- abs() - Method in interface ai.djl.ndarray.NDArray
-
Returns the absolute value of this NDArray
element-wise.
- abs() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the absolute value of this NDArray
element-wise.
- AbstractAccuracy - Class in ai.djl.training.evaluator
-
Accuracy
is an
Evaluator
that computes the accuracy score.
- AbstractAccuracy(String, int) - Constructor for class ai.djl.training.evaluator.AbstractAccuracy
-
Creates an accuracy evaluator that computes accuracy across axis 1 along given index.
- AbstractAccuracy(String, int, int) - Constructor for class ai.djl.training.evaluator.AbstractAccuracy
-
Creates an accuracy evaluator.
- AbstractBlock - Class in ai.djl.nn
-
AbstractBlock
is an abstract implementation of
Block
.
- AbstractBlock(byte) - Constructor for class ai.djl.nn.AbstractBlock
-
Builds an empty block with the given version for parameter serialization.
- AbstractCompositeLoss - Class in ai.djl.training.loss
-
AbstractCompositeLoss
is a
Loss
class that can combine other
Loss
es
together to make a larger loss.
- AbstractCompositeLoss(String) - Constructor for class ai.djl.training.loss.AbstractCompositeLoss
-
Constructs a composite loss with the given name.
- AbstractEmbedding<T> - Interface in ai.djl.nn.core
-
An Embedding maps elements of type T to a 1-Dimensional representative
NDArray
s.
- AbstractIndexedEmbedding<T> - Interface in ai.djl.nn.core
-
- AbstractRepository - Class in ai.djl.repository
-
The
AbstractRepository
is the shared base for implementers of the
Repository
interface.
- AbstractRepository() - Constructor for class ai.djl.repository.AbstractRepository
-
- AbstractSymbolBlock - Class in ai.djl.nn
-
AbstractSymbolBlock
is an abstract implementation of
SymbolBlock
.
- AbstractSymbolBlock(byte) - Constructor for class ai.djl.nn.AbstractSymbolBlock
-
Builds an empty block with the given version for parameter serialization.
- accuracy(NDList, NDList) - Method in class ai.djl.nn.transformer.BertMaskedLanguageModelLoss
-
Calculates the percentage of correctly predicted masked tokens.
- accuracy(NDList, NDList) - Method in class ai.djl.nn.transformer.BertNextSentenceLoss
-
Calculates the fraction of correct predictions.
- Accuracy - Class in ai.djl.training.evaluator
-
- Accuracy() - Constructor for class ai.djl.training.evaluator.Accuracy
-
Creates a multiclass accuracy evaluator that computes accuracy across axis 1 along the 0th
index.
- Accuracy(String, int) - Constructor for class ai.djl.training.evaluator.Accuracy
-
Creates a multiclass accuracy evaluator that computes accuracy across axis 1 along given
index.
- Accuracy(String, int, int) - Constructor for class ai.djl.training.evaluator.Accuracy
-
Creates a multiclass accuracy evaluator.
- accuracyHelper(NDList, NDList) - Method in class ai.djl.training.evaluator.AbstractAccuracy
-
- accuracyHelper(NDList, NDList) - Method in class ai.djl.training.evaluator.Accuracy
-
- accuracyHelper(NDList, NDList) - Method in class ai.djl.training.evaluator.BinaryAccuracy
-
- accuracyHelper(NDList, NDList) - Method in class ai.djl.training.evaluator.SingleShotDetectionAccuracy
-
- accuracyHelper(NDList, NDList) - Method in class ai.djl.training.evaluator.TopKAccuracy
-
- acos() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse trigonometric cosine of this NDArray
element-wise.
- acos() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the inverse trigonometric cosine of this NDArray
element-wise.
- acosh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse hyperbolic cosine of this NDArray
element-wise.
- acosh() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the inverse hyperbolic cosine of this NDArray
element-wise.
- ACTION_RECOGNITION - Static variable in interface ai.djl.Application.CV
-
An application that accepts an image or video and classifies the action being done in it.
- ActionRecognitionModelLoader - Class in ai.djl.modality.cv.zoo
-
Model loader for Action Recognition models.
- ActionRecognitionModelLoader(Repository, String, String, String, ModelZoo) - Constructor for class ai.djl.modality.cv.zoo.ActionRecognitionModelLoader
-
Creates the Model loader from the given repository.
- ActionSpace - Class in ai.djl.modality.rl
-
Contains the available actions that can be taken in an
RlEnv
.
- ActionSpace() - Constructor for class ai.djl.modality.rl.ActionSpace
-
- Activation - Class in ai.djl.nn
-
Utility class that provides activation functions and blocks.
- activation - Variable in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
- Adadelta - Class in ai.djl.training.optimizer
-
Adadelta
is an Adadelta Optimizer
.
- Adadelta(Adadelta.Builder) - Constructor for class ai.djl.training.optimizer.Adadelta
-
Creates a new instance of Adadelta
.
- adadelta() - Static method in class ai.djl.training.optimizer.Optimizer
-
- Adadelta.Builder - Class in ai.djl.training.optimizer
-
The Builder to construct an
Adadelta
object.
- Adagrad - Class in ai.djl.training.optimizer
-
- Adagrad(Adagrad.Builder) - Constructor for class ai.djl.training.optimizer.Adagrad
-
Creates a new instance of Adam
optimizer.
- adagrad() - Static method in class ai.djl.training.optimizer.Optimizer
-
- Adagrad.Builder - Class in ai.djl.training.optimizer
-
The Builder to construct an
Adagrad
object.
- Adam - Class in ai.djl.training.optimizer
-
Adam
is a generalization of the AdaGrad
Optimizer
.
- Adam(Adam.Builder) - Constructor for class ai.djl.training.optimizer.Adam
-
Creates a new instance of Adam
optimizer.
- adam() - Static method in class ai.djl.training.optimizer.Optimizer
-
- Adam.Builder - Class in ai.djl.training.optimizer
-
The Builder to construct an
Adam
object.
- add(List<String>) - Method in class ai.djl.modality.nlp.SimpleVocabulary.Builder
-
- add(Number) - Method in interface ai.djl.ndarray.NDArray
-
Adds a number to this NDArray
element-wise.
- add(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Adds other NDArray
s to this NDArray
element-wise.
- add(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Adds a number to this NDArray
element-wise.
- add(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Adds other NDArray
s to this NDArray
element-wise.
- add(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Adds a number to the
NDArray
element-wise.
- add(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Adds a
NDArray
to a number element-wise.
- add(NDArray...) - Static method in class ai.djl.ndarray.NDArrays
-
- add(long...) - Method in class ai.djl.ndarray.types.Shape
-
Joins this shape with axes.
- add(Block) - Method in class ai.djl.nn.ParallelBlock
-
Adds the given
Block
to the block, which is one parallel branch.
- add(Function<NDList, NDList>) - Method in class ai.djl.nn.ParallelBlock
-
Adds a
LambdaBlock
, that applies the given function, to the list of parallel
branches.
- add(Block) - Method in class ai.djl.nn.SequentialBlock
-
Adds the given
Block
to the block to be executed in order.
- add(Function<NDList, NDList>) - Method in class ai.djl.nn.SequentialBlock
-
Adds a
LambdaBlock
that applies the given function to the sequence of blocks.
- add(NDList...) - Method in class ai.djl.nn.transformer.MemoryScope
-
Adds all arrays in the given lists to this memory scope.
- add(NDArray...) - Method in class ai.djl.nn.transformer.MemoryScope
-
Adds the given arrays to this scopes sub manager.
- add(Hyperparameter<?>) - Method in class ai.djl.training.hyperparameter.param.HpSet
-
Adds a hyperparameter to the set.
- add(Transform) - Method in class ai.djl.translate.Pipeline
-
Adds the given
Transform
to the list of transforms to be applied on the input when
the
transform
method is called on this object.
- add(int, Transform) - Method in class ai.djl.translate.Pipeline
-
Adds the given
Transform
to the list of transforms to be applied on the
NDArray
at the given index in the input
NDList
.
- add(String, Transform) - Method in class ai.djl.translate.Pipeline
-
Adds the given
Transform
to the list of transforms to be applied on the
NDArray
with the given key as name in the input
NDList
.
- addAccumulator(String) - Method in class ai.djl.training.evaluator.AbstractAccuracy
-
Adds an accumulator for the results of the evaluation with the given key.
- addAccumulator(String) - Method in class ai.djl.training.evaluator.BoundingBoxError
-
Adds an accumulator for the results of the evaluation with the given key.
- addAccumulator(String) - Method in class ai.djl.training.evaluator.Evaluator
-
Adds an accumulator for the results of the evaluation with the given key.
- addAccumulator(String) - Method in class ai.djl.training.loss.AbstractCompositeLoss
-
Adds an accumulator for the results of the evaluation with the given key.
- addAccumulator(String) - Method in class ai.djl.training.loss.Loss
-
Adds an accumulator for the results of the evaluation with the given key.
- addAll(List<List<String>>) - Method in class ai.djl.modality.nlp.SimpleVocabulary.Builder
-
- addAll(NDList) - Method in class ai.djl.ndarray.NDList
-
Appends all of the NDArrays in the specified NDList to the end of this NDList, in the order
that they are returned by the specified NDList's iterator.
- addAll(Shape) - Method in class ai.djl.ndarray.types.Shape
-
Joins this shape with specified other
shape.
- addAll(Block...) - Method in class ai.djl.nn.ParallelBlock
-
Adds an array of blocks, each of which is a parallel branch.
- addAll(Collection<Block>) - Method in class ai.djl.nn.ParallelBlock
-
Adds a Collection
of blocks, each of which is a parallel branch.
- addAll(Block...) - Method in class ai.djl.nn.SequentialBlock
-
Adds an array of blocks to be executed in sequence, in order.
- addAll(Collection<Block>) - Method in class ai.djl.nn.SequentialBlock
-
Adds a Collection
of blocks to be executed in sequence, in order.
- addAllDim() - Method in class ai.djl.ndarray.index.NDIndex
-
Appends a new index to get all values in the dimension.
- addAllDim(int) - Method in class ai.djl.ndarray.index.NDIndex
-
Appends multiple new index to get all values in the dimension.
- addArtifact(Artifact) - Method in class ai.djl.repository.Metadata
-
Adds one artifact for the metadata.
