public final class JniUtils
extends java.lang.Object
Modifier and Type | Method and Description |
---|---|
static PtNDArray |
abs(PtNDArray ndArray) |
static PtNDArray |
acos(PtNDArray ndArray) |
static void |
adamUpdate(PtNDArray weight,
PtNDArray grad,
PtNDArray mean,
PtNDArray variance,
float lr,
float wd,
float rescaleGrad,
float clipGrad,
float beta1,
float beta2,
float eps) |
static PtNDArray |
adaptiveAvgPool(PtNDArray ndArray,
ai.djl.ndarray.types.Shape outputSize) |
static PtNDArray |
adaptiveMaxPool(PtNDArray ndArray,
ai.djl.ndarray.types.Shape outputSize) |
static PtNDArray |
add(PtNDArray ndArray1,
PtNDArray ndArray2) |
static void |
addi(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
all(PtNDArray ndArray) |
static PtNDArray |
any(PtNDArray ndArray) |
static PtNDArray |
arange(PtNDManager manager,
float start,
float stop,
float step,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static PtNDArray |
argMax(PtNDArray ndArray) |
static PtNDArray |
argMax(PtNDArray ndArray,
long dim,
boolean keepDim) |
static PtNDArray |
argMin(PtNDArray ndArray) |
static PtNDArray |
argMin(PtNDArray ndArray,
long dim,
boolean keepDim) |
static PtNDArray |
argSort(PtNDArray ndArray,
long dim,
boolean keepDim) |
static PtNDArray |
asin(PtNDArray ndArray) |
static PtNDArray |
atan(PtNDArray ndArray) |
static void |
attachGradient(PtNDArray ndArray) |
static PtNDArray |
avgPool(PtNDArray ndArray,
ai.djl.ndarray.types.Shape kernelSize,
ai.djl.ndarray.types.Shape stride,
ai.djl.ndarray.types.Shape padding,
boolean ceilMode,
boolean countIncludePad) |
static void |
backward(PtNDArray ndArray,
PtNDArray gradNd,
boolean keepGraph,
boolean createGraph) |
static PtNDArray |
batchNorm(PtNDArray ndArray,
PtNDArray gamma,
PtNDArray beta,
PtNDArray runningMean,
PtNDArray runningVar,
boolean isTraining,
double momentum,
double eps) |
static PtNDArray |
booleanMask(PtNDArray ndArray,
PtNDArray indicesNd) |
static void |
booleanMaskSet(PtNDArray ndArray,
PtNDArray value,
PtNDArray indicesNd) |
static PtNDArray |
broadcast(PtNDArray ndArray,
ai.djl.ndarray.types.Shape shape) |
static PtNDArray |
cat(PtNDArray[] arrays,
long dim) |
static PtNDArray |
ceil(PtNDArray ndArray) |
static PtNDArray |
clip(PtNDArray ndArray,
java.lang.Number min,
java.lang.Number max) |
static PtNDArray |
clone(PtNDArray ndArray) |
static boolean |
contentEqual(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
convolution(PtNDArray ndArray,
PtNDArray weight,
PtNDArray bias,
ai.djl.ndarray.types.Shape stride,
ai.djl.ndarray.types.Shape padding,
ai.djl.ndarray.types.Shape dilation,
int groups) |
static PtNDArray |
cos(PtNDArray ndArray) |
static PtNDArray |
cosh(PtNDArray ndArray) |
static PtNDArray |
createEmptyNdArray(PtNDManager manager,
ai.djl.ndarray.types.Shape shape,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static PtNDArray |
createNdFromByteBuffer(PtNDManager manager,
java.nio.ByteBuffer data,
ai.djl.ndarray.types.Shape shape,
ai.djl.ndarray.types.DataType dType,
ai.djl.ndarray.types.SparseFormat fmt,
ai.djl.Device device) |
static PtNDArray |
createOnesNdArray(PtNDManager manager,
ai.djl.ndarray.types.Shape shape,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static PtNDArray |
createSparseCoo(PtNDArray indices,
PtNDArray values,
ai.djl.ndarray.types.Shape shape) |
static PtNDArray |
createZerosNdArray(PtNDManager manager,
