Definition Classes
- Traverse
- def compose[G[_]](implicit G0: Foldable[G]): Foldable[[α]F[G[α]]]
The composition of Foldables
F
andG
,[x]F[G[x]]
, is a FoldableThe composition of Foldables
F
andG
,[x]F[G[x]]
, is a Foldable- Definition Classes
- Foldable
- def compose[G[_]](implicit G0: Functor[G]): Functor[[α]F[G[α]]]
The composition of Functors
F
andG
,[x]F[G[x]]
, is a FunctorThe composition of Functors
F
andG
,[x]F[G[x]]
, is a Functor- Definition Classes
- Functor
- final def count[A](fa: F[A]): Int
Alias for
length
.Alias for
length
.- Definition Classes
- Foldable
- def counzip[A, B](a: \/[F[A], F[B]]): F[\/[A, B]]
- Definition Classes
- Functor
- def distinct[A](fa: F[A])(implicit A: Order[A]): IList[A]
complexityO(n log n)
complexityO(n log n)
- Definition Classes
- Foldable
- def distinct1[A](fa: F[A])(implicit A: Order[A]): NonEmptyList[A]
complexityO(n log n)
complexityO(n log n)
- Definition Classes
- Foldable1
- def distinctBy[A, B](fa: F[A])(f: (A) => B)(implicit arg0: Equal[B]): IList[A]
- Definition Classes
- FoldableParent
- def distinctE[A](fa: F[A])(implicit A: Equal[A]): IList[A]
complexityO(n2)
complexityO(n2)
- Definition Classes
- Foldable
- def distinctE1[A](fa: F[A])(implicit A: Equal[A]): NonEmptyList[A]
complexityO(n2)
complexityO(n2)
- Definition Classes
- Foldable1
- def element[A](fa: F[A], a: A)(implicit arg0: Equal[A]): Boolean
Whether
a
is an element offa
.Whether
a
is an element offa
.- Definition Classes
- Foldable
- final def empty[A](fa: F[A]): Boolean
always return
false
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def extrema[A](fa: F[A])(implicit arg0: Order[A]): Option[(A, A)]
The smallest and largest elements of
fa
or None iffa
is emptyThe smallest and largest elements of
fa
or None iffa
is empty- Definition Classes
- FoldableParent
- def extremaBy[A, B](fa: F[A])(f: (A) => B)(implicit arg0: Order[B]): Option[(A, A)]
The elements (amin, amax) of
fa
which yield the smallest and largest values off(a)
, respectively, or None iffa
is emptyThe elements (amin, amax) of
fa
which yield the smallest and largest values off(a)
, respectively, or None iffa
is empty- Definition Classes
- FoldableParent
- def extremaOf[A, B](fa: F[A])(f: (A) => B)(implicit arg0: Order[B]): Option[(B, B)]
The smallest and largest values of
f(a)
for each elementa
offa
, or None iffa
is emptyThe smallest and largest values of
f(a)
for each elementa
offa
, or None iffa
is empty- Definition Classes
- FoldableParent
- def filterLength[A](fa: F[A])(f: (A) => Boolean): Int
- Definition Classes
- FoldableParent
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable])
- def findLeft[A](fa: F[A])(f: (A) => Boolean): Option[A]
- Definition Classes
- Foldable
- final def findMapM[M[_], A, B](fa: F[A])(f: (A) => M[Option[B]])(implicit arg0: Monad[M]): M[Option[B]]
map elements in a Foldable with a monadic function and return the first element that is mapped successfully
map elements in a Foldable with a monadic function and return the first element that is mapped successfully
- Definition Classes
- Foldable
- def findRight[A](fa: F[A])(f: (A) => Boolean): Option[A]
- Definition Classes
- Foldable
- def fold[M](t: F[M])(implicit arg0: Monoid[M]): M
Combine the elements of a structure using a monoid.
Combine the elements of a structure using a monoid.