- addBooleanIndex(NDArray) - Method in class ai.djl.ndarray.index.NDIndex
-
Updates the NDIndex by appending a boolean NDArray.
- addChildBlock(String, B) - Method in class ai.djl.nn.AbstractBlock
-
Use this to add a child block to this block.
- addData(byte[]) - Method in class ai.djl.modality.Input
-
Appends an item at the end of the input.
- addData(String, byte[]) - Method in class ai.djl.modality.Input
-
Adds a key/value pair to the input content.
- addData(int, byte[]) - Method in class ai.djl.modality.Input
-
Inserts the specified element at the specified position in the input.
- addEvaluator(Evaluator) - Method in class ai.djl.training.DefaultTrainingConfig
-
Adds an
Evaluator
that needs to be computed during training.
- addFromCustomizedFile(URL, Function<URL, List<String>>) - Method in class ai.djl.modality.nlp.SimpleVocabulary.Builder
-
- addFromTextFile(Path) - Method in class ai.djl.modality.nlp.SimpleVocabulary.Builder
-
- addFromTextFile(URL) - Method in class ai.djl.modality.nlp.SimpleVocabulary.Builder
-
- addi(Number) - Method in interface ai.djl.ndarray.NDArray
-
Adds a number to this NDArray
element-wise in place.
- addi(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Adds other NDArray
s to this NDArray
element-wise in place.
- addi(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Adds a number to this NDArray
element-wise in place.
- addi(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Adds other NDArray
s to this NDArray
element-wise in place.
- addi(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Adds a number to the
NDArray
element-wise in place.
- addi(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Adds a
NDArray
to a number element-wise in place.
- addi(NDArray...) - Static method in class ai.djl.ndarray.NDArrays
-
Adds all of the
NDArray
s together element-wise in place.
- addIndices(String, Object...) - Method in class ai.djl.ndarray.index.NDIndex
-
Updates the NDIndex by appending indices to the array.
- addIndices(long...) - Method in class ai.djl.ndarray.index.NDIndex
-
Updates the NDIndex by appending indices as specified values on the NDArray.
- addLicense(License) - Method in class ai.djl.repository.Metadata
-
- addLoss(Loss) - Method in class ai.djl.training.loss.SimpleCompositeLoss
-
Adds a Loss that applies to all labels and predictions to this composite loss.
- addLoss(Loss, int) - Method in class ai.djl.training.loss.SimpleCompositeLoss
-
Adds a Loss that applies to a single index of the label and predictions to this composite
loss.
- addMetric(Metric) - Method in class ai.djl.metric.Metrics
-
Adds a
Metric
to the collection.
- addMetric(String, Number) - Method in class ai.djl.metric.Metrics
-
Adds a Metric
given the metric's name
and value
.
- addMetric(String, Number, String) - Method in class ai.djl.metric.Metrics
-
Adds a Metric
given the metric's name
, value
, and unit
.
- addMetric(String, long) - Method in class ai.djl.training.Trainer
-
Helper to add a metric for a time difference.
- addPad(int, int, NDArraySupplier) - Method in class ai.djl.translate.PaddingStackBatchifier.Builder
-
Adds a new dimension to be padded in the input
NDList
.
- addPad(int, int, NDArraySupplier, int) - Method in class ai.djl.translate.PaddingStackBatchifier.Builder
-
Adds a new dimension to be padded in the input
NDList
.
- addParameter(P) - Method in class ai.djl.nn.AbstractBlock
-
Adds a parameter to this block.
- addParameter(P, Shape) - Method in class ai.djl.nn.AbstractBlock
-
Adds a parameter to this block.
- addParameter(P, Function<Shape[], Shape>) - Method in class ai.djl.nn.AbstractBlock
-
Adds a parameter to this block.
- addPickDim(NDArray) - Method in class ai.djl.ndarray.index.NDIndex
-
Appends a picking index that gets values by index in the axis.
- addProperty(String, String) - Method in class ai.djl.modality.Input
-
Adds a property to the input.
- addProperty(String, String) - Method in class ai.djl.modality.Output
-
Adds a property to the output.
- addSingleton(Function<NDArray, NDArray>) - Method in class ai.djl.nn.SequentialBlock
-
- addSliceDim(long, long) - Method in class ai.djl.ndarray.index.NDIndex
-
Appends a new index to slice the dimension and returns a range of values.
- addSliceDim(long, long, long) - Method in class ai.djl.ndarray.index.NDIndex
-
Appends a new index to slice the dimension and returns a range of values.
- addStep(RlEnv.Step) - Method in class ai.djl.modality.rl.LruReplayBuffer
-
Adds a new step to the buffer.
- addStep(RlEnv.Step) - Method in interface ai.djl.modality.rl.ReplayBuffer
-
Adds a new step to the buffer.
- addTargetTransform(Transform) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- addTrainingListeners(TrainingListener...) - Method in class ai.djl.training.DefaultTrainingConfig
-
- addTransform(Transform) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
-
- addTransform(Transform) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- ai.djl - package ai.djl
-
Contains top level, engine-agnostic classes for both inference and training.
- ai.djl.engine - package ai.djl.engine
-
Contains classes responsible for loading a deep learning engine.
- ai.djl.inference - package ai.djl.inference
-
Contains classes to implement inference tasks.
- ai.djl.metric - package ai.djl.metric
-
Contains classes to collect metrics information.
- ai.djl.modality - package ai.djl.modality
-
Contains utility classes for each of the predefined modalities.
- ai.djl.modality.cv - package ai.djl.modality.cv
-
Contains utility classes for computer vision tasks and image processing.
- ai.djl.modality.cv.output - package ai.djl.modality.cv.output
-
Contains output types used in various computer vision applications.
- ai.djl.modality.cv.transform - package ai.djl.modality.cv.transform
-
- ai.djl.modality.cv.translator - package ai.djl.modality.cv.translator
-
Contains translators used for computer vision applications.
- ai.djl.modality.cv.translator.wrapper - package ai.djl.modality.cv.translator.wrapper
-
- ai.djl.modality.cv.util - package ai.djl.modality.cv.util
-
Contains utility classes for image manipulation.
- ai.djl.modality.cv.zoo - package ai.djl.modality.cv.zoo
-
- ai.djl.modality.nlp - package ai.djl.modality.nlp
-
Contains utility classes for natural language processing tasks.
- ai.djl.modality.nlp.bert - package ai.djl.modality.nlp.bert
-
Contains classes that deal with BERT for natural language pre-processing tasks.
- ai.djl.modality.nlp.embedding - package ai.djl.modality.nlp.embedding
-
Contains classes that deal with word embeddings for natural language pre-processing tasks.
- ai.djl.modality.nlp.preprocess - package ai.djl.modality.nlp.preprocess
-
Contains utility classes for natural language pre-processing tasks.
- ai.djl.modality.nlp.qa - package ai.djl.modality.nlp.qa
-
Contains utility classes for question and answer processing.
- ai.djl.modality.nlp.translator - package ai.djl.modality.nlp.translator
-
Contains utility classes for each of the predefined translator.
- ai.djl.modality.rl - package ai.djl.modality.rl
-
Contains utility classes for reinforcement learning.
- ai.djl.modality.rl.agent - package ai.djl.modality.rl.agent
-
Contains agents to learn using reinforcement learning.
- ai.djl.modality.rl.env - package ai.djl.modality.rl.env
-
Contains environments to train reinforcement learning in.
- ai.djl.ndarray - package ai.djl.ndarray
-
Contains classes and interfaces that define an n-dimensional array.
- ai.djl.ndarray.index - package ai.djl.ndarray.index
-
Contains classes that help access
NDArray
's indices.
- ai.djl.ndarray.index.dim - package ai.djl.ndarray.index.dim
-
Contains classes that represent an index element in a
NDArray
's indices.
- ai.djl.ndarray.index.full - package ai.djl.ndarray.index.full
-
Contains classes that represent simplified representations of an
NDArray
's
indices.
- ai.djl.ndarray.types - package ai.djl.ndarray.types
-
Contains classes that define n-dimensional array data types.
- ai.djl.nn - package ai.djl.nn
-
Contains classes to construct neural networks.
- ai.djl.nn.convolutional - package ai.djl.nn.convolutional
-
- ai.djl.nn.core - package ai.djl.nn.core
-
Contains classes that define simple neural network operations.
- ai.djl.nn.norm - package ai.djl.nn.norm
-
Contains classes that define normalizing neural network operations.
- ai.djl.nn.pooling - package ai.djl.nn.pooling
-
Contains pooling neural network operations in
Pool
and helpers for it.
- ai.djl.nn.recurrent - package ai.djl.nn.recurrent
-
Contains classes for recurrent neural network operations.
- ai.djl.nn.transformer - package ai.djl.nn.transformer
-
Contains blocks for transformer models.
- ai.djl.repository - package ai.djl.repository
-
Contains a Maven-based Repository format for creating repositories of artifacts such as datasets
and model zoos.
- ai.djl.repository.zoo - package ai.djl.repository.zoo
-
Contains classes for working with model zoo repositories.
- ai.djl.training - package ai.djl.training
-
Contains classes and implementations to train a neural network.
- ai.djl.training.dataset - package ai.djl.training.dataset
-
Contains classes to download and prepare training and testing data.
- ai.djl.training.evaluator - package ai.djl.training.evaluator
-
Contains classes for evaluating the effectiveness of models.
- ai.djl.training.hyperparameter - package ai.djl.training.hyperparameter
-
Contains utilities to train, describe, and manipulate
Hyperparameter
s.
- ai.djl.training.hyperparameter.optimizer - package ai.djl.training.hyperparameter.optimizer
-
- ai.djl.training.hyperparameter.param - package ai.djl.training.hyperparameter.param
-
- ai.djl.training.initializer - package ai.djl.training.initializer
-
- ai.djl.training.listener - package ai.djl.training.listener
-
Contains classes providing functionality during training through
TrainingListener
.
- ai.djl.training.loss - package ai.djl.training.loss
-
Contains classes for measuring the
Loss
of a model.
- ai.djl.training.optimizer - package ai.djl.training.optimizer
-
Contains classes for optimizing a neural network
Block
.
- ai.djl.training.tracker - package ai.djl.training.tracker
-
Contains classes for having a gradually changing hyper-parameter.
- ai.djl.training.util - package ai.djl.training.util
-
Contains utilities to use during training.