ai.djl.ndarray.types.Shape shape,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static PtNDArray |
cumSum(PtNDArray ndArray,
long dim) |
static void |
deleteModule(long pointer) |
static void |
deleteNDArray(long handle) |
static PtNDArray |
detachGradient(PtNDArray ndArray) |
static PtNDArray |
div(PtNDArray ndArray1,
PtNDArray ndArray2) |
static void |
divi(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
dot(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
dropout(PtNDArray ndArray,
double prob,
boolean training) |
static PtNDArray |
elu(PtNDArray ndArray,
double alpha) |
static void |
enableInferenceMode(PtSymbolBlock block) |
static void |
enableTrainingMode(PtSymbolBlock block) |
static PtNDArray |
eq(PtNDArray self,
PtNDArray other) |
static PtNDArray |
erfinv(PtNDArray ndArray) |
static PtNDArray |
exp(PtNDArray ndArray) |
static PtNDArray |
eye(PtNDManager manager,
int n,
int m,
ai.djl.ndarray.types.DataType dataType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static PtNDArray |
flatten(PtNDArray ndArray,
long startDim,
long endDim) |
static PtNDArray |
flip(PtNDArray ndArray,
long[] dims) |
static PtNDArray |
floor(PtNDArray ndArray) |
static PtNDArray |
full(PtNDManager manager,
ai.djl.ndarray.types.Shape shape,
double fillValue,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static PtNDArray |
gelu(PtNDArray ndArray) |
static java.nio.ByteBuffer |
getByteBuffer(PtNDArray ndArray) |
static ai.djl.ndarray.types.DataType |
getDataType(PtNDArray ndArray) |
static ai.djl.Device |
getDevice(PtNDArray ndArray) |
static java.util.Set<java.lang.String> |
getFeatures() |
static PtNDArray |
getGradient(PtNDArray ndArray) |
static java.lang.String |
getGradientFunctionNames(PtNDArray ndArray) |
static PtNDArray |
getItem(PtNDArray ndArray,
long[] indices) |
static int |
getLayout(PtNDArray array) |
static int |
getNumInteropThreads() |
static int |
getNumThreads() |
static ai.djl.ndarray.types.Shape |
getShape(PtNDArray ndArray) |
static ai.djl.ndarray.types.SparseFormat |
getSparseFormat(PtNDArray ndArray) |
static ai.djl.ndarray.NDList |
gru(PtNDArray input,
PtNDArray hx,
ai.djl.ndarray.NDList params,
boolean hasBiases,
int numLayers,
double dropRate,
boolean training,
boolean bidirectional,
boolean batchFirst) |
static PtNDArray |
gt(PtNDArray self,
PtNDArray other) |
static PtNDArray |
gte(PtNDArray self,
PtNDArray other) |
static PtNDArray |
index(PtNDArray ndArray,
long[] minIndices,
long[] maxIndices,
long[] stepIndices) |
static void |
indexSet(PtNDArray ndArray,
PtNDArray value,
long[] minIndices,
long[] maxIndices,
long[] stepIndices) |
static PtNDArray |
interpolate(PtNDArray ndArray,
long[] size,
int mode,
boolean alignCorners) |
static PtNDArray |
isInf(PtNDArray ndArray) |
static PtNDArray |
isNaN(PtNDArray ndArray) |
static PtNDArray |
leakyRelu(PtNDArray ndArray,
double negativeSlope) |
static PtNDArray |
linear(PtNDArray input,
PtNDArray weight,
PtNDArray bias) |
static PtNDArray |
linspace(PtNDManager manager,
float start,
float stop,
int step,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static PtSymbolBlock |
loadModule(PtNDManager manager,
java.nio.file.Path path,
ai.djl.Device device,
java.lang.String[] extraFileKeys,
java.lang.String[] extraFileValues) |
static PtNDArray |
log(PtNDArray ndArray) |
static PtNDArray |
log10(PtNDArray ndArray) |
static PtNDArray |
log2(PtNDArray ndArray) |
static PtNDArray |