- Definition Classes
- Foldable
- def fold1[M](t: F[M])(implicit arg0: Semigroup[M]): M
- Definition Classes
- Foldable1
- def fold1Opt[A](fa: F[A])(implicit arg0: Semigroup[A]): Option[A]
Like
fold
but returningNone
if the foldable is empty andSome
otherwiseLike
fold
but returningNone
if the foldable is empty andSome
otherwise- Definition Classes
- FoldableParent
- def foldLShape[A, B](fa: F[A], z: B)(f: (B, A) => B): (B, F[Unit])
- Definition Classes
- Traverse
- def foldLeft[A, B](fa: F[A], z: B)(f: (B, A) => B): B
Left-associative fold of a structure.
- def foldLeft1[A](fa: F[A])(f: (A, A) => A): A
Left-associative fold of a structure.
Left-associative fold of a structure.
- Definition Classes
- Foldable1
- def foldLeft1Opt[A](fa: F[A])(f: (A, A) => A): Option[A]
- Definition Classes
- Foldable
- def foldLeftM[G[_], A, B](fa: F[A], z: B)(f: (B, A) => G[B])(implicit M: Monad[G]): G[B]
Left-associative, monadic fold of a structure.
Left-associative, monadic fold of a structure.
- Definition Classes
- Foldable
- def foldMap[A, B](fa: F[A])(f: (A) => B)(implicit F: Monoid[B]): B
Map each element of the structure to a scalaz.Monoid, and combine the results.
Map each element of the structure to a scalaz.Monoid, and combine the results.
- def foldMap1[A, B](fa: F[A])(f: (A) => B)(implicit F: Semigroup[B]): B
Map each element of the structure to a scalaz.Semigroup, and combine the results.
Map each element of the structure to a scalaz.Semigroup, and combine the results.
- def foldMap1Opt[A, B](fa: F[A])(f: (A) => B)(implicit F: Semigroup[B]): Option[B]
As
foldMap
but returningNone
if the foldable is empty andSome
otherwise - def foldMapLeft1[A, B](fa: F[A])(z: (A) => B)(f: (B, A) => B): B
Left-associative fold of a structure.
Left-associative fold of a structure.
- Definition Classes
- Foldable1
- def foldMapLeft1Opt[A, B](fa: F[A])(z: (A) => B)(f: (B, A) => B): Option[B]
- def foldMapM[G[_], A, B](fa: F[A])(f: (A) => G[B])(implicit B: Monoid[B], G: Monad[G]): G[B]
Specialization of foldRightM when
B
has aMonoid
.Specialization of foldRightM when
B
has aMonoid
.- Definition Classes
- Foldable
- def foldMapRight1Opt[A, B](fa: F[A])(z: (A) => B)(f: (A, => B) => B): Option[B]
- def foldRight[A, B](fa: F[A], z: => B)(f: (A, => B) => B): B
Right-associative fold of a structure.
- def foldRight1[A](fa: F[A])(f: (A, => A) => A): A
Right-associative fold of a structure.
Right-associative fold of a structure.
- Definition Classes
- Foldable1
- def foldRight1Opt[A](fa: F[A])(f: (A, => A) => A): Option[A]
- Definition Classes
- Foldable
- def foldRightM[G[_], A, B](fa: F[A], z: => B)(f: (A, => B) => G[B])(implicit M: Monad[G]): G[B]
Right-associative, monadic fold of a structure.
Right-associative, monadic fold of a structure.