- ai.djl.translate - package ai.djl.translate
-
Contains classes and interfaces that translate between java objects and NDArrays.
- all() - Method in interface ai.djl.ndarray.NDArray
-
Returns true
if all elements within this NDArray
are non-zero or true
.
- allClose(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns true
if two NDArray
s are element-wise equal within a tolerance.
- allClose(NDArray, double, double, boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns true
if two NDArray
are element-wise equal within a tolerance.
- allClose(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns
true
if two
NDArray
are element-wise equal within a tolerance.
- allClose(NDArray, NDArray, double, double, boolean) - Static method in class ai.djl.ndarray.NDArrays
-
Returns
true
if two
NDArray
are element-wise equal within a tolerance.
- allocateDirect(int) - Method in interface ai.djl.ndarray.NDManager
-
Allocates a new engine specific direct byte buffer.
- ANY - Static variable in interface ai.djl.Application.CV
-
- ANY - Static variable in interface ai.djl.Application.NLP
-
- ANY - Static variable in interface ai.djl.Application.Tabular
-
- any() - Method in interface ai.djl.ndarray.NDArray
-
Returns true
if any of the elements within this NDArray
are non-zero or
true
.
- apache() - Static method in class ai.djl.repository.License
-
The default Apache License.
- Application - Class in ai.djl
-
A class contains common tasks that can be completed using deep learning.
- Application.CV - Interface in ai.djl
-
The common set of applications for computer vision (image and video data).
- Application.NLP - Interface in ai.djl
-
The common set of applications for natural language processing (text data).
- Application.Tabular - Interface in ai.djl
-
The common set of applications for tabular data.
- arange(float, float, float, DataType) - Method in class ai.djl.ndarray.BaseNDManager
-
Returns evenly spaced values within a given interval.
- arange(int) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values starting from 0.
- arange(float) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values starting from 0.
- arange(int, int) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval with step 1.
- arange(float, float) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval with step 1.
- arange(int, int, int) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval.
- arange(float, float, float) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval.
- arange(int, int, int, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval.
- arange(float, float, float, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval.
- arange(float, float, float, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval.
- argMax() - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices of the maximum values into the flattened NDArray
.
- argMax(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices of the maximum values along given axis.
- argMax() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the indices of the maximum values into the flattened NDArray
.
- argMax(int) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the indices of the maximum values along given axis.
- argMin() - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices of the minimum values into the flattened NDArray
.
- argMin(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices of the minimum values along given axis.
- argMin() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the indices of the minimum values into the flattened NDArray
.
- argMin(int) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the indices of the minimum values along given axis.
- argSort() - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices that would sort this NDArray
.
- argSort(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices that would sort this NDArray
given the axis.
- argSort(int, boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices that would sort this NDArray
given the axis.
- argSort(int, boolean) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the indices that would sort this NDArray
given the axis.
- ArrayDataset - Class in ai.djl.training.dataset
-
- ArrayDataset(RandomAccessDataset.BaseBuilder<?>) - Constructor for class ai.djl.training.dataset.ArrayDataset
-
- ArrayDataset.Builder - Class in ai.djl.training.dataset
-
- Artifact - Class in ai.djl.repository
-
An Artifact
is a set of data files such as a model or dataset.
- Artifact() - Constructor for class ai.djl.repository.Artifact
-
- Artifact.Item - Class in ai.djl.repository
-
A file (possibly compressed) within an
Artifact
.
- Artifact.VersionComparator - Class in ai.djl.repository
-
A Comparator
to compare artifacts based on their version numbers.
- artifactId - Variable in class ai.djl.repository.Metadata
-
- artifacts - Variable in class ai.djl.BaseModel
-
- artifacts - Variable in class ai.djl.repository.Metadata
-
- asDataType(ByteBuffer) - Method in enum ai.djl.ndarray.types.DataType
-
Converts a ByteBuffer
to a buffer for this data type.
- asin() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse trigonometric sine of this NDArray
element-wise.
- asin() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the inverse trigonometric sine of this NDArray
element-wise.
- asinh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse hyperbolic sine of this NDArray
element-wise.
- asinh() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the inverse hyperbolic sine of this NDArray
element-wise.
- atan() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse trigonometric tangent of this NDArray
element-wise.
- atan() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the inverse trigonometric tangent of this NDArray
element-wise.
- atanh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse hyperbolic tangent of this NDArray
element-wise.
- atanh() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the inverse hyperbolic tangent of this NDArray
element-wise.
- attach(String, AutoCloseable) - Method in class ai.djl.ndarray.BaseNDManager
-
Attaches a
NDArray
or
NDManager
to this
NDManager
.
- attach(NDManager) - Method in interface ai.djl.ndarray.NDArray
-
Attaches this
NDArray
to the specified
NDManager
.
- attach(NDManager) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Attaches this
NDArray
to the specified
NDManager
.
- attach(NDManager) - Method in class ai.djl.ndarray.NDList
-
Attaches each ndarray in this list to the specified manager.
- attach(List<NDManager>) - Method in class ai.djl.ndarray.NDList
-
Attaches each ndarray in this list to the specified manager.
- attach(String, AutoCloseable) - Method in interface ai.djl.ndarray.NDManager
-
Attaches a
NDArray
or
NDManager
to this
NDManager
.
- attachGradient() - Method in interface ai.djl.ndarray.NDArray
-
- attachGradient(SparseFormat) - Method in interface ai.djl.ndarray.NDArray
-
- attachGradient() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
- attachGradient(SparseFormat) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
- availableSize() - Method in class ai.djl.training.dataset.ArrayDataset
-
Returns the number of records available to be read in this Dataset
.
- availableSize() - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Returns the number of records available to be read in this Dataset
.
- avgPool1d(NDArray, Shape, Shape, Shape, boolean, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 1-D Avg Pooling on the input.
- avgPool1dBlock(Shape, Shape, Shape, boolean, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
- avgPool1dBlock(Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
- avgPool1dBlock(Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- avgPool1dBlock(Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- avgPool1dBlock(Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- avgPool2d(NDArray, Shape, Shape, Shape, boolean, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 2-D Avg Pooling on the input.
- avgPool2dBlock(Shape, Shape, Shape, boolean, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
- avgPool2dBlock(Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
- avgPool2dBlock(Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- avgPool2dBlock(Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- avgPool2dBlock(Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- avgPool3d(NDArray, Shape, Shape, Shape, boolean, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 3-D Avg Pooling on the input.
- avgPool3dBlock(Shape, Shape, Shape, boolean, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
- avgPool3dBlock(Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
- avgPool3dBlock(Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- avgPool3dBlock(Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- avgPool3dBlock(Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- axis - Variable in class ai.djl.training.evaluator.AbstractAccuracy
-
- backward(NDArray) - Method in interface ai.djl.training.GradientCollector
-
Calculate the gradient w.r.t previously marked variable (head).
- base() - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets this builder's params to the BASE config of the original BERT paper.
- BaseBuilder() - Constructor for class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
-
- BaseBuilder() - Constructor for class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
-
- BaseBuilder() - Constructor for class ai.djl.nn.core.Embedding.BaseBuilder
-
- BaseBuilder() - Constructor for class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
- BaseBuilder() - Constructor for class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- BaseHpOptimizer - Class in ai.djl.training.hyperparameter.optimizer
-
A base containing shared implementations for
HpOptimizer
s.
- BaseHpOptimizer(HpSet) - Constructor for class ai.djl.training.hyperparameter.optimizer.BaseHpOptimizer
-
- BaseImageTranslator<T> - Class in ai.djl.modality.cv.translator
-
Built-in Translator
that provides default image pre-processing.
- BaseImageTranslator(BaseImageTranslator.BaseBuilder<?>) - Constructor for class ai.djl.modality.cv.translator.BaseImageTranslator
-
Constructs an ImageTranslator with the provided builder.
- BaseImageTranslator.BaseBuilder<T extends BaseImageTranslator.BaseBuilder> - Class in ai.djl.modality.cv.translator
-
- BaseImageTranslator.ClassificationBuilder<T extends BaseImageTranslator.BaseBuilder> - Class in ai.djl.modality.cv.translator
-
A Builder to construct a ImageClassificationTranslator
.
- BaseImageTranslator.SynsetLoader - Class in ai.djl.modality.cv.translator
-
- BaseModel - Class in ai.djl
-
BaseModel
is the basic implementation of
Model
.
- BaseModel(String) - Constructor for class ai.djl.BaseModel
-
- BaseModelLoader - Class in ai.djl.repository.zoo
-
- BaseModelLoader(Repository, MRL, String, ModelZoo) - Constructor for class ai.djl.repository.zoo.BaseModelLoader
-
Constructs a
ModelLoader
given the repository, mrl, and version.
- BaseNDManager - Class in ai.djl.ndarray
-
BaseNDManager
is the default implementation of
NDManager
.
- BaseNDManager(NDManager, Device) - Constructor for class ai.djl.ndarray.BaseNDManager
-
- basic() - Static method in interface ai.djl.training.listener.TrainingListener.Defaults
-
- Batch - Class in ai.djl.training.dataset
-
A
Batch
is used to hold multiple items (data and label pairs) from a
Dataset
.
- Batch(NDManager, NDList, NDList, int, Batchifier, Batchifier, long, long) - Constructor for class ai.djl.training.dataset.Batch
-
Creates a new instance of Batch
with the given manager, data and labels.
- BatchData(Batch, Map<Device, NDList>, Map<Device, NDList>) - Constructor for class ai.djl.training.listener.TrainingListener.BatchData
-
- batchFirst - Variable in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
- batchFirst - Variable in class ai.djl.nn.recurrent.RecurrentBlock
-
- batchFlatten(NDArray) - Static method in class ai.djl.nn.Blocks
-
Inflates the
NDArray
provided as input to a 2-D
NDArray
of shape (batch, size).
- batchFlatten(NDArray, long) - Static method in class ai.djl.nn.Blocks
-
Inflates the
NDArray
provided as input to a 2-D
NDArray
of shape (batch, size).
- batchFlattenBlock() - Static method in class ai.djl.nn.Blocks
-
- batchFlattenBlock(long) - Static method in class ai.djl.nn.Blocks
-
- batchifier - Variable in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
-
- batchifier - Variable in class ai.djl.modality.nlp.translator.QATranslator
-
- Batchifier - Interface in ai.djl.translate
-
An interface that provides methods to convert an un-batched
NDList
into a batched
NDList
and vice versa.