logicalAnd(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
logicalNot(PtNDArray ndArray) |
static PtNDArray |
logicalOr(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
logicalXor(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
logSoftmax(PtNDArray ndArray,
long dim,
ai.djl.ndarray.types.DataType dTpe) |
static PtNDArray |
lpPool(PtNDArray ndArray,
double normType,
ai.djl.ndarray.types.Shape kernelSize,
ai.djl.ndarray.types.Shape stride,
boolean ceilMode) |
static ai.djl.ndarray.NDList |
lstm(PtNDArray input,
ai.djl.ndarray.NDList hx,
ai.djl.ndarray.NDList params,
boolean hasBiases,
int numLayers,
double dropRate,
boolean training,
boolean bidirectional,
boolean batchFirst) |
static PtNDArray |
lt(PtNDArray self,
PtNDArray other) |
static PtNDArray |
lte(PtNDArray self,
PtNDArray other) |
static PtNDArray |
matmul(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
max(PtNDArray ndArray) |
static PtNDArray |
max(PtNDArray ndArray,
long dim,
boolean keepDim) |
static PtNDArray |
max(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
maxPool(PtNDArray ndArray,
ai.djl.ndarray.types.Shape kernelSize,
ai.djl.ndarray.types.Shape stride,
ai.djl.ndarray.types.Shape padding,
boolean ceilMode) |
static PtNDArray |
mean(PtNDArray ndArray) |
static PtNDArray |
mean(PtNDArray ndArray,
long dim,
boolean keepDim) |
static PtNDArray |
min(PtNDArray ndArray) |
static PtNDArray |
min(PtNDArray ndArray,
long dim,
boolean keepDim) |
static PtNDArray |
min(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
mul(PtNDArray ndArray1,
PtNDArray ndArray2) |
static void |
muli(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
neg(PtNDArray ndArray) |
static void |
negi(PtNDArray ndArray) |
static PtNDArray |
neq(PtNDArray self,
PtNDArray other) |
static PtNDArray |
none(PtNDArray ndArray) |
static PtNDArray |
normal(PtNDManager manager,
double mean,
double std,
ai.djl.ndarray.types.Shape size,
ai.djl.ndarray.types.DataType dataType,
ai.djl.Device device) |
static PtNDArray |
onesLike(PtNDArray array,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static PtNDArray |
permute(PtNDArray ndArray,
long[] dims) |
static PtNDArray |
pick(PtNDArray ndArray,
PtNDArray index,
long dim) |
static PtNDArray |
pow(PtNDArray ndArray1,
PtNDArray ndArray2) |
static void |
powi(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
prod(PtNDArray ndArray) |
static PtNDArray |
prod(PtNDArray ndArray,
long dim,
boolean keepDim) |
static PtNDArray |
randint(PtNDManager manager,
long low,
long high,
ai.djl.ndarray.types.Shape size,
ai.djl.ndarray.types.DataType dataType,
ai.djl.Device device) |
static PtNDArray |
relu(PtNDArray ndArray) |
static PtNDArray |
remainder(PtNDArray ndArray1,
PtNDArray ndArray2) |
static void |
remainderi(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
repeat(PtNDArray ndArray,
long repeat,
long dim) |
static boolean |
requiresGrad(PtNDArray ndArray) |
static PtNDArray |
reshape(PtNDArray ndArray,
long[] shape) |
static ai.djl.ndarray.NDList |
rnn(PtNDArray input,
PtNDArray hx,
ai.djl.ndarray.NDList params,
boolean hasBiases,
int numLayers,
ai.djl.nn.recurrent.RNN.Activation activation,
double dropRate,
boolean training,
boolean bidirectional,
boolean batchFirst) |
static PtNDArray |
rot90(PtNDArray ndArray,
int times,
int[] axes) |
static PtNDArray |
round(PtNDArray ndArray) |
static PtNDArray |
selu(PtNDArray ndArray) |
static void |
set(PtNDArray self,
