public class PtNDArrayEx
extends java.lang.Object
implements ai.djl.ndarray.internal.NDArrayEx
PtNDArrayEx
is the PyTorch implementation of the NDArrayEx
.Modifier and Type | Method and Description |
---|---|
void |
adamUpdate(ai.djl.ndarray.NDList inputs,
ai.djl.ndarray.NDList weights,
float learningRate,
float weightDecay,
float rescaleGrad,
float clipGrad,
float beta1,
float beta2,
float epsilon,
boolean lazyUpdate) |
PtNDArray |
avgPool(ai.djl.ndarray.types.Shape kernel,
ai.djl.ndarray.types.Shape stride,
ai.djl.ndarray.types.Shape pad,
ai.djl.nn.pooling.PoolingConvention poolingConvention,
boolean countIncludePad) |
ai.djl.ndarray.NDList |
batchNorm(ai.djl.ndarray.NDList inputs,
float epsilon,
float momentum,
int axis,
boolean center,
boolean scale,
boolean training,
ai.djl.util.PairList<java.lang.String,java.lang.Object> additional) |
PtNDArray |
concat(ai.djl.ndarray.NDList list,
int axis) |
ai.djl.ndarray.NDList |
convolution(ai.djl.ndarray.NDList inputs,
ai.djl.ndarray.types.Shape kernel,
ai.djl.ndarray.types.Shape stride,
ai.djl.ndarray.types.Shape pad,
ai.djl.ndarray.types.Shape dilate,
int numFilters,
int numGroups,
java.lang.String layout,
boolean noBias,
ai.djl.util.PairList<java.lang.String,java.lang.Object> additional) |
ai.djl.ndarray.NDList |
dropout(ai.djl.ndarray.NDList inputs,
float probability,
int[] sharedAxes,
boolean training,
ai.djl.util.PairList<java.lang.String,java.lang.Object> additional) |
PtNDArray |
elu(float alpha) |
ai.djl.ndarray.NDList |
embedding(ai.djl.ndarray.NDList inputs,
int numItems,
int embeddingSize,
boolean sparseGrad,
ai.djl.ndarray.types.DataType dataType,
ai.djl.util.PairList<java.lang.String,java.lang.Object> additional) |
ai.djl.ndarray.NDList |
fullyConnected(ai.djl.ndarray.NDList inputs,
long outChannels,
boolean flatten,
boolean noBias,
ai.djl.util.PairList<java.lang.String,java.lang.Object> additional) |
PtNDArray |
gelu() |
PtNDArray |
getArray() |
ai.djl.ndarray.index.NDArrayIndexer |
getIndexer() |
PtNDArray |
globalAvgPool() |
PtNDArray |
globalLpPool(int pValue) |
PtNDArray |
globalMaxPool() |
PtNDArray |
globalSumPool() |
PtNDArray |
leakyRelu(float alpha) |
PtNDArray |
lpPool(ai.djl.ndarray.types.Shape kernel,
ai.djl.ndarray.types.Shape stride,
ai.djl.ndarray.types.Shape pad,
ai.djl.nn.pooling.PoolingConvention poolingConvention,
int pValue) |
ai.djl.ndarray.NDList |
lstm(ai.djl.ndarray.NDList inputs,
long stateSize,
float dropRate,
int numStackedLayers,
boolean useSequenceLength,
boolean useBidirectional,
boolean stateOutputs,
double lstmStateClipMin,
double lstmStateClipMax,
ai.djl.util.PairList<java.lang.String,java.lang.Object> additional) |
PtNDArray |
maxPool(ai.djl.ndarray.types.Shape kernel,
ai.djl.ndarray.types.Shape stride,
ai.djl.ndarray.types.Shape pad,
ai.djl.nn.pooling.PoolingConvention poolingConvention) |
ai.djl.ndarray.NDList |
multiBoxDetection(ai.djl.ndarray.NDList inputs,
boolean clip,
float threshold,
int backgroundId,
float nmsThreshold,
boolean forceSuppress,
int nmsTopK) |
ai.djl.ndarray.NDList |
multiBoxPrior(java.util.List<java.lang.Float> sizes,
java.util.List<java.lang.Float> ratios,
java.util.List<java.lang.Float> steps,
java.util.List<java.lang.Float> offsets,
boolean clip) |
ai.djl.ndarray.NDList |
multiBoxTarget(ai.djl.ndarray.NDList inputs,
float iouThreshold,
float ignoreLabel,
float negativeMiningRatio,
float negativeMiningThreshold,
int minNegativeSamples) |
void |
nagUpdate(ai.djl.ndarray.NDList inputs,
ai.djl.ndarray.NDList weights,
float learningRate,
float weightDecay,
float rescaleGrad,
float clipGrad,
float momentum) |
ai.djl.ndarray.NDList |
prelu(ai.djl.ndarray.NDList inputs,
ai.djl.util.PairList<java.lang.String,java.lang.Object> additional) |
PtNDArray |
rdiv(ai.djl.ndarray.NDArray b) |
PtNDArray |
rdiv(java.lang.Number n) |
PtNDArray |
rdivi(ai.djl.ndarray.NDArray b) |
PtNDArray |
rdivi(java.lang.Number n) |
PtNDArray |
relu() |
PtNDArray |
resize(int width,
int height) |
PtNDArray |
rmod(ai.djl.ndarray.NDArray b) |
PtNDArray |
rmod(java.lang.Number n) |
PtNDArray |
rmodi(ai.djl.ndarray.NDArray b) |
PtNDArray |
rmodi(java.lang.Number n) |
ai.djl.ndarray.NDList |
rnn(ai.djl.ndarray.NDList inputs,
java.lang.String mode,
long stateSize,
float dropRate,
int numStackedLayers,
boolean useSequenceLength,
boolean useBidirectional,
boolean stateOutputs,