- batchify(NDList[]) - Method in interface ai.djl.translate.Batchifier
-
Converts an array of
NDList
into an NDList.
- batchify(NDList[]) - Method in class ai.djl.translate.PaddingStackBatchifier
-
Converts an array of
NDList
into an NDList.
- batchify(NDList[]) - Method in class ai.djl.translate.StackBatchifier
-
Converts an array of
NDList
into an NDList.
- BatchNorm - Class in ai.djl.nn.norm
-
In batch training (training with more than one samples per iteration), a batch normalization
layer works by normalizing the values of input data to have mean of 0 and variance of 1.
- batchNorm(NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.norm.BatchNorm
-
Applies Batch Normalization for each channel across a batch of data.
- batchNorm(NDArray, NDArray, NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.norm.BatchNorm
-
Applies Batch Normalization for each channel across a batch of data.
- batchNorm(NDArray, NDArray, NDArray, NDArray, NDArray, int) - Static method in class ai.djl.nn.norm.BatchNorm
-
Applies Batch Normalization for each channel across a batch of data.
- batchNorm(NDArray, NDArray, NDArray, NDArray, NDArray, int, float, float, boolean) - Static method in class ai.djl.nn.norm.BatchNorm
-
Applies Batch Normalization for each channel across a batch of data.
- BatchNorm.Builder - Class in ai.djl.nn.norm
-
- batchPredict(List<I>) - Method in class ai.djl.inference.Predictor
-
Predicts a batch for inference.
- BatchSampler - Class in ai.djl.training.dataset
-
BatchSampler
is a
Sampler
that returns a single epoch over the data.
- BatchSampler(Sampler.SubSampler, int) - Constructor for class ai.djl.training.dataset.BatchSampler
-
Creates a new instance of
BatchSampler
that samples from the given
Sampler.SubSampler
, and yields a mini-batch of indices.
- BatchSampler(Sampler.SubSampler, int, boolean) - Constructor for class ai.djl.training.dataset.BatchSampler
-
Creates a new instance of
BatchSampler
that samples from the given
Sampler.SubSampler
, and yields a mini-batch of indices.
- beforeInitialize(Shape[]) - Method in class ai.djl.nn.AbstractBlock
-
Performs any action necessary before initialization.
- beforeInitialize(Shape[]) - Method in class ai.djl.nn.convolutional.Convolution
-
Performs any action necessary before initialization.
- beforeInitialize(Shape[]) - Method in class ai.djl.nn.convolutional.Deconvolution
-
Performs any action necessary before initialization.
- beforeInitialize(Shape[]) - Method in class ai.djl.nn.core.Linear
-
Performs any action necessary before initialization.
- beforeInitialize(Shape[]) - Method in class ai.djl.nn.norm.BatchNorm
-
Performs any action necessary before initialization.
- beforeInitialize(Shape[]) - Method in class ai.djl.nn.recurrent.RecurrentBlock
-
Performs any action necessary before initialization.
- BertBlock - Class in ai.djl.nn.transformer
-
Implements the core bert model (without next sentence and masked language task) of bert.
- BertBlock.Builder - Class in ai.djl.nn.transformer
-
- BertFullTokenizer - Class in ai.djl.modality.nlp.bert
-
BertFullTokenizer runs end to end tokenization of input text
- BertFullTokenizer(SimpleVocabulary, boolean) - Constructor for class ai.djl.modality.nlp.bert.BertFullTokenizer
-
Creates an instance of BertFullTokenizer
.
- BertMaskedLanguageModelBlock - Class in ai.djl.nn.transformer
-
Block for the bert masked language task.
- BertMaskedLanguageModelBlock(BertBlock, Function<NDArray, NDArray>) - Constructor for class ai.djl.nn.transformer.BertMaskedLanguageModelBlock
-
Creates a new block that applies the masked language task.
- BertMaskedLanguageModelLoss - Class in ai.djl.nn.transformer
-
The loss for the bert masked language model task.
- BertMaskedLanguageModelLoss(int, int, int) - Constructor for class ai.djl.nn.transformer.BertMaskedLanguageModelLoss
-
Creates an MLM loss.
- BertNextSentenceBlock - Class in ai.djl.nn.transformer
-
Block to perform the Bert next-sentence-prediction task.
- BertNextSentenceBlock() - Constructor for class ai.djl.nn.transformer.BertNextSentenceBlock
-
Creates a next sentence block.
- BertNextSentenceLoss - Class in ai.djl.nn.transformer
-
Calculates the loss for the next sentence prediction task.
- BertNextSentenceLoss(int, int) - Constructor for class ai.djl.nn.transformer.BertNextSentenceLoss
-
Creates a new bert next sentence loss.
- BertPretrainingBlock - Class in ai.djl.nn.transformer
-
Creates a block that performs all bert pretraining tasks (next sentence and masked language).
- BertPretrainingBlock(BertBlock.Builder) - Constructor for class ai.djl.nn.transformer.BertPretrainingBlock
-
Creates a new Bert pretraining block fitting the given bert configuration.
- BertPretrainingLoss - Class in ai.djl.nn.transformer
-
Loss that combines the next sentence and masked language losses of bert pretraining.
- BertPretrainingLoss() - Constructor for class ai.djl.nn.transformer.BertPretrainingLoss
-
Creates a loss combining the next sentence and masked language loss for bert pretraining.
- BertToken - Class in ai.djl.modality.nlp.bert
-
BertToken contains all the information for Bert model after encoding question and paragraph.
- BertToken(List<String>, List<Long>, List<Long>, int) - Constructor for class ai.djl.modality.nlp.bert.BertToken
-
Creates an instance of BertToken which includes information for Bert model.
- BertTokenizer - Class in ai.djl.modality.nlp.bert
-
BertTokenizer is a class to help you encode question and paragraph sentence.
- BertTokenizer() - Constructor for class ai.djl.modality.nlp.bert.BertTokenizer
-
- best() - Method in class ai.djl.modality.Classifications
-
Returns the most likely class for the classification.
- bias - Variable in class ai.djl.nn.convolutional.Convolution
-
- bias - Variable in class ai.djl.nn.convolutional.Deconvolution
-
- bidirectional - Variable in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
- bidirectional - Variable in class ai.djl.nn.recurrent.RecurrentBlock
-
- BinaryAccuracy - Class in ai.djl.training.evaluator
-
- BinaryAccuracy(String, float, int, int) - Constructor for class ai.djl.training.evaluator.BinaryAccuracy
-
Creates a binary (two class) accuracy evaluator.
- BinaryAccuracy(String, float, int) - Constructor for class ai.djl.training.evaluator.BinaryAccuracy
-
Creates a binary (two class) accuracy evaluator that computes accuracy across axis 1 along
given index.
- BinaryAccuracy(float) - Constructor for class ai.djl.training.evaluator.BinaryAccuracy
-
Creates a binary (two class) accuracy evaluator that computes accuracy across axis 1 along
the 0th index.
- BinaryAccuracy() - Constructor for class ai.djl.training.evaluator.BinaryAccuracy
-
Creates a binary (two class) accuracy evaluator with 0 threshold.
- block - Variable in class ai.djl.BaseModel
-
- block - Variable in class ai.djl.inference.Predictor
-
- block - Variable in class ai.djl.modality.nlp.Decoder
-
- block - Variable in class ai.djl.modality.nlp.Encoder
-
- Block - Interface in ai.djl.nn
-
A Block
is a composable function that forms a neural network.
- BlockList - Class in ai.djl.nn
-
Represents a set of names and Blocks.
- BlockList() - Constructor for class ai.djl.nn.BlockList
-
Creates an empty BlockList
.
- BlockList(int) - Constructor for class ai.djl.nn.BlockList
-
Constructs an empty BlockList
with the specified initial capacity.
- BlockList(List<String>, List<Block>) - Constructor for class ai.djl.nn.BlockList
-
Constructs a BlockList
containing the elements of the specified keys and values.
- BlockList(List<Pair<String, Block>>) - Constructor for class ai.djl.nn.BlockList
-
Constructs a BlockList
containing the elements of the specified list of Pairs.
- BlockList(Map<String, Block>) - Constructor for class ai.djl.nn.BlockList
-
Constructs a BlockList
containing the elements of the specified map.
- Blocks - Class in ai.djl.nn
-
Utility class that provides some useful blocks.
- booleanMask(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns portion of this NDArray
given the index boolean NDArray
along first
axis.
- booleanMask(NDArray, int) - Method in interface ai.djl.ndarray.NDArray
-
Returns portion of this NDArray
given the index boolean NDArray
along given
axis.
- booleanMask(NDArray, int) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns portion of this NDArray
given the index boolean NDArray
along given
axis.
- booleanMask(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns portion of the
NDArray
given the index boolean
NDArray
along first
axis.
- booleanMask(NDArray, NDArray, int) - Static method in class ai.djl.ndarray.NDArrays
-
Returns portion of the
NDArray
given the index boolean
NDArray
along given
axis.
- BoundingBox - Interface in ai.djl.modality.cv.output
-
An interface representing a bounding box around an object inside an image.
- BoundingBoxError - Class in ai.djl.training.evaluator
-
BoundingBoxError
is an
Evaluator
that computes the error in the prediction of
bounding boxes in SingleShotDetection model.
- BoundingBoxError(String) - Constructor for class ai.djl.training.evaluator.BoundingBoxError
-
Creates an BoundingBoxError evaluator.
- boxIntersection(Rectangle, Rectangle) - Method in class ai.djl.modality.cv.translator.YoloV5Translator
-
- boxIou(Rectangle, Rectangle) - Method in class ai.djl.modality.cv.translator.YoloV5Translator
-
- boxUnion(Rectangle, Rectangle) - Method in class ai.djl.modality.cv.translator.YoloV5Translator
-
- broadcast(Shape) - Method in interface ai.djl.ndarray.NDArray
-
Broadcasts this NDArray
to be the given shape.
- broadcast(long...) - Method in interface ai.djl.ndarray.NDArray
-
Broadcasts this NDArray
to be the given shape.
- broadcast(Shape) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Broadcasts this NDArray
to be the given shape.
- BufferedImageFactory - Class in ai.djl.modality.cv
-
BufferedImageFactory
is the default implementation of
ImageFactory
.