java.nio.ByteBuffer data) |
static void |
setNumInteropThreads(int threads) |
static void |
setNumThreads(int threads) |
static void |
setSeed(long seed) |
static void |
sgdUpdate(PtNDArray weight,
PtNDArray grad,
PtNDArray state,
float lr,
float wd,
float rescaleGrad,
float clipGrad,
float momentum) |
static PtNDArray |
sigmoid(PtNDArray ndArray) |
static PtNDArray |
sign(PtNDArray ndArray) |
static void |
signi(PtNDArray ndArray) |
static PtNDArray |
sin(PtNDArray ndArray) |
static PtNDArray |
sinh(PtNDArray ndArray) |
static PtNDArray |
slice(PtNDArray ndArray,
long dim,
long start,
long stop,
long step) |
static PtNDArray |
softmax(PtNDArray ndArray,
long dim,
ai.djl.ndarray.types.DataType dTpe) |
static PtNDArray |
softPlus(PtNDArray ndArray) |
static PtNDArray |
softSign(PtNDArray ndArray) |
static PtNDArray |
sort(PtNDArray ndArray,
long dim,
boolean descending) |
static ai.djl.ndarray.NDList |
split(PtNDArray ndArray,
long[] indices,
long axis) |
static ai.djl.ndarray.NDList |
split(PtNDArray ndArray,
long size,
long axis) |
static PtNDArray |
sqrt(PtNDArray ndArray) |
static PtNDArray |
square(PtNDArray ndArray) |
static PtNDArray |
squeeze(PtNDArray ndArray) |
static PtNDArray |
squeeze(PtNDArray ndArray,
long dim) |
static PtNDArray |
stack(PtNDArray[] arrays,
int dim) |
static void |
startProfile(boolean useCuda,
boolean recordShape,
boolean profileMemory)
Calls this method to start profile the area you are interested in.
|
static void |
stopProfile(java.lang.String outputFile) |
static PtNDArray |
sub(PtNDArray ndArray1,
PtNDArray ndArray2) |
static void |
subi(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
sum(PtNDArray ndArray) |
static PtNDArray |
sum(PtNDArray ndArray,
long[] dims,
boolean keepDim) |
static PtNDArray |
tan(PtNDArray ndArray) |
static PtNDArray |
tanh(PtNDArray ndArray) |
static PtNDArray |
tile(PtNDArray ndArray,
long[] repeats) |
static PtNDArray |
to(PtNDArray ndArray,
ai.djl.ndarray.types.DataType dataType,
ai.djl.Device device,
boolean copy) |
static PtNDArray |
toDense(PtNDArray ndArray) |
static PtNDArray |
toSparse(PtNDArray ndArray) |
static PtNDArray |
transpose(PtNDArray ndArray,
long dim1,
long dim2) |
static PtNDArray |
trunc(PtNDArray ndArray) |
static PtNDArray |
uniform(PtNDManager manager,
double low,
double high,
ai.djl.ndarray.types.Shape size,
ai.djl.ndarray.types.DataType dataType,
ai.djl.Device device) |
static PtNDArray |
unsqueeze(PtNDArray ndArray,
long dim) |
static PtNDArray |
where(PtNDArray condition,
PtNDArray self,
PtNDArray other) |
static void |
zeroGrad(PtNDArray weight) |
static PtNDArray |
zerosLike(PtNDArray array,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
public static int getNumInteropThreads()
public static int getNumThreads()
public static void setNumInteropThreads(int threads)
public static void setNumThreads(int threads)
public static java.util.Set<java.lang.String> getFeatures()
public static void setSeed(long seed)
public static void startProfile(boolean useCuda, boolean recordShape, boolean profileMemory)
Example usage
JniUtils.startProfile(false, true, true); Predictor.predict(img); JniUtils.stopProfile(outputFile)
useCuda
- Enables timing of CUDA events as well using the cudaEvent API.recordShape
- If shapes recording is set, information about input dimensions will be
collectedprofileMemory
- Whether to report memory usagepublic static void stopProfile(java.lang.String outputFile)
