All Methods Static Methods Concrete Methods
Modifier and Type |
Method and Description |
static PtNDArray |
abs(PtNDArray ndArray) |
static PtNDArray |
acos(PtNDArray ndArray) |
static PtNDArray |
add(PtNDArray ndArray1,
PtNDArray ndArray2) |
static void |
addi(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
all(PtNDArray ndArray) |
static PtNDArray |
any(PtNDArray ndArray) |
static PtNDArray |
arange(PtNDManager manager,
float start,
float stop,
float step,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static PtNDArray |
argMax(PtNDArray ndArray) |
static PtNDArray |
argMax(PtNDArray ndArray,
long dim,
boolean keepDim) |
static PtNDArray |
argMin(PtNDArray ndArray) |
static PtNDArray |
argMin(PtNDArray ndArray,
long dim,
boolean keepDim) |
static PtNDArray |
argSort(PtNDArray ndArray,
long dim,
boolean keepDim) |
static PtNDArray |
asin(PtNDArray ndArray) |
static PtNDArray |
atan(PtNDArray ndArray) |
static PtNDArray |
booleanMask(PtNDArray ndArray,
PtNDArray indicesNd) |
static PtNDArray |
broadcast(PtNDArray ndArray,
ai.djl.ndarray.types.Shape shape) |
static PtNDArray |
cat(ai.djl.ndarray.NDArray[] arrays,
long dim) |
static PtNDArray |
ceil(PtNDArray ndArray) |
static PtNDArray |
clip(PtNDArray ndArray,
java.lang.Number min,
java.lang.Number max) |
static PtNDArray |
clone(PtNDArray ndArray) |
static boolean |
contentEqual(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
cos(PtNDArray ndArray) |
static PtNDArray |
cosh(PtNDArray ndArray) |
static PtNDArray |
createEmptyNdArray(PtNDManager manager,
ai.djl.ndarray.types.Shape shape,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static PtNDArray |
createNdFromByteBuffer(PtNDManager manager,
java.nio.ByteBuffer data,
ai.djl.ndarray.types.Shape shape,
ai.djl.ndarray.types.DataType dType,
ai.djl.ndarray.types.SparseFormat fmt,
ai.djl.Device device) |
static PtNDArray |
createOnesNdArray(PtNDManager manager,
ai.djl.ndarray.types.Shape shape,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static PtNDArray |
createZerosNdArray(PtNDManager manager,
ai.djl.ndarray.types.Shape shape,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static void |
deleteModule(PtSymbolBlock block) |
static void |
deleteNdArray(Pointer handle) |
static PtNDArray |
div(PtNDArray ndArray1,
PtNDArray ndArray2) |
static void |
divi(PtNDArray ndArray1,
PtNDArray ndArray2) |
static void |
enableInferenceMode(PtSymbolBlock block) |
static PtNDArray |
eq(PtNDArray self,
PtNDArray other) |
static PtNDArray |
exp(PtNDArray ndArray) |
static PtNDArray |
eye(PtNDManager manager,
int n,
int m,
ai.djl.ndarray.types.DataType dataType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static PtNDArray |
flatten(PtNDArray ndArray,
long startDim,
long endDim) |
static PtNDArray |
floor(PtNDArray ndArray) |
static java.nio.ByteBuffer |
getByteBuffer(PtNDArray ndArray) |
static ai.djl.ndarray.types.DataType |
getDataType(PtNDArray ndArray) |
static ai.djl.Device |
getDevice(PtNDArray ndArray) |
static java.util.Set<java.lang.String> |
getFeatures() |
static ai.djl.ndarray.types.Shape |
getShape(PtNDArray ndArray) |
static ai.djl.ndarray.types.SparseFormat |
getSparseFormat(PtNDArray ndArray) |
static PtNDArray |
gt(PtNDArray self,
PtNDArray other) |
static PtNDArray |
gte(PtNDArray self,
PtNDArray other) |
static PtNDArray |
linspace(PtNDManager manager,
float start,
float stop,
int step,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static PtSymbolBlock |
loadModule(PtNDManager manager,
java.nio.file.Path path,
ai.djl.Device device) |
static PtNDArray |
log(PtNDArray ndArray) |
static PtNDArray |
log10(PtNDArray ndArray) |
static PtNDArray |