- Definition Classes
- Foldable
- def foldable1Law: Foldable1Law
- Definition Classes
- Foldable1
- val foldable1Syntax: Foldable1Syntax[F]
- Definition Classes
- Foldable1
- def foldableLaw: FoldableLaw
- Definition Classes
- Foldable
- val foldableSyntax: FoldableSyntax[F]
- Definition Classes
- Foldable
- final def foldl[A, B](fa: F[A], z: B)(f: (B) => (A) => B): B
Curried version of
foldLeft
Curried version of
foldLeft
- Definition Classes
- Foldable
- final def foldl1[A](fa: F[A])(f: (A) => (A) => A): A
Curried
foldLeft1
.Curried
foldLeft1
.- Definition Classes
- Foldable1
- def foldl1Opt[A](fa: F[A])(f: (A) => (A) => A): Option[A]
- final def foldlM[G[_], A, B](fa: F[A], z: => B)(f: (B) => (A) => G[B])(implicit M: Monad[G]): G[B]
Curried version of
foldLeftM
Curried version of
foldLeftM
- Definition Classes
- Foldable
- final def foldr[A, B](fa: F[A], z: => B)(f: (A) => (=> B) => B): B
Curried version of
foldRight
Curried version of
foldRight
- Definition Classes
- Foldable
- final def foldr1[A](fa: F[A])(f: (A) => (=> A) => A): A
Curried
foldRight1
.Curried
foldRight1
.- Definition Classes
- Foldable1
- def foldr1Opt[A](fa: F[A])(f: (A) => (=> A) => A): Option[A]
- final def foldrM[G[_], A, B](fa: F[A], z: => B)(f: (A) => (=> B) => G[B])(implicit M: Monad[G]): G[B]
Curried version of
foldRightM
Curried version of
foldRightM
- Definition Classes
- Foldable
- def fpair[A](fa: F[A]): F[(A, A)]
Twin all
A
s infa
.Twin all
A
s infa
.- Definition Classes
- Functor
- def fproduct[A, B](fa: F[A])(f: (A) => B): F[(A, B)]
Pair all
A
s infa
with the result of function application.Pair all
A
s infa
with the result of function application.- Definition Classes
- Functor
- def functorLaw: FunctorLaw
- Definition Classes
- Functor
- val functorSyntax: FunctorSyntax[F]
- Definition Classes
- Functor
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
- def icompose[G[_]](implicit G0: Contravariant[G]): Contravariant[[α]F[G[α]]]
The composition of Functor F and Contravariant G,
[x]F[G[x]]
, is contravariant.The composition of Functor F and Contravariant G,
[x]F[G[x]]
, is contravariant.- Definition Classes
- Functor
- def index[A](fa: F[A], i: Int): Option[A]
- returns
the element at index
i
in aSome
, orNone
if the given index falls outside of the range
- Definition Classes
- Foldable
- def indexOr[A](fa: F[A], default: => A, i: Int): A
- returns
the element at index
i
, ordefault
if the given index falls outside of the range
- Definition Classes
- Foldable
- def indexed[A](fa: F[A]): F[(Int, A)]
- Definition Classes
- Traverse
- def intercalate[A](fa: F[A], a: A)(implicit arg0: Monoid[A]): A
Insert an
A
between every A, yielding the sum. - def intercalate1[A](fa: F[A], a: A)(implicit A: Semigroup[A]): A
Insert an
A
between every A, yielding the sum.Insert an
A
between every A, yielding the sum.- Definition Classes
- Foldable1
- def invariantFunctorLaw: InvariantFunctorLaw
- Definition Classes
- InvariantFunctor
- val invariantFunctorSyntax: InvariantFunctorSyntax[F]
- Definition Classes
- InvariantFunctor
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def length[A](fa: F[A]): Int
Deforested alias for
toStream(fa).size
.Deforested alias for
toStream(fa).size
.- Definition Classes
- Foldable
- def lift[A, B](f: (A) => B): (F[A]) => F[B]
Lift
f
intoF
.Lift
f
intoF
.- Definition Classes
- Functor
- def longDigits[A](fa: F[A])(implicit d: <:<[A, Digit]): Long
- Definition Classes
- Foldable
- def map[A, B](fa: F[A])(f: (A) => B): F[B]
Lift
f
intoF
and apply toF[A]
. - def mapAccumL[S, A, B](fa: F[A], z: S)(f: (S, A) => (S, B)): (S, F[B])
- Definition Classes
- Traverse
- def mapAccumR[S, A, B](fa: F[A], z: S)(f: (S, A) => (S, B)): (S, F[B])