- BufferedImageFactory() - Constructor for class ai.djl.modality.cv.BufferedImageFactory
-
- build() - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
- build() - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
- build() - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
- build() - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslator.Builder
-
- build() - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator.Builder
-
Builds the translator.
- build() - Method in class ai.djl.modality.cv.translator.SimplePoseTranslator.Builder
-
Builds the translator.
- build() - Method in class ai.djl.modality.cv.translator.SingleShotDetectionTranslator.Builder
-
Builds the translator.
- build() - Method in class ai.djl.modality.cv.translator.YoloTranslator.Builder
-
Builds the translator.
- build() - Method in class ai.djl.modality.cv.translator.YoloV5Translator.Builder
-
Builds the translator.
- build() - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding.Builder
-
- build() - Method in class ai.djl.modality.nlp.SimpleVocabulary.Builder
-
- build() - Method in class ai.djl.nn.convolutional.Conv1d.Builder
-
- build() - Method in class ai.djl.nn.convolutional.Conv1dTranspose.Builder
-
- build() - Method in class ai.djl.nn.convolutional.Conv2d.Builder
-
- build() - Method in class ai.djl.nn.convolutional.Conv2dTranspose.Builder
-
- build() - Method in class ai.djl.nn.convolutional.Conv3d.Builder
-
- build() - Method in class ai.djl.nn.core.Linear.Builder
-
Returns the constructed Linear
.
- build() - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
- build() - Method in class ai.djl.nn.norm.Dropout.Builder
-
- build() - Method in class ai.djl.nn.recurrent.GRU.Builder
-
- build() - Method in class ai.djl.nn.recurrent.LSTM.Builder
-
- build() - Method in class ai.djl.nn.recurrent.RNN.Builder
-
- build() - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Returns a new BertBlock with the parameters of this builder.
- build() - Method in class ai.djl.nn.transformer.IdEmbedding.Builder
-
- build() - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock.Builder
-
Creates a new ScaledDotProductAttentionBlock
with the current configuration.
- build() - Method in class ai.djl.repository.zoo.Criteria.Builder
-
- build() - Method in class ai.djl.training.dataset.ArrayDataset.Builder
-
Builds a new instance of ArrayDataset
with the specified data and labels.
- build() - Method in class ai.djl.training.optimizer.Adadelta.Builder
-
- build() - Method in class ai.djl.training.optimizer.Adagrad.Builder
-
- build() - Method in class ai.djl.training.optimizer.Adam.Builder
-
- build() - Method in class ai.djl.training.optimizer.Nag.Builder
-
- build() - Method in class ai.djl.training.optimizer.RmsProp.Builder
-
- build() - Method in class ai.djl.training.optimizer.Sgd.Builder
-
- build() - Method in class ai.djl.training.tracker.CosineTracker.Builder
-
- build() - Method in class ai.djl.training.tracker.FactorTracker.Builder
-
- build() - Method in class ai.djl.training.tracker.LinearTracker.Builder
-
- build() - Method in class ai.djl.training.tracker.MultiFactorTracker.Builder
-
- build() - Method in class ai.djl.training.tracker.PolynomialDecayTracker.Builder
-
Builds a PolynomialDecayTracker.
- build() - Method in class ai.djl.training.tracker.WarmUpTracker.Builder
-
- build() - Method in class ai.djl.translate.PaddingStackBatchifier.Builder
-
- builder() - Static method in class ai.djl.modality.cv.MultiBoxDetection
-
Creates a builder to build a MultiBoxDetection
.
- builder() - Static method in class ai.djl.modality.cv.MultiBoxPrior
-
Creates a builder to build a MultiBoxPrior
.
- builder() - Static method in class ai.djl.modality.cv.MultiBoxTarget
-
Creates a builder to build a MultiBoxTarget
.
- builder() - Static method in class ai.djl.modality.cv.translator.ImageClassificationTranslator
-
Creates a builder to build a ImageClassificationTranslator
.
- builder(Map<String, ?>) - Static method in class ai.djl.modality.cv.translator.ImageClassificationTranslator
-
Creates a builder to build a ImageClassificationTranslator
with specified arguments.
- builder() - Static method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator
-
Creates a builder to build a InstanceSegmentationTranslator
.
- builder(Map<String, ?>) - Static method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator
-
Creates a builder to build a InstanceSegmentationTranslator
with specified arguments.
- builder() - Static method in class ai.djl.modality.cv.translator.SimplePoseTranslator
-
Creates a builder to build a SimplePoseTranslator
.
- builder(Map<String, ?>) - Static method in class ai.djl.modality.cv.translator.SimplePoseTranslator
-
Creates a builder to build a SimplePoseTranslator
with specified arguments.
- builder() - Static method in class ai.djl.modality.cv.translator.SingleShotDetectionTranslator
-
Creates a builder to build a SingleShotDetectionTranslator
.
- builder(Map<String, ?>) - Static method in class ai.djl.modality.cv.translator.SingleShotDetectionTranslator
-
Creates a builder to build a SingleShotDetectionTranslator
with specified arguments.
- Builder() - Constructor for class ai.djl.modality.cv.translator.SingleShotDetectionTranslator.Builder
-
- builder() - Static method in class ai.djl.modality.cv.translator.YoloTranslator
-
- builder(Map<String, ?>) - Static method in class ai.djl.modality.cv.translator.YoloTranslator
-
Creates a builder to build a YoloTranslator
with specified arguments.
- Builder() - Constructor for class ai.djl.modality.cv.translator.YoloTranslator.Builder
-
- builder() - Static method in class ai.djl.modality.cv.translator.YoloV5Translator
-
- builder(Map<String, ?>) - Static method in class ai.djl.modality.cv.translator.YoloV5Translator
-
Creates a builder to build a YoloV5Translator
with specified arguments.
- Builder() - Constructor for class ai.djl.modality.cv.translator.YoloV5Translator.Builder
-
- builder() - Static method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
- builder() - Static method in class ai.djl.modality.nlp.SimpleVocabulary
-
Creates a new builder to build a SimpleVocabulary
.
- builder() - Static method in class ai.djl.nn.convolutional.Conv1d
-
Creates a builder to build a Conv1d
.
- builder() - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Creates a builder to build a Conv1dTranspose
.
- builder() - Static method in class ai.djl.nn.convolutional.Conv2d
-
Creates a builder to build a Conv2d
.
- builder() - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Creates a builder to build a Conv2dTranspose
.
- builder() - Static method in class ai.djl.nn.convolutional.Conv3d
-
Creates a builder to build a Conv3d
.
- builder() - Static method in class ai.djl.nn.core.Linear
-
Creates a builder to build a Linear
.
- builder() - Static method in class ai.djl.nn.norm.BatchNorm
-
Creates a builder to build a BatchNorm
.
- builder() - Static method in class ai.djl.nn.norm.Dropout
-
Creates a builder to build a
Dropout
.
- builder() - Static method in class ai.djl.nn.recurrent.GRU
-
Creates a builder to build a
GRU
.
- Builder() - Constructor for class ai.djl.nn.recurrent.GRU.Builder
-
- builder() - Static method in class ai.djl.nn.recurrent.LSTM
-
Creates a builder to build a
LSTM
.
- Builder() - Constructor for class ai.djl.nn.recurrent.LSTM.Builder
-
- builder() - Static method in class ai.djl.nn.recurrent.RNN
-
Creates a builder to build a
RNN
.
- Builder() - Constructor for class ai.djl.nn.recurrent.RNN.Builder
-
- builder() - Static method in class ai.djl.nn.transformer.BertBlock
-
Returns a new BertBlock builder.
- Builder() - Constructor for class ai.djl.nn.transformer.IdEmbedding.Builder
-
- builder() - Static method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock
-
Creates a new Builder to build an Attention Block with.
- builder() - Static method in class ai.djl.repository.zoo.Criteria
-
Creates a builder to build a Criteria
.
- Builder() - Constructor for class ai.djl.training.dataset.ArrayDataset.Builder
-
- builder() - Static method in class ai.djl.training.optimizer.Adagrad
-
Creates a builder to build a Adam
.
- builder() - Static method in class ai.djl.training.optimizer.Adam
-
Creates a builder to build a Adam
.
- builder() - Static method in class ai.djl.training.optimizer.RmsProp
-
Creates a builder to build a RMSProp
.
- builder() - Static method in class ai.djl.training.tracker.CosineTracker
-
Creates a new builder.
- builder() - Static method in class ai.djl.training.tracker.FactorTracker
-
Creates a new builder.
- builder() - Static method in class ai.djl.training.tracker.LinearTracker
-
Creates a new builder.
- builder() - Static method in class ai.djl.training.tracker.MultiFactorTracker
-
Creates a new builder.
- builder() - Static method in class ai.djl.training.tracker.PolynomialDecayTracker
-
Creates a new builder.
- builder() - Static method in class ai.djl.training.tracker.WarmUpTracker
-
Creates a new builder.
- builder() - Static method in class ai.djl.translate.PaddingStackBatchifier
-
- buildModel(HpSet) - Method in class ai.djl.training.hyperparameter.EasyHpo
-
- buildSentence(List<String>) - Method in class ai.djl.modality.nlp.preprocess.SimpleTokenizer
-
Combines a list of tokens to form a sentence.
- buildSentence(List<String>) - Method in interface ai.djl.modality.nlp.preprocess.Tokenizer
-
Combines a list of tokens to form a sentence.
- cast(DataType) - Method in interface ai.djl.Model
-
Casts the model to support a different precision level.
- cast(DataType) - Method in class ai.djl.nn.AbstractBlock
-
Guaranteed to throw an exception.
- cast(DataType) - Method in interface ai.djl.nn.Block
-
Guaranteed to throw an exception.
- cast(DataType) - Method in class ai.djl.repository.zoo.ZooModel
-
Casts the model to support a different precision level.
- cbrt() - Method in interface ai.djl.ndarray.NDArray
-
Returns the cube-root of this NDArray
element-wise.
- cbrt() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the cube-root of this NDArray
element-wise.
- ceil() - Method in interface ai.djl.ndarray.NDArray
-
Returns the ceiling of this NDArray
element-wise.
- ceil() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the ceiling of this NDArray
element-wise.
- CenterCrop - Class in ai.djl.modality.cv.transform
-
A
Transform
that crops the center of an image.
- CenterCrop() - Constructor for class ai.djl.modality.cv.transform.CenterCrop
-
Creates a
CenterCrop
Transform
that crops to size
min(width, height)
.
