p

ai.chronon

spark

package spark

Ordering
  1. Alphabetic
Visibility
  1. Public
  2. All

Type Members

  1. class Analyzer extends AnyRef
  2. class Args extends ScallopConf
  3. abstract class BaseJoin extends AnyRef
  4. case class BootstrapInfo(joinConf: api.Join, joinParts: Seq[JoinPartMetadata], externalParts: Seq[ExternalPartMetadata], hashToSchema: Map[String, Array[StructField]]) extends Product with Serializable
  5. class ChrononKryoRegistrator extends KryoRegistrator
  6. class CpcSketchKryoSerializer extends Serializer[CpcSketch]
  7. sealed trait DataRange extends AnyRef
  8. class DummyExtensions extends (SparkSessionExtensions) ⇒ Unit
  9. case class ExternalPartMetadata(externalPart: ExternalPart, keySchema: Array[StructField], valueSchema: Array[StructField]) extends Product with Serializable
  10. class GroupBy extends Serializable
  11. class GroupByUpload extends Serializable
  12. sealed case class IncompatibleSchemaException(inconsistencies: Seq[(String, DataType, DataType)]) extends Exception with Product with Serializable
  13. class ItemSketchSerializable extends Serializable
  14. class ItemsSketchKryoSerializer extends Serializer[ItemSketchSerializable]
  15. class Join extends BaseJoin
  16. case class JoinPartMetadata(joinPart: JoinPart, keySchema: Array[StructField], valueSchema: Array[StructField]) extends Product with Serializable
  17. case class KeyWithHash(data: Array[Any], hash: Array[Byte], hashInt: Int) extends Serializable with Product
  18. case class KvRdd(data: RDD[(Array[Any], Array[Any])], keySchema: StructType, valueSchema: StructType)(implicit sparkSession: SparkSession) extends Product with Serializable
  19. class LabelJoin extends AnyRef
  20. class LogFlattenerJob extends Serializable

    Purpose of LogFlattenerJob is to unpack serialized Avro data from online requests and flatten each field (both keys and values) into individual columns and save to an offline "flattened" log table.

    Purpose of LogFlattenerJob is to unpack serialized Avro data from online requests and flatten each field (both keys and values) into individual columns and save to an offline "flattened" log table.

    Steps: 1. determine unfilled range and pull raw logs from partitioned log table 2. fetch joinCodecs for all unique schema_hash present in the logs 3. build a merged schema from all schema versions, which will be used as output schema 4. unpack each row and adhere to the output schema 5. save the schema info in the flattened log table properties (cumulatively)

  21. case class PartitionRange(start: String, end: String) extends DataRange with Ordered[PartitionRange] with Product with Serializable
  22. class RowWrapper extends Row
  23. class StagingQuery extends AnyRef
  24. case class TableUtils(sparkSession: SparkSession) extends Product with Serializable
  25. case class TimeRange(start: Long, end: Long) extends DataRange with Product with Serializable

Value Members

  1. object BootstrapInfo extends Serializable
  2. object Comparison
  3. object Conversions
  4. object Driver
  5. object Extensions
  6. object FastHashing
  7. object GenericRowHandler
  8. object GroupBy extends Serializable
  9. object GroupByUpload extends Serializable
  10. object JoinUtils
  11. object LocalDataLoader
  12. object LogFlattenerJob extends Serializable
  13. object LogUtils
  14. object MetadataExporter
  15. object SparkSessionBuilder
  16. object StagingQuery

Ungrouped