- Definition Classes
- Traverse
- def mapply[A, B](a: A)(f: F[(A) => B]): F[B]
Lift
apply(a)
, and apply the result tof
.Lift
apply(a)
, and apply the result tof
.- Definition Classes
- Functor
- def maximum[A](fa: F[A])(implicit arg0: Order[A]): Option[A]
The greatest element of
fa
, or None iffa
is empty. - def maximum1[A](fa: F[A])(implicit arg0: Order[A]): A
The greatest element of
fa
.The greatest element of
fa
.- Definition Classes
- Foldable1
- def maximumBy[A, B](fa: F[A])(f: (A) => B)(implicit arg0: Order[B]): Option[A]
The element
a
offa
which yields the greatest value off(a)
, or None iffa
is empty. - def maximumBy1[A, B](fa: F[A])(f: (A) => B)(implicit arg0: Order[B]): A
The element
a
offa
which yield the greatest value off(a)
.The element
a
offa
which yield the greatest value off(a)
.- Definition Classes
- Foldable1
- def maximumOf[A, B](fa: F[A])(f: (A) => B)(implicit arg0: Order[B]): Option[B]
The greatest value of
f(a)
for each elementa
offa
, or None iffa
is empty. - def maximumOf1[A, B](fa: F[A])(f: (A) => B)(implicit arg0: Order[B]): B
The greatest value of
f(a)
for each elementa
offa
.The greatest value of
f(a)
for each elementa
offa
.- Definition Classes
- Foldable1
- def minimum[A](fa: F[A])(implicit arg0: Order[A]): Option[A]
The smallest element of
fa
, or None iffa
is empty. - def minimum1[A](fa: F[A])(implicit arg0: Order[A]): A
The smallest element of
fa
.The smallest element of
fa
.- Definition Classes
- Foldable1
- def minimumBy[A, B](fa: F[A])(f: (A) => B)(implicit arg0: Order[B]): Option[A]
The element
a
offa
which yields the smallest value off(a)
, or None iffa
is empty. - def minimumBy1[A, B](fa: F[A])(f: (A) => B)(implicit arg0: Order[B]): A
The element
a
offa
which yield the smallest value off(a)
.The element
a
offa
which yield the smallest value off(a)
.- Definition Classes
- Foldable1
- def minimumOf[A, B](fa: F[A])(f: (A) => B)(implicit arg0: Order[B]): Option[B]
The smallest value of
f(a)
for each elementa
offa
, or None iffa
is empty. - def minimumOf1[A, B](fa: F[A])(f: (A) => B)(implicit arg0: Order[B]): B
The smallest value of
f(a)
for each elementa
offa
.The smallest value of
f(a)
for each elementa
offa
.- Definition Classes
- Foldable1
- def msuml[G[_], A](fa: F[G[A]])(implicit G: PlusEmpty[G]): G[A]
- Definition Classes
- Foldable
- def msuml1[G[_], A](fa: F[G[A]])(implicit G: Plus[G]): G[A]
- Definition Classes
- Foldable1
- def msumlU[GA](fa: F[GA])(implicit G: Unapply[PlusEmpty, GA]): M[A]
- Definition Classes
- FoldableParent
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
- def product[G[_]](implicit G0: Traverse1[G]): Traverse1[[α](F[α], G[α])]
The product of Traverse1
F
andG
,[x](F[x], G[x]])
, is a Traverse1 - def product[G[_]](implicit G0: Foldable1[G]): Foldable1[[α](F[α], G[α])]
The product of Foldable1
F
andG
,[x](F[x], G[x]])
, is a Foldable1The product of Foldable1
F
andG
,[x](F[x], G[x]])
, is a Foldable1- Definition Classes
- Foldable1
- def product[G[_]](implicit G0: Traverse[G]): Traverse[[α](F[α], G[α])]
The product of Traverses
F
andG
,[x](F[x], G[x]])
, is a TraverseThe product of Traverses
F
andG
,[x](F[x], G[x]])
, is a Traverse- Definition Classes
- Traverse
- def product[G[_]](implicit G0: Foldable[G]): Foldable[[α](F[α], G[α])]
The product of Foldables
F
andG
,[x](F[x], G[x]])
, is a FoldableThe product of Foldables
F
andG
,[x](F[x], G[x]])
, is a Foldable- Definition Classes
- Foldable
- def product[G[_]](implicit G0: Functor[G]): Functor[[α](F[α], G[α])]
The product of Functors
F
andG
,[x](F[x], G[x]])
, is a FunctorThe product of Functors
F
andG
,[x](F[x], G[x]])
, is a Functor- Definition Classes
- Functor