- CenterCrop(int, int) - Constructor for class ai.djl.modality.cv.transform.CenterCrop
-
Creates a
CenterCrop
Transform
that crops the given width and height.
- centerCrop(NDArray) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Crops an image to a square of size min(width, height)
.
- centerCrop(NDArray, int, int) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Crops an image to a given width and height from the center of the image.
- checkConcatInput(NDList) - Static method in class ai.djl.ndarray.NDUtils
-
Check two criteria of concat input: 1.
- checkLabelShapes(NDArray, NDArray, boolean) - Method in class ai.djl.training.evaluator.Evaluator
-
Checks if the two input NDArray
have the same length or shape.
- checkLabelShapes(NDArray, NDArray) - Method in class ai.djl.training.evaluator.Evaluator
-
Checks the length of NDArrays.
- children - Variable in class ai.djl.nn.AbstractBlock
-
All direct children of this Block.
- chooseAction(RlEnv, boolean) - Method in class ai.djl.modality.rl.agent.EpsilonGreedy
-
Chooses the next action to take within the
RlEnv
.
- chooseAction(RlEnv, boolean) - Method in class ai.djl.modality.rl.agent.QAgent
-
Chooses the next action to take within the
RlEnv
.
- chooseAction(RlEnv, boolean) - Method in interface ai.djl.modality.rl.agent.RlAgent
-
Chooses the next action to take within the
RlEnv
.
- classes - Variable in class ai.djl.modality.cv.translator.ObjectDetectionTranslator
-
- Classification(String, double) - Constructor for class ai.djl.modality.Classifications.Classification
-
Constructs a single class result for a classification.
- ClassificationBuilder() - Constructor for class ai.djl.modality.cv.translator.BaseImageTranslator.ClassificationBuilder
-
- Classifications - Class in ai.djl.modality
-
Classifications
is the container that stores the classification results for
classification on a single input.
- Classifications(List<String>, List<Double>) - Constructor for class ai.djl.modality.Classifications
-
Constructs a Classifications
using a parallel list of classNames and probabilities.
- Classifications(List<String>, NDArray) - Constructor for class ai.djl.modality.Classifications
-
Constructs a Classifications
using list of classNames parallel to an NDArray of
probabilities.
- Classifications.Classification - Class in ai.djl.modality
-
A Classification
stores the classification result for a single class on a single
input.
- Classifications.ClassificationsSerializer - Class in ai.djl.modality
-
A customized Gson serializer to serialize the Classifications
object.
- ClassificationsSerializer() - Constructor for class ai.djl.modality.Classifications.ClassificationsSerializer
-
- classNames - Variable in class ai.djl.modality.Classifications
-
- clear() - Method in class ai.djl.nn.AbstractBlock
-
Closes all the parameters of the block.
- clear() - Method in interface ai.djl.nn.Block
-
Closes all the parameters of the block.
- clip(Number, Number) - Method in interface ai.djl.ndarray.NDArray
-
Clips (limit) the values in this NDArray
.
- clip(Number, Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Clips (limit) the values in this NDArray
.
- clipGrad - Variable in class ai.djl.training.optimizer.Optimizer
-
- close() - Method in class ai.djl.BaseModel
- close() - Method in class ai.djl.inference.Predictor
- close() - Method in class ai.djl.modality.nlp.embedding.ModelZooTextEmbedding
- close() - Method in interface ai.djl.modality.rl.env.RlEnv
- close() - Method in interface ai.djl.modality.rl.env.RlEnv.Step
- close() - Method in interface ai.djl.Model
- close() - Method in class ai.djl.ndarray.BaseNDManager
- close() - Method in interface ai.djl.ndarray.NDArray
- close() - Method in class ai.djl.ndarray.NDList
- close() - Method in interface ai.djl.ndarray.NDManager
- close() - Method in class ai.djl.nn.Parameter
- close() - Method in class ai.djl.nn.transformer.MemoryScope
-
Closes this scope by closing the sub manager used to manage it.
- close() - Method in class ai.djl.repository.zoo.ZooModel
- close() - Method in class ai.djl.training.dataset.Batch
- close() - Method in interface ai.djl.training.GradientCollector
- close() - Method in class ai.djl.training.LocalParameterServer
- close() - Method in interface ai.djl.training.ParameterServer
- close() - Method in class ai.djl.training.Trainer
- close() - Method in interface ai.djl.translate.TranslatorContext
- closed - Variable in class ai.djl.ndarray.BaseNDManager
-
- collectMemoryInfo(Metrics) - Static method in class ai.djl.training.listener.MemoryTrainingListener
-
Collect memory information.
- compare(Artifact, Artifact) - Method in class ai.djl.repository.Artifact.VersionComparator
- compareTo(Version) - Method in class ai.djl.repository.Version
- components - Variable in class ai.djl.training.loss.AbstractCompositeLoss
-
- concat(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Joins a NDArray
along the first axis.
- concat(NDArray, int) - Method in interface ai.djl.ndarray.NDArray
-
Joins a NDArray
along an existing axis.
- concat(NDList) - Static method in class ai.djl.ndarray.NDArrays
-
Joins a
NDList
along the first axis.
- concat(NDList, int) - Static method in class ai.djl.ndarray.NDArrays
-
Joins a
NDList
along an existing axis.
- configPostProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
-
- configPostProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.ClassificationBuilder
- configPostProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslator.Builder
- configPostProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator.Builder
- configPostProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
- configPostProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.SimplePoseTranslator.Builder
- configPostProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.YoloV5Translator.Builder
- configPreProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
-
- ConstantEmbedding - Class in ai.djl.nn.core
-
- ConstantEmbedding(NDArray) - Constructor for class ai.djl.nn.core.ConstantEmbedding
-
Constructs a constant embedding with the given constant.
- ConstantInitializer - Class in ai.djl.training.initializer
-
Initializer that generates tensors with constant values.
- ConstantInitializer(float) - Constructor for class ai.djl.training.initializer.ConstantInitializer
-
Creates a Constant Initializer.
- contains(String) - Method in class ai.djl.modality.nlp.SimpleVocabulary
-
Check if the vocabulary contains a token.
- contains(String) - Method in interface ai.djl.modality.nlp.Vocabulary
-
Check if the vocabulary contains a token.
- contains(String) - Method in class ai.djl.ndarray.NDList
-
Returns true
if this NDList contains an NDArray with the specified name.
- contains(Version) - Method in class ai.djl.repository.VersionRange
-
Returns true if a version falls within this range.
- contains(Artifact) - Method in class ai.djl.repository.VersionRange
-
Returns true if the artifact's version falls within this range.
- contentEquals(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns true
if all elements in this NDArray
are equal to the Number
.
- contentEquals(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns
true
if all elements in this
NDArray
are equal to the other
NDArray
.
- contentEquals(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns true
if all elements in this NDArray
are equal to the Number
.
- contentEquals(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns
true
if all elements in this
NDArray
are equal to the other
NDArray
.
- contentEquals(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
- contentEquals(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- Conv1d - Class in ai.djl.nn.convolutional
-
A
Conv1d
layer works similar to
Convolution
layer with the exception of the
number of dimension it operates on being only one, which is
LayoutType.WIDTH
.
- conv1d(NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv1d
-
Applies 1D convolution over an input signal composed of several input planes.
- conv1d(NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv1d
-
Applies 1D convolution over an input signal composed of several input planes.
- conv1d(NDArray, NDArray, NDArray, Shape) - Static method in class ai.djl.nn.convolutional.Conv1d
-
Applies 1D convolution over an input signal composed of several input planes.
- conv1d(NDArray, NDArray, NDArray, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv1d
-
Applies 1D convolution over an input signal composed of several input planes.
- conv1d(NDArray, NDArray, NDArray, Shape, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv1d
-
Applies 1D convolution over an input signal composed of several input planes.
- conv1d(NDArray, NDArray, NDArray, Shape, Shape, Shape, int) - Static method in class ai.djl.nn.convolutional.Conv1d
-
Applies 1D convolution over an input signal composed of several input planes.
- Conv1d.Builder - Class in ai.djl.nn.convolutional
-
- Conv1dTranspose - Class in ai.djl.nn.convolutional
-
A
Conv1dTranspose
layer works similar to
Deconvolution
layer with the exception
of the number of dimension it operates on being only one, which is
LayoutType.WIDTH
.
- conv1dTranspose(NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Applies 1D deconvolution over an input signal composed of several input planes.
- conv1dTranspose(NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Applies 1D deconvolution over an input signal composed of several input planes.
- conv1dTranspose(NDArray, NDArray, NDArray, Shape) - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Applies 1D deconvolution over an input signal composed of several input planes.
- conv1dTranspose(NDArray, NDArray, NDArray, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Applies 1D deconvolution over an input signal composed of several input planes.
- conv1dTranspose(NDArray, NDArray, NDArray, Shape, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Applies 1D deconvolution over an input signal composed of several input planes.
- conv1dTranspose(NDArray, NDArray, NDArray, Shape, Shape, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Applies 1D deconvolution over an input signal composed of several input planes.
- conv1dTranspose(NDArray, NDArray, NDArray, Shape, Shape, Shape, Shape, int) - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Applies 1D convolution over an input signal composed of several input planes.
- Conv1dTranspose.Builder - Class in ai.djl.nn.convolutional
-
- Conv2d - Class in ai.djl.nn.convolutional
-
Being the pioneer of convolution layers,
Conv2d
layer works on two dimensions of input,
LayoutType.WIDTH
and
LayoutType.HEIGHT
as usually a
Conv2d
layer is used
to process data with two spatial dimensions, namely image.
- conv2d(NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv2d
-
Applies 2D convolution over an input signal composed of several input planes.
- conv2d(NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv2d
-
Applies 2D convolution over an input signal composed of several input planes.
- conv2d(NDArray, NDArray, NDArray, Shape) - Static method in class ai.djl.nn.convolutional.Conv2d
-
Applies 2D convolution over an input signal composed of several input planes.
- conv2d(NDArray, NDArray, NDArray, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv2d
-
Applies 2D convolution over an input signal composed of several input planes.
- conv2d(NDArray, NDArray, NDArray, Shape, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv2d
-
Applies 2D convolution over an input signal composed of several input planes.