public static PtNDArray createNdFromByteBuffer(PtNDManager manager, java.nio.ByteBuffer data, ai.djl.ndarray.types.Shape shape, ai.djl.ndarray.types.DataType dType, ai.djl.ndarray.types.SparseFormat fmt, ai.djl.Device device)
public static PtNDArray createEmptyNdArray(PtNDManager manager, ai.djl.ndarray.types.Shape shape, ai.djl.ndarray.types.DataType dType, ai.djl.Device device, ai.djl.ndarray.types.SparseFormat fmt)
public static PtNDArray createZerosNdArray(PtNDManager manager, ai.djl.ndarray.types.Shape shape, ai.djl.ndarray.types.DataType dType, ai.djl.Device device, ai.djl.ndarray.types.SparseFormat fmt)
public static PtNDArray createOnesNdArray(PtNDManager manager, ai.djl.ndarray.types.Shape shape, ai.djl.ndarray.types.DataType dType, ai.djl.Device device, ai.djl.ndarray.types.SparseFormat fmt)
public static PtNDArray full(PtNDManager manager, ai.djl.ndarray.types.Shape shape, double fillValue, ai.djl.ndarray.types.DataType dType, ai.djl.Device device, ai.djl.ndarray.types.SparseFormat fmt)
public static PtNDArray zerosLike(PtNDArray array, ai.djl.ndarray.types.DataType dType, ai.djl.Device device, ai.djl.ndarray.types.SparseFormat fmt)
public static PtNDArray onesLike(PtNDArray array, ai.djl.ndarray.types.DataType dType, ai.djl.Device device, ai.djl.ndarray.types.SparseFormat fmt)
public static PtNDArray arange(PtNDManager manager, float start, float stop, float step, ai.djl.ndarray.types.DataType dType, ai.djl.Device device, ai.djl.ndarray.types.SparseFormat fmt)
public static PtNDArray linspace(PtNDManager manager, float start, float stop, int step, ai.djl.ndarray.types.DataType dType, ai.djl.Device device, ai.djl.ndarray.types.SparseFormat fmt)
public static PtNDArray createSparseCoo(PtNDArray indices, PtNDArray values, ai.djl.ndarray.types.Shape shape)
public static PtNDArray to(PtNDArray ndArray, ai.djl.ndarray.types.DataType dataType, ai.djl.Device device, boolean copy)
public static PtNDArray index(PtNDArray ndArray, long[] minIndices, long[] maxIndices, long[] stepIndices)
public static void indexSet(PtNDArray ndArray, PtNDArray value, long[] minIndices, long[] maxIndices, long[] stepIndices)
public static void set(PtNDArray self, java.nio.ByteBuffer data)
public static void booleanMaskSet(PtNDArray ndArray, PtNDArray value, PtNDArray indicesNd)
public static PtNDArray softmax(PtNDArray ndArray, long dim, ai.djl.ndarray.types.DataType dTpe)
public static PtNDArray logSoftmax(PtNDArray ndArray, long dim, ai.djl.ndarray.types.DataType dTpe)
public static void signi(PtNDArray ndArray)
public static ai.djl.ndarray.NDList split(PtNDArray ndArray, long size, long axis)
public static ai.djl.ndarray.NDList split(PtNDArray ndArray, long[] indices, long axis)
public static void negi(PtNDArray ndArray)
public static PtNDArray randint(PtNDManager manager, long low, long high, ai.djl.ndarray.types.Shape size, ai.djl.ndarray.types.DataType dataType, ai.djl.Device device)
public static PtNDArray normal(PtNDManager manager, double mean, double std, ai.djl.ndarray.types.Shape size, ai.djl.ndarray.types.DataType dataType, ai.djl.Device device)
public static PtNDArray uniform(PtNDManager manager, double low, double high, ai.djl.ndarray.types.Shape size, ai.djl.ndarray.types.DataType dataType, ai.djl.Device device)
public static PtNDArray eye(PtNDManager manager, int n, int m, ai.djl.ndarray.types.DataType dataType, ai.djl.Device device, ai.djl.ndarray.types.SparseFormat fmt)