- def product0[G[_]](implicit G0: Traverse[G]): Traverse1[[α](F[α], G[α])]
The product of Traverse1
F
and TraverseG
,[x](F[x], G[x]])
, is a Traverse1 - def product0[G[_]](implicit G0: Foldable[G]): Foldable1[[α](F[α], G[α])]
The product of Foldable1
F
and FoldableG
,[x](F[x], G[x]])
, is a Foldable1The product of Foldable1
F
and FoldableG
,[x](F[x], G[x]])
, is a Foldable1- Definition Classes
- Foldable1
- def product0[G[_]](implicit G0: Traverse1[G]): Traverse1[[α](F[α], G[α])]
The product of Traverse
F
and Traverse1G
,[x](F[x], G[x]])
, is a Traverse1The product of Traverse
F
and Traverse1G
,[x](F[x], G[x]])
, is a Traverse1- Definition Classes
- Traverse
- def product0[G[_]](implicit G0: Foldable1[G]): Foldable1[[α](F[α], G[α])]
The product of Foldable
F
and Foldable1G
,[x](F[x], G[x]])
, is a Foldable1The product of Foldable
F
and Foldable1G
,[x](F[x], G[x]])
, is a Foldable1- Definition Classes
- Foldable
- def reverse[A](fa: F[A]): F[A]
- Definition Classes
- Traverse
- def runTraverseS[S, A, B](fa: F[A], s: S)(f: (A) => State[S, B]): (S, F[B])
- Definition Classes
- Traverse
- def scanLeft1[A](fa: F[A])(f: (A, A) => A): NonEmptyList[A]
- Definition Classes
- Foldable1
- def scanRight1[A](fa: F[A])(f: (A, A) => A): NonEmptyList[A]
- Definition Classes
- Foldable1
- def selectSplit[A](fa: F[A])(p: (A) => Boolean): List[NonEmptyList[A]]
Selects groups of elements that satisfy p and discards others.
Selects groups of elements that satisfy p and discards others.
- Definition Classes
- Foldable
- def sequence[G[_], A](fga: F[G[A]])(implicit arg0: Applicative[G]): G[F[A]]
Traverse with the identity function.
Traverse with the identity function.
- Definition Classes
- Traverse
- def sequence1[G[_], A](fga: F[G[A]])(implicit arg0: Apply[G]): G[F[A]]
- final def sequence1U[GA](fga: F[GA])(implicit G: Unapply[Apply, GA]): M[F[A]]
- def sequence1_[M[_], A](fa: F[M[A]])(implicit a: Apply[M], x: Semigroup[M[A]]): M[Unit]
- Definition Classes
- Foldable1
- def sequenceF_[M[_], A](ffa: F[Free[M, A]]): Free[M, Unit]
sequence_
for Free.sequence_
for Free. collapses into a single Free *- Definition Classes
- Foldable
- def sequenceM[A, G[_]](fgfa: F[G[F[A]]])(implicit G: Applicative[G], F: Bind[F]): G[F[A]]
A version of
sequence
where a subsequent monadic join is applied to the inner resultA version of
sequence
where a subsequent monadic join is applied to the inner result- Definition Classes
- TraverseParent
- def sequenceS[S, A](fga: F[State[S, A]]): State[S, F[A]]
Traverse with
State
.Traverse with
State
.- Definition Classes
- Traverse
- def sequenceS_[S, A](fga: F[State[S, A]]): State[S, Unit]
sequence_
specialized toState
*sequence_
specialized toState
*- Definition Classes
- Foldable
- final def sequenceU[A](self: F[A])(implicit G: Unapply[Applicative, A]): M[F[A]]
A version of
sequence
that infers the nested type constructor.A version of
sequence
that infers the nested type constructor.- Definition Classes
- Traverse
- def sequence_[M[_], A](fa: F[M[A]])(implicit a: Applicative[M]): M[Unit]
Strict sequencing in an applicative functor
M
that ignores the value infa
.Strict sequencing in an applicative functor
M
that ignores the value infa
.- Definition Classes
- Foldable
- def splitBy[A, B](fa: F[A])(f: (A) => B)(implicit arg0: Equal[B]): IList[(B, NonEmptyList[A])]
Splits the elements into groups that produce the same result by a function f.
Splits the elements into groups that produce the same result by a function f.
- Definition Classes
- FoldableParent
- def splitByRelation[A](fa: F[A])(r: (A, A) => Boolean): IList[NonEmptyList[A]]
Splits into groups of elements that are transitively dependant by a relation r.