- conv2d(NDArray, NDArray, NDArray, Shape, Shape, Shape, int) - Static method in class ai.djl.nn.convolutional.Conv2d
-
Applies 2D convolution over an input signal composed of several input planes.
- Conv2d.Builder - Class in ai.djl.nn.convolutional
-
- Conv2dTranspose - Class in ai.djl.nn.convolutional
-
The input to a
Conv2dTranspose
is an
NDList
with a single 4-D
NDArray
.
- conv2dTranspose(NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Applies 2D deconvolution over an input signal composed of several input planes.
- conv2dTranspose(NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Applies 2D deconvolution over an input signal composed of several input planes.
- conv2dTranspose(NDArray, NDArray, NDArray, Shape) - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Applies 2D deconvolution over an input signal composed of several input planes.
- conv2dTranspose(NDArray, NDArray, NDArray, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Applies 2D deconvolution over an input signal composed of several input planes.
- conv2dTranspose(NDArray, NDArray, NDArray, Shape, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Applies 2D deconvolution over an input signal composed of several input planes.
- conv2dTranspose(NDArray, NDArray, NDArray, Shape, Shape, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Applies 2D deconvolution over an input signal composed of several input planes.
- conv2dTranspose(NDArray, NDArray, NDArray, Shape, Shape, Shape, Shape, int) - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Applies 2D deconvolution over an input signal composed of several input planes.
- Conv2dTranspose.Builder - Class in ai.djl.nn.convolutional
-
- Conv3d - Class in ai.djl.nn.convolutional
-
Conv3d
layer behaves just as
Convolution
does, with the distinction being it
operates of 3-dimensional data such as medical images or video data.
- conv3d(NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv3d
-
Applies 3D convolution over an input signal composed of several input planes.
- conv3d(NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv3d
-
Applies 3D convolution over an input signal composed of several input planes.
- conv3d(NDArray, NDArray, NDArray, Shape) - Static method in class ai.djl.nn.convolutional.Conv3d
-
Applies 3D convolution over an input signal composed of several input planes.
- conv3d(NDArray, NDArray, NDArray, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv3d
-
Applies 3D convolution over an input signal composed of several input planes.
- conv3d(NDArray, NDArray, NDArray, Shape, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv3d
-
Applies 3D convolution over an input signal composed of several input planes.
- conv3d(NDArray, NDArray, NDArray, Shape, Shape, Shape, int) - Static method in class ai.djl.nn.convolutional.Conv3d
-
Applies 3D convolution over an input signal composed of several input planes.
- Conv3d.Builder - Class in ai.djl.nn.convolutional
-
- Convolution - Class in ai.djl.nn.convolutional
-
A convolution layer does a dot product calculation on each channel of \(k\)-channel input data by
specified number of filters, each containing \(k\) kernels for calculating each channel in the
input data and then summed per filter, hence the number of filters denote the number of output
channels of a convolution layer.
- Convolution(Convolution.ConvolutionBuilder<?>) - Constructor for class ai.djl.nn.convolutional.Convolution
-
- Convolution.ConvolutionBuilder<T extends Convolution.ConvolutionBuilder> - Class in ai.djl.nn.convolutional
-
A builder that can build any Convolution
block.
- ConvolutionBuilder() - Constructor for class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
- copyTo(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Deep-copies the current NDArray
to the one passed in.
- copyTo(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Deep-copies the current NDArray
to the one passed in.
- correctInstances - Variable in class ai.djl.training.evaluator.AbstractAccuracy
-
- cos() - Method in interface ai.djl.ndarray.NDArray
-
Returns the trigonometric cosine of this NDArray
element-wise.
- cos() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the trigonometric cosine of this NDArray
element-wise.
- cosh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the hyperbolic cosine of this NDArray
element-wise.
- cosh() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the hyperbolic cosine of this NDArray
element-wise.
- cosine() - Static method in interface ai.djl.training.tracker.Tracker
-
- CosineTracker - Class in ai.djl.training.tracker
-
CosineTracker
is an implementation of
Tracker
which is updated by taking sections
of a cosine curve to smoothly reduce learning rate until a specified step and base learning rate.
- CosineTracker(CosineTracker.Builder) - Constructor for class ai.djl.training.tracker.CosineTracker
-
Creates a new instance of CosineTracker
.
- CosineTracker.Builder - Class in ai.djl.training.tracker
-
- countNonzero() - Method in interface ai.djl.ndarray.NDArray
-
Counts the number of non-zero values in this NDArray
.
- countNonzero(int) - Method in interface ai.djl.ndarray.NDArray
-
Counts the number of non-zero values in this NDArray
along a given axis.
- cpu() - Static method in class ai.djl.Device
-
Returns the default CPU Device.
- CPU - Static variable in interface ai.djl.Device.Type
-
- create(String) - Method in class ai.djl.ndarray.BaseNDManager
-
Creates and initializes a scalar
NDArray
.
- create(Shape, DataType) - Method in class ai.djl.ndarray.BaseNDManager
-
- create(Shape) - Method in interface ai.djl.ndarray.NDManager
-
- create(Number) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
.
- create(float) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
.
- create(int) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
.
- create(double) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
.
- create(long) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
.
- create(byte) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
.
- create(boolean) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
.
- create(String) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
.
- create(float[]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 1D
NDArray
.
- create(int[]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 1D
NDArray
.
- create(double[]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 1D
NDArray
.
- create(long[]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 1D
NDArray
.
- create(byte[]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 1D
NDArray
.
- create(boolean[]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 1D
NDArray
.
- create(float[][]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 2D
NDArray
.
- create(int[][]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 2D
NDArray
.
- create(double[][]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 2D
NDArray
.
- create(long[][]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 2-D
NDArray
.
- create(byte[][]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 2-D
NDArray
.
- create(boolean[][]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 2-D
NDArray
.
- create(Buffer, Shape) - Method in interface ai.djl.ndarray.NDManager
-
- create(Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
-
- create(Buffer, Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
-
- create(float[], Shape) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes an instance of
NDArray
with specified
Shape
and float
array.
- create(int[], Shape) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes an instance of
NDArray
with specified
Shape
and int
array.
- create(double[], Shape) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes an instance of
NDArray
with specified
Shape
and
double array.
- create(long[], Shape) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes an instance of
NDArray
with specified
Shape
and long
array.
- create(byte[], Shape) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes an instance of
NDArray
with specified
Shape
and byte
array.
- create(boolean[], Shape) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes an instance of
NDArray
with specified
Shape
and
boolean array.
- create(Shape, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
-
- createAttentionMaskFromInputMask(NDArray, NDArray) - Static method in class ai.djl.nn.transformer.BertBlock
-
Creates a 3D attention mask from a 2D tensor mask.
- createCoo(Buffer, long[][], Shape) - Method in class ai.djl.ndarray.BaseNDManager
-
Creates a Coordinate Format (COO) Matrix.
- createCoo(Buffer, long[][], Shape) - Method in interface ai.djl.ndarray.NDManager
-
Creates a Coordinate Format (COO) Matrix.
- createCSR(Buffer, long[], long[], Shape) - Method in class ai.djl.ndarray.BaseNDManager
-
Creates a Compressed Sparse Row Storage (CSR) Format Matrix.
- createCSR(Buffer, long[], long[], Shape, Device) - Method in interface ai.djl.ndarray.NDManager
-
Creates a Compressed Sparse Row Storage (CSR) Format Matrix.
- createCSR(Buffer, long[], long[], Shape) - Method in interface ai.djl.ndarray.NDManager
-
Creates a Compressed Sparse Row Storage (CSR) Format Matrix.
- createModel(String, Device, Artifact, Map<String, Object>, String) - Method in class ai.djl.repository.zoo.BaseModelLoader
-
- createRowSparse(Buffer, Shape, long[], Shape) - Method in class ai.djl.ndarray.BaseNDManager
-
Stores the matrix in row sparse format.
- createRowSparse(Buffer, Shape, long[], Shape, Device) - Method in interface ai.djl.ndarray.NDManager
-
Stores the matrix in row sparse format.
- createRowSparse(Buffer, Shape, long[], Shape) - Method in interface ai.djl.ndarray.NDManager
-
Stores the matrix in row sparse format.
- Criteria<I,O> - Class in ai.djl.repository.zoo
-
The
Criteria
class contains search criteria to look up a
ZooModel
.
- Criteria.Builder<I,O> - Class in ai.djl.repository.zoo
-
A Builder to construct a Criteria
.
- Crop - Class in ai.djl.modality.cv.transform
-
A
Transform
that crops the image to a given location and size.
- Crop(int, int, int, int) - Constructor for class ai.djl.modality.cv.transform.Crop
-
- crop(NDArray, int, int, int, int) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Crops an image with a given location and size.
- CUDA - Static variable in class ai.djl.engine.StandardCapabilities
-
- CUDNN - Static variable in class ai.djl.engine.StandardCapabilities
-
- cumSum() - Method in interface ai.djl.ndarray.NDArray
-
Returns the cumulative sum of the elements in the flattened NDArray
.
- cumSum(int) - Method in interface ai.djl.ndarray.NDArray
-
Return the cumulative sum of the elements along a given axis.
- cumSum() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the cumulative sum of the elements in the flattened NDArray
.
- cumSum(int) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Return the cumulative sum of the elements along a given axis.
- currentPoint() - Method in interface ai.djl.modality.cv.output.PathIterator
-
Returns the coordinates and type of the current path segment in the iteration.
- gates - Variable in class ai.djl.nn.recurrent.RecurrentBlock
-
- gatherFromIndices(NDArray, NDArray) - Static method in class ai.djl.nn.transformer.BertMaskedLanguageModelBlock
-
Given a 3D array of shape (B, S, E) and a 2D array of shape (B, I) returns the flattened
lookup result of shape (B * I * E).
- gatherNd(NDArray, NDArray) - Static method in class ai.djl.nn.transformer.MissingOps
-
Applies the mxnet gather_nd operator.
- gelu(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies GELU(Gaussian Error Linear Unit) activation on the input
NDArray
.
- gelu(NDList) - Static method in class ai.djl.nn.Activation
-
Applies GELU(Gaussian Error Linear Unit) activation on the input singleton
NDList
.
- geluBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies the
GELU
activation function
in its forward function.
- generateAnchorBoxes(NDArray) - Method in class ai.djl.modality.cv.MultiBoxPrior
-
Generates the anchorBoxes array in the input's manager and device.