public static PtNDArray interpolate(PtNDArray ndArray, long[] size, int mode, boolean alignCorners)
public static PtNDArray convolution(PtNDArray ndArray, PtNDArray weight, PtNDArray bias, ai.djl.ndarray.types.Shape stride, ai.djl.ndarray.types.Shape padding, ai.djl.ndarray.types.Shape dilation, int groups)
public static PtNDArray batchNorm(PtNDArray ndArray, PtNDArray gamma, PtNDArray beta, PtNDArray runningMean, PtNDArray runningVar, boolean isTraining, double momentum, double eps)
public static ai.djl.ndarray.NDList rnn(PtNDArray input, PtNDArray hx, ai.djl.ndarray.NDList params, boolean hasBiases, int numLayers, ai.djl.nn.recurrent.RNN.Activation activation, double dropRate, boolean training, boolean bidirectional, boolean batchFirst)
public static ai.djl.ndarray.NDList gru(PtNDArray input, PtNDArray hx, ai.djl.ndarray.NDList params, boolean hasBiases, int numLayers, double dropRate, boolean training, boolean bidirectional, boolean batchFirst)
public static ai.djl.ndarray.NDList lstm(PtNDArray input, ai.djl.ndarray.NDList hx, ai.djl.ndarray.NDList params, boolean hasBiases, int numLayers, double dropRate, boolean training, boolean bidirectional, boolean batchFirst)
public static PtNDArray avgPool(PtNDArray ndArray, ai.djl.ndarray.types.Shape kernelSize, ai.djl.ndarray.types.Shape stride, ai.djl.ndarray.types.Shape padding, boolean ceilMode, boolean countIncludePad)
public static PtNDArray maxPool(PtNDArray ndArray, ai.djl.ndarray.types.Shape kernelSize, ai.djl.ndarray.types.Shape stride, ai.djl.ndarray.types.Shape padding, boolean ceilMode)
public static PtNDArray adaptiveMaxPool(PtNDArray ndArray, ai.djl.ndarray.types.Shape outputSize)
public static PtNDArray adaptiveAvgPool(PtNDArray ndArray, ai.djl.ndarray.types.Shape outputSize)
public static PtNDArray lpPool(PtNDArray ndArray, double normType, ai.djl.ndarray.types.Shape kernelSize, ai.djl.ndarray.types.Shape stride, boolean ceilMode)
public static ai.djl.ndarray.types.DataType getDataType(PtNDArray ndArray)
public static ai.djl.Device getDevice(PtNDArray ndArray)
public static ai.djl.ndarray.types.SparseFormat getSparseFormat(PtNDArray ndArray)
public static ai.djl.ndarray.types.Shape getShape(PtNDArray ndArray)
public static java.nio.ByteBuffer getByteBuffer(PtNDArray ndArray)
public static void deleteNDArray(long handle)
public static boolean requiresGrad(PtNDArray ndArray)
public static java.lang.String getGradientFunctionNames(PtNDArray ndArray)
public static void attachGradient(PtNDArray ndArray)
public static void backward(PtNDArray ndArray, PtNDArray gradNd, boolean keepGraph, boolean createGraph)
public static void deleteModule(long pointer)
public static PtSymbolBlock loadModule(PtNDManager manager, java.nio.file.Path path, ai.djl.Device device, java.lang.String[] extraFileKeys, java.lang.String[] extraFileValues)
public static void enableInferenceMode(PtSymbolBlock block)
public static void enableTrainingMode(PtSymbolBlock block)
public static void zeroGrad(PtNDArray weight)
public static void adamUpdate(PtNDArray weight, PtNDArray grad, PtNDArray mean, PtNDArray variance, float lr, float wd, float rescaleGrad, float clipGrad, float beta1, float beta2, float eps)
public static void sgdUpdate(PtNDArray weight, PtNDArray grad, PtNDArray state, float lr, float wd, float rescaleGrad, float clipGrad, float momentum)
public static int getLayout(PtNDArray array)