Splits into groups of elements that are transitively dependant by a relation r.
- Definition Classes
- FoldableParent
- def splitWith[A](fa: F[A])(p: (A) => Boolean): List[NonEmptyList[A]]
Splits the elements into groups that alternatively satisfy and don't satisfy the predicate p.
Splits the elements into groups that alternatively satisfy and don't satisfy the predicate p.
- Definition Classes
- Foldable
- def strengthL[A, B](a: A, f: F[B]): F[(A, B)]
Inject
a
to the left ofB
s inf
.Inject
a
to the left ofB
s inf
.- Definition Classes
- Functor
- def strengthR[A, B](f: F[A], b: B): F[(A, B)]
Inject
b
to the right ofA
s inf
.Inject
b
to the right ofA
s inf
.- Definition Classes
- Functor
- def suml[A](fa: F[A])(implicit A: Monoid[A]): A
- Definition Classes
- Foldable
- def suml1[A](fa: F[A])(implicit A: Semigroup[A]): A
- Definition Classes
- Foldable1
- def suml1Opt[A](fa: F[A])(implicit A: Semigroup[A]): Option[A]
- Definition Classes
- Foldable
- def sumr[A](fa: F[A])(implicit A: Monoid[A]): A
- Definition Classes
- Foldable
- def sumr1[A](fa: F[A])(implicit A: Semigroup[A]): A
- Definition Classes
- Foldable1
- def sumr1Opt[A](fa: F[A])(implicit A: Semigroup[A]): Option[A]
- Definition Classes
- Foldable
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toEphemeralStream[A](fa: F[A]): EphemeralStream[A]
- Definition Classes
- Foldable
- def toIList[A](fa: F[A]): IList[A]
- Definition Classes
- Foldable
- def toList[A](fa: F[A]): List[A]
- Definition Classes
- Foldable
- def toNel[A](fa: F[A]): NonEmptyList[A]
- Definition Classes
- Foldable1
- def toSet[A](fa: F[A]): Set[A]
- Definition Classes
- Foldable
- def toStream[A](fa: F[A]): Stream[A]
- Definition Classes
- Foldable
- def toString(): String
- Definition Classes
- AnyRef → Any
- def toVector[A](fa: F[A]): Vector[A]
- Definition Classes
- Foldable
- def traversal[G[_]](implicit arg0: Applicative[G]): Traversal[G]
- Definition Classes
- Traverse
- def traversalS[S]: Traversal[[β$0$]IndexedStateT[[X]X, S, S, β$0$]]
- Definition Classes
- Traverse
- def traverse[G[_], A, B](fa: F[A])(f: (A) => G[B])(implicit arg0: Applicative[G]): G[F[B]]
- Definition Classes
- Traverse
- def traverse1[G[_], A, B](fa: F[A])(f: (A) => G[B])(implicit a: Apply[G]): G[F[B]]
- def traverse1Law: Traverse1Law
- val traverse1Syntax: Traverse1Syntax[F]
- final def traverse1U[A, GB](fa: F[A])(f: (A) => GB)(implicit G: Unapply[Apply, GB]): M[F[A]]
- def traverse1_[M[_], A, B](fa: F[A])(f: (A) => M[B])(implicit a: Apply[M], x: Semigroup[M[B]]): M[Unit]
- Definition Classes
- Foldable1
- def traverseImpl[G[_], A, B](fa: F[A])(f: (A) => G[B])(implicit arg0: Applicative[G]): G[F[B]]
Transform
fa
usingf
, collecting all theG
s withap
. - def traverseKTrampoline[S, G[_], A, B](fa: F[A])(f: (A) => Kleisli[G, S, B])(implicit arg0: Applicative[G]): Kleisli[G, S, F[B]]
Traverse
fa
with aKleisli[G, S, B]
, internally using aTrampoline
to avoid stack overflow.Traverse
fa
with aKleisli[G, S, B]
, internally using aTrampoline
to avoid stack overflow.- Definition Classes
- Traverse
- def traverseLaw: TraverseLaw
- Definition Classes
- Traverse
- final def traverseM[A, G[_], B](fa: F[A])(f: (A) => G[F[B]])(implicit G: Applicative[G], F: Bind[F]): G[F[B]]
A version of
traverse
where a subsequent monadic join is applied to the inner result.A version of