ai.djl.util.PairList<java.lang.String,java.lang.Object> additional) |
PtNDArray |
rpow(java.lang.Number n) |
PtNDArray |
rpowi(java.lang.Number n) |
PtNDArray |
rsub(ai.djl.ndarray.NDArray b) |
PtNDArray |
rsub(java.lang.Number n) |
PtNDArray |
rsubi(ai.djl.ndarray.NDArray b) |
PtNDArray |
rsubi(java.lang.Number n) |
PtNDArray |
selu() |
void |
sgdUpdate(ai.djl.ndarray.NDList inputs,
ai.djl.ndarray.NDList weights,
float learningRate,
float weightDecay,
float rescaleGrad,
float clipGrad,
float momentum,
boolean lazyUpdate) |
PtNDArray |
sigmoid() |
PtNDArray |
softrelu() |
PtNDArray |
softsign() |
PtNDArray |
stack(ai.djl.ndarray.NDList arrays,
int axis) |
PtNDArray |
sumPool(ai.djl.ndarray.types.Shape kernel,
ai.djl.ndarray.types.Shape stride,
ai.djl.ndarray.types.Shape pad,
ai.djl.nn.pooling.PoolingConvention poolingConvention) |
PtNDArray |
tanh() |
PtNDArray |
where(ai.djl.ndarray.NDArray condition,
ai.djl.ndarray.NDArray other) |
public PtNDArray rdiv(java.lang.Number n)
rdiv
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray rdiv(ai.djl.ndarray.NDArray b)
rdiv
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray rdivi(java.lang.Number n)
rdivi
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray rdivi(ai.djl.ndarray.NDArray b)
rdivi
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray rsub(java.lang.Number n)
rsub
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray rsub(ai.djl.ndarray.NDArray b)
rsub
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray rsubi(java.lang.Number n)
rsubi
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray rsubi(ai.djl.ndarray.NDArray b)
rsubi
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray rmod(java.lang.Number n)
rmod
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray rmod(ai.djl.ndarray.NDArray b)
rmod
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray rmodi(java.lang.Number n)
rmodi
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray rmodi(ai.djl.ndarray.NDArray b)
rmodi
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray rpow(java.lang.Number n)
rpow
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray rpowi(java.lang.Number n)
rpowi
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray relu()
relu
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray sigmoid()
sigmoid
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray tanh()
tanh
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray softrelu()
softrelu
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray softsign()
softsign
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray leakyRelu(float alpha)
leakyRelu
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray elu(float alpha)
elu
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray selu()
selu
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray gelu()
gelu
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray maxPool(ai.djl.ndarray.types.Shape kernel, ai.djl.ndarray.types.Shape stride, ai.djl.ndarray.types.Shape pad, ai.djl.nn.pooling.PoolingConvention poolingConvention)
maxPool
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray globalMaxPool()
globalMaxPool
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray sumPool(ai.djl.ndarray.types.Shape kernel, ai.djl.ndarray.types.Shape stride, ai.djl.ndarray.types.Shape pad, ai.djl.nn.pooling.PoolingConvention poolingConvention)
sumPool
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray globalSumPool()
globalSumPool
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray avgPool(ai.djl.ndarray.types.Shape kernel, ai.djl.ndarray.types.Shape stride, ai.djl.ndarray.types.Shape pad, ai.djl.nn.pooling.PoolingConvention poolingConvention, boolean countIncludePad)
avgPool
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray globalAvgPool()
globalAvgPool
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray lpPool(ai.djl.ndarray.types.Shape kernel, ai.djl.ndarray.types.Shape stride, ai.djl.ndarray.types.Shape pad, ai.djl.nn.pooling.PoolingConvention poolingConvention, int pValue)
lpPool
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray globalLpPool(int pValue)
globalLpPool
in interface ai.djl.ndarray.internal.NDArrayEx
public void adamUpdate(ai.djl.ndarray.NDList inputs, ai.djl.ndarray.NDList weights, float learningRate, float weightDecay, float rescaleGrad, float clipGrad, float beta1, float beta2, float epsilon, boolean lazyUpdate)