log2(PtNDArray ndArray) |
static PtNDArray |
logicalNot(PtNDArray ndArray) |
static PtNDArray |
logicalXor(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
lt(PtNDArray self,
PtNDArray other) |
static PtNDArray |
lte(PtNDArray self,
PtNDArray other) |
static PtNDArray |
matmul(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
max(PtNDArray ndArray) |
static PtNDArray |
max(PtNDArray ndArray,
long dim,
boolean keepDim) |
static PtNDArray |
max(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
mean(PtNDArray ndArray) |
static PtNDArray |
mean(PtNDArray ndArray,
long dim,
boolean keepDim) |
static PtNDArray |
min(PtNDArray ndArray) |
static PtNDArray |
min(PtNDArray ndArray,
long dim,
boolean keepDim) |
static PtNDArray |
min(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
mul(PtNDArray ndArray1,
PtNDArray ndArray2) |
static void |
muli(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
neg(PtNDArray ndArray) |
static void |
negi(PtNDArray ndArray) |
static PtNDArray |
neq(PtNDArray self,
PtNDArray other) |
static PtNDArray |
none(PtNDArray ndArray) |
static PtNDArray |
normal(PtNDManager manager,
double mean,
double std,
ai.djl.ndarray.types.Shape size,
ai.djl.ndarray.types.DataType dataType,
ai.djl.Device device) |
static PtNDArray |
onesLike(PtNDArray array,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |
static PtNDArray |
permute(PtNDArray ndArray,
long[] dims) |
static PtNDArray |
pow(PtNDArray ndArray1,
PtNDArray ndArray2) |
static void |
powi(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
remainder(PtNDArray ndArray1,
PtNDArray ndArray2) |
static void |
remainderi(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
reshape(PtNDArray ndArray,
long[] shape) |
static PtNDArray |
round(PtNDArray ndArray) |
static void |
setNumInteropThreads(int threads) |
static void |
setNumThreads(int threads) |
static void |
setSeed(long seed) |
static PtNDArray |
sin(PtNDArray ndArray) |
static PtNDArray |
sinh(PtNDArray ndArray) |
static PtNDArray |
slice(PtNDArray ndArray,
long dim,
long start,
long stop,
long step) |
static PtNDArray |
softmax(PtNDArray ndArray,
long dim,
ai.djl.ndarray.types.DataType dTpe) |
static PtNDArray |
sort(PtNDArray ndArray,
long dim,
boolean descending) |
static ai.djl.ndarray.NDList |
split(PtNDArray ndArray,
long[] indices,
long axis) |
static ai.djl.ndarray.NDList |
split(PtNDArray ndArray,
long size,
long axis) |
static PtNDArray |
sqrt(PtNDArray ndArray) |
static PtNDArray |
squeeze(PtNDArray ndArray) |
static PtNDArray |
squeeze(PtNDArray ndArray,
long dim) |
static PtNDArray |
stack(ai.djl.ndarray.NDArray[] arrays,
int dim) |
static PtNDArray |
sub(PtNDArray ndArray1,
PtNDArray ndArray2) |
static void |
subi(PtNDArray ndArray1,
PtNDArray ndArray2) |
static PtNDArray |
sum(PtNDArray ndArray) |
static PtNDArray |
sum(PtNDArray ndArray,
long[] dims,
boolean keepDim) |
static PtNDArray |
tan(PtNDArray ndArray) |
static PtNDArray |
tanh(PtNDArray ndArray) |
static PtNDArray |
to(PtNDArray ndArray,
ai.djl.ndarray.types.DataType dataType,
ai.djl.Device device,
boolean copy) |
static PtNDArray |
transpose(PtNDArray ndArray,
long dim1,
long dim2) |
static PtNDArray |
trunc(PtNDArray ndArray) |
static PtNDArray |
uniform(PtNDManager manager,
double low,
double high,
ai.djl.ndarray.types.Shape size,
ai.djl.ndarray.types.DataType dataType,
ai.djl.Device device) |
static PtNDArray |
unsqueeze(PtNDArray ndArray,
long dim) |
static PtNDArray |
upsampleBilinear2d(PtNDArray ndArray,
long[] size,
boolean alignCorners) |
static PtNDArray |
zerosLike(PtNDArray array,
ai.djl.ndarray.types.DataType dType,
ai.djl.Device device,
ai.djl.ndarray.types.SparseFormat fmt) |