traverse
where a subsequent monadic join is applied to the inner result.- Definition Classes
- Traverse
- def traverseS[S, A, B](fa: F[A])(f: (A) => State[S, B]): State[S, F[B]]
Traverse with
State
.Traverse with
State
.- Definition Classes
- Traverse
- def traverseSTrampoline[S, G[_], A, B](fa: F[A])(f: (A) => State[S, G[B]])(implicit arg0: Applicative[G]): State[S, G[F[B]]]
Traverse
fa
with aState[S, G[B]]
, internally using aTrampoline
to avoid stack overflow.Traverse
fa
with aState[S, G[B]]
, internally using aTrampoline
to avoid stack overflow.- Definition Classes
- Traverse
- def traverseS_[S, A, B](fa: F[A])(f: (A) => State[S, B]): State[S, Unit]
traverse_
specialized toState
*traverse_
specialized toState
*- Definition Classes
- Foldable
- val traverseSyntax: TraverseSyntax[F]
- Definition Classes
- Traverse
- final def traverseU[A, GB](fa: F[A])(f: (A) => GB)(implicit G: Unapply[Applicative, GB]): M[F[A]]
A version of
traverse
that infers the type constructorG
.A version of
traverse
that infers the type constructorG
.- Definition Classes
- Traverse
- final def traverseU_[A, GB](fa: F[A])(f: (A) => GB)(implicit G: Unapply[Applicative, GB]): M[Unit]
A version of
traverse_
that infers the type constructorM
.A version of
traverse_
that infers the type constructorM
.- Definition Classes
- Foldable
- def traverse_[M[_], A, B](fa: F[A])(f: (A) => M[B])(implicit a: Applicative[M]): M[Unit]
Strict traversal in an applicative functor
M
that ignores the result off
.Strict traversal in an applicative functor
M
that ignores the result off
.- Definition Classes
- Foldable
- def void[A](fa: F[A]): F[Unit]
Empty
fa
of meaningful pure values, preserving its structure.Empty
fa
of meaningful pure values, preserving its structure.- Definition Classes
- Functor
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- def widen[A, B](fa: F[A])(implicit ev: <~<[A, B]): F[B]
Functors are covariant by nature, so we can treat an
F[A]
as anF[B]
ifA
is a subtype ofB
.Functors are covariant by nature, so we can treat an
F[A]
as anF[B]
ifA
is a subtype ofB
.- Definition Classes
- Functor
- def xmap[A, B](fa: F[A], f: (A) => B, g: (B) => A): F[B]
Converts
ma
to a value of typeF[B]
using the provided functionsf
andg
.Converts
ma
to a value of typeF[B]
using the provided functionsf
andg
.- Definition Classes
- Functor → InvariantFunctor
- def xmapb[A, B](ma: F[A])(b: Bijection[A, B]): F[B]
Converts
ma
to a value of typeF[B]
using the provided bijection.Converts
ma
to a value of typeF[B]
using the provided bijection.- Definition Classes
- InvariantFunctor
- def xmapi[A, B](ma: F[A])(iso: Isomorphism.<=>[A, B]): F[B]
Converts
ma
to a value of typeF[B]
using the provided isomorphism.Converts
ma
to a value of typeF[B]
using the provided isomorphism.- Definition Classes
- InvariantFunctor
- def zipL[A, B](fa: F[A], fb: F[B]): F[(A, Option[B])]
- Definition Classes
- Traverse
- def zipR[A, B](fa: F[A], fb: F[B]): F[(Option[A], B)]
- Definition Classes
- Traverse
- def zipWith[A, B, C](fa: F[A], fb: F[B])(f: (A, Option[B]) => C): (List[B], F[C])
- Definition Classes
- Traverse
- def zipWithL[A, B, C](fa: F[A], fb: F[B])(f: (A, Option[B]) => C): F[C]
- Definition Classes
- Traverse
- def zipWithR[A, B, C](fa: F[A], fb: F[B])(f: (Option[A], B) => C): F[C]
- Definition Classes
- Traverse