adamUpdate
in interface ai.djl.ndarray.internal.NDArrayEx
public void nagUpdate(ai.djl.ndarray.NDList inputs, ai.djl.ndarray.NDList weights, float learningRate, float weightDecay, float rescaleGrad, float clipGrad, float momentum)
nagUpdate
in interface ai.djl.ndarray.internal.NDArrayEx
public void sgdUpdate(ai.djl.ndarray.NDList inputs, ai.djl.ndarray.NDList weights, float learningRate, float weightDecay, float rescaleGrad, float clipGrad, float momentum, boolean lazyUpdate)
sgdUpdate
in interface ai.djl.ndarray.internal.NDArrayEx
public ai.djl.ndarray.NDList convolution(ai.djl.ndarray.NDList inputs, ai.djl.ndarray.types.Shape kernel, ai.djl.ndarray.types.Shape stride, ai.djl.ndarray.types.Shape pad, ai.djl.ndarray.types.Shape dilate, int numFilters, int numGroups, java.lang.String layout, boolean noBias, ai.djl.util.PairList<java.lang.String,java.lang.Object> additional)
convolution
in interface ai.djl.ndarray.internal.NDArrayEx
public ai.djl.ndarray.NDList fullyConnected(ai.djl.ndarray.NDList inputs, long outChannels, boolean flatten, boolean noBias, ai.djl.util.PairList<java.lang.String,java.lang.Object> additional)
fullyConnected
in interface ai.djl.ndarray.internal.NDArrayEx
public ai.djl.ndarray.NDList embedding(ai.djl.ndarray.NDList inputs, int numItems, int embeddingSize, boolean sparseGrad, ai.djl.ndarray.types.DataType dataType, ai.djl.util.PairList<java.lang.String,java.lang.Object> additional)
embedding
in interface ai.djl.ndarray.internal.NDArrayEx
public ai.djl.ndarray.NDList prelu(ai.djl.ndarray.NDList inputs, ai.djl.util.PairList<java.lang.String,java.lang.Object> additional)
prelu
in interface ai.djl.ndarray.internal.NDArrayEx
public ai.djl.ndarray.NDList dropout(ai.djl.ndarray.NDList inputs, float probability, int[] sharedAxes, boolean training, ai.djl.util.PairList<java.lang.String,java.lang.Object> additional)
dropout
in interface ai.djl.ndarray.internal.NDArrayEx
public ai.djl.ndarray.NDList batchNorm(ai.djl.ndarray.NDList inputs, float epsilon, float momentum, int axis, boolean center, boolean scale, boolean training, ai.djl.util.PairList<java.lang.String,java.lang.Object> additional)
batchNorm
in interface ai.djl.ndarray.internal.NDArrayEx
public ai.djl.ndarray.NDList rnn(ai.djl.ndarray.NDList inputs, java.lang.String mode, long stateSize, float dropRate, int numStackedLayers, boolean useSequenceLength, boolean useBidirectional, boolean stateOutputs, ai.djl.util.PairList<java.lang.String,java.lang.Object> additional)
rnn
in interface ai.djl.ndarray.internal.NDArrayEx
public ai.djl.ndarray.NDList lstm(ai.djl.ndarray.NDList inputs, long stateSize, float dropRate, int numStackedLayers, boolean useSequenceLength, boolean useBidirectional, boolean stateOutputs, double lstmStateClipMin, double lstmStateClipMax, ai.djl.util.PairList<java.lang.String,java.lang.Object> additional)
lstm
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray resize(int width, int height)
resize
in interface ai.djl.ndarray.internal.NDArrayEx
public ai.djl.ndarray.index.NDArrayIndexer getIndexer()
getIndexer
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray where(ai.djl.ndarray.NDArray condition, ai.djl.ndarray.NDArray other)
where
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray stack(ai.djl.ndarray.NDList arrays, int axis)
stack
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray concat(ai.djl.ndarray.NDList list, int axis)
concat
in interface ai.djl.ndarray.internal.NDArrayEx
public ai.djl.ndarray.NDList multiBoxTarget(ai.djl.ndarray.NDList inputs, float iouThreshold, float ignoreLabel, float negativeMiningRatio, float negativeMiningThreshold, int minNegativeSamples)
multiBoxTarget
in interface ai.djl.ndarray.internal.NDArrayEx
public ai.djl.ndarray.NDList multiBoxPrior(java.util.List<java.lang.Float> sizes, java.util.List<java.lang.Float> ratios, java.util.List<java.lang.Float> steps, java.util.List<java.lang.Float> offsets, boolean clip)
multiBoxPrior
in interface ai.djl.ndarray.internal.NDArrayEx
public ai.djl.ndarray.NDList multiBoxDetection(ai.djl.ndarray.NDList inputs, boolean clip, float threshold, int backgroundId, float nmsThreshold, boolean forceSuppress, int nmsTopK)
multiBoxDetection
in interface ai.djl.ndarray.internal.NDArrayEx
public PtNDArray getArray()
getArray
in interface ai.djl.ndarray.internal.NDArrayEx