- get(String) - Method in class ai.djl.modality.Classifications
-
Returns the result for a particular class name.
- get(NDArray, NDIndexFullPick) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Returns a subarray by picking the elements.
- get(NDArray, NDIndexFullSlice) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Returns a subarray at the slice.
- get(NDArray, NDIndex) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Returns a subarray at the given index.
- get(int) - Method in class ai.djl.ndarray.index.NDIndex
-
Returns the index affecting the given dimension.
- get(NDIndex) - Method in interface ai.djl.ndarray.NDArray
-
Returns a partial NDArray
.
- get(String, Object...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a partial NDArray
.
- get(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a partial NDArray
.
- get(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns a partial NDArray
.
- get(int) - Method in class ai.djl.ndarray.types.Shape
-
Returns the shape in the given dimension.
- get(NDManager, long) - Method in class ai.djl.training.dataset.ArrayDataset
-
Gets the
Record
for the given index from the dataset.
- get(NDManager, long) - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Gets the
Record
for the given index from the dataset.
- get(NDManager) - Method in interface ai.djl.translate.NDArraySupplier
-
- getAccumulator(String) - Method in class ai.djl.training.evaluator.AbstractAccuracy
-
Returns the accumulated evaluator value.
- getAccumulator(String) - Method in class ai.djl.training.evaluator.BoundingBoxError
-
Returns the accumulated evaluator value.
- getAccumulator(String) - Method in class ai.djl.training.evaluator.Evaluator
-
Returns the accumulated evaluator value.
- getAccumulator(String) - Method in class ai.djl.training.loss.AbstractCompositeLoss
-
Returns the accumulated evaluator value.
- getAccumulator(String) - Method in class ai.djl.training.loss.Loss
-
Returns the accumulated evaluator value.
- getAction() - Method in interface ai.djl.modality.rl.env.RlEnv.Step
-
Returns the action taken.
- getActionSpace() - Method in interface ai.djl.modality.rl.env.RlEnv
-
Returns the current actions that can be taken in the environment.
- getAllEngines() - Static method in class ai.djl.engine.Engine
-
Returns a set of engine names that are loaded.
- getApplication() - Method in class ai.djl.repository.Metadata
-
- getApplication() - Method in class ai.djl.repository.MRL
-
Returns the resource application.
- getApplication() - Method in class ai.djl.repository.zoo.BaseModelLoader
-
Returns the application of the ModelLoader
.
- getApplication() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the application of the model.
- getApplication() - Method in interface ai.djl.repository.zoo.ModelLoader
-
Returns the application of the ModelLoader
.
- getApplicationName() - Method in class ai.djl.repository.Metadata
-
- getArguments(Map<String, Object>) - Method in class ai.djl.repository.Artifact
-
Returns the artifact arguments.
- getArguments() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the override configurations of the model loading arguments.
- getArray() - Method in class ai.djl.nn.Parameter
-
Gets the values of this
Parameter
as an
NDArray
.
- getArtifact(String, Function<InputStream, T>) - Method in class ai.djl.BaseModel
-
Attempts to load the artifact using the given function and cache it if the specified artifact
is not already cached.
- getArtifact(String) - Method in class ai.djl.BaseModel
-
Finds an artifact resource with a given name in the model.
- getArtifact(String, Function<InputStream, T>) - Method in interface ai.djl.Model
-
Attempts to load the artifact using the given function and cache it if the specified artifact
is not already cached.
- getArtifact(String) - Method in interface ai.djl.Model
-
Finds an artifact resource with a given name in the model.
- getArtifact() - Method in class ai.djl.repository.Artifact.Item
-
Returns the artifact associated with this item.
- getArtifact(String, Function<InputStream, T>) - Method in class ai.djl.repository.zoo.ZooModel
-
Attempts to load the artifact using the given function and cache it if the specified artifact
is not already cached.
- getArtifact(String) - Method in class ai.djl.repository.zoo.ZooModel
-
Finds an artifact resource with a given name in the model.
- getArtifactAsStream(String) - Method in class ai.djl.BaseModel
-
Finds an artifact resource with a given name in the model.
- getArtifactAsStream(String) - Method in interface ai.djl.Model
-
Finds an artifact resource with a given name in the model.
- getArtifactAsStream(String) - Method in class ai.djl.repository.zoo.ZooModel
-
Finds an artifact resource with a given name in the model.
- getArtifactId() - Method in class ai.djl.repository.Metadata
-
Returns the artifactId.
- getArtifactId() - Method in class ai.djl.repository.MRL
-
Returns the artifactId.
- getArtifactId() - Method in class ai.djl.repository.zoo.BaseModelLoader
-
Returns the artifact ID of the ModelLoader
.
- getArtifactId() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the artifactId of the
ModelLoader
to be searched.
- getArtifactId() - Method in interface ai.djl.repository.zoo.ModelLoader
-
Returns the artifact ID of the ModelLoader
.
- getArtifactNames() - Method in class ai.djl.BaseModel
-
Returns the artifact names associated with the model.
- getArtifactNames() - Method in interface ai.djl.Model
-
Returns the artifact names associated with the model.
- getArtifactNames() - Method in class ai.djl.repository.zoo.ZooModel
-
Returns the artifact names associated with the model.
- getArtifacts() - Method in class ai.djl.repository.Metadata
-
Returns all the artifacts in the metadata.
- getAttachment(String) - Method in interface ai.djl.translate.TranslatorContext
-
Returns value of attached key-value pair to context.
- getAttentionMask() - Method in class ai.djl.modality.nlp.bert.BertToken
-
Gets the mask to avoid performing attention on padding token indices.
- getAxis() - Method in class ai.djl.ndarray.index.full.NDIndexFullPick
-
Returns the axis to pick.
- getBaseUri() - Method in class ai.djl.repository.JarRepository
-
Returns the URI to the base of the repository.
- getBaseUri() - Method in class ai.djl.repository.LocalRepository
-
Returns the URI to the base of the repository.
- getBaseUri() - Method in class ai.djl.repository.RemoteRepository
-
Returns the URI to the base of the repository.
- getBaseUri() - Method in interface ai.djl.repository.Repository
-
Returns the URI to the base of the repository.
- getBaseUri() - Method in class ai.djl.repository.SimpleRepository
-
Returns the URI to the base of the repository.
- getBaseUri() - Method in class ai.djl.repository.SimpleUrlRepository
-
Returns the URI to the base of the repository.
- getBatch() - Method in interface ai.djl.modality.rl.env.RlEnv
-
- getBatch() - Method in class ai.djl.modality.rl.LruReplayBuffer
-
Returns a batch of steps from this buffer.
- getBatch() - Method in interface ai.djl.modality.rl.ReplayBuffer
-
Returns a batch of steps from this buffer.
- getBatch() - Method in class ai.djl.training.listener.TrainingListener.BatchData
-
Returns the original batch.
- getBatchifier() - Method in class ai.djl.modality.cv.translator.BaseImageTranslator
-
- getBatchifier() - Method in class ai.djl.modality.cv.translator.wrapper.FileTranslator
-
- getBatchifier() - Method in class ai.djl.modality.cv.translator.wrapper.InputStreamTranslator
-
- getBatchifier() - Method in class ai.djl.modality.cv.translator.wrapper.UrlTranslator
-
- getBatchifier() - Method in class ai.djl.modality.nlp.translator.QATranslator
-
- getBatchifier() - Method in class ai.djl.modality.nlp.translator.SimpleText2TextTranslator
-
- getBatchifier() - Method in class ai.djl.translate.NoopTranslator
-
- getBatchifier() - Method in interface ai.djl.translate.Translator
-
- getBatchSize() - Method in class ai.djl.training.dataset.BatchSampler
-
Returns the batch size of the Sampler
.
- getBatchSize() - Method in interface ai.djl.training.dataset.Sampler
-
Returns the batch size of the Sampler
.
- getBertMaskedLanguageModelLoss() - Method in class ai.djl.nn.transformer.BertPretrainingLoss
-
gets BertMaskedLanguageModelLoss.
- getBertNextSentenceLoss() - Method in class ai.djl.nn.transformer.BertPretrainingLoss
-
gets BertNextSentenceLoss.
- getBest() - Method in class ai.djl.training.hyperparameter.optimizer.BaseHpOptimizer
-
Returns the best hyperparameters and loss.
- getBest() - Method in interface ai.djl.training.hyperparameter.optimizer.HpOptimizer
-
Returns the best hyperparameters and loss.
- getBlock() - Method in class ai.djl.BaseModel
-
Gets the block from the Model.
- getBlock() - Method in interface ai.djl.Model
-
Gets the block from the Model.
- getBlock() - Method in class ai.djl.repository.zoo.Criteria
-
- getBlock() - Method in class ai.djl.repository.zoo.ZooModel
-
Gets the block from the Model.
- getBoolean(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a boolean element from this NDArray
.
- getBooleanValue(Map<String, ?>, String, boolean) - Static method in class ai.djl.modality.cv.translator.BaseImageTranslator
-
- getBoundingBox() - Method in class ai.djl.modality.cv.output.DetectedObjects.DetectedObject
-
- getBounds() - Method in interface ai.djl.modality.cv.output.BoundingBox
-
Returns the bounding Rectangle
of this BoundingBox
.
- getBounds() - Method in class ai.djl.modality.cv.output.Rectangle
-
Returns the bounding Rectangle
of this BoundingBox
.
- getByte(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns an byte element from this NDArray
.
- getCacheDirectory() - Method in class ai.djl.repository.AbstractRepository
-
Returns the cache directory for the repository.
- getCacheDirectory() - Method in interface ai.djl.repository.Repository
-
Returns the cache directory for the repository.
- getCacheDirectory() - Method in class ai.djl.repository.SimpleRepository
-
Returns the cache directory for the repository.
- getCheckpoint() - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
Returns the checkpoint frequency (or -1 for no checkpointing).
- getChildren() - Method in class ai.djl.nn.AbstractBlock
-
Returns a list of all the children of the block.
- getChildren() - Method in interface ai.djl.nn.Block
-
Returns a list of all the children of the block.
- getClassName() - Method in class ai.djl.modality.Classifications.Classification
-
Returns the class name.
- getCode() - Method in class ai.djl.modality.Output
-
Returns the status code of the output.
- getComponents() - Method in class ai.djl.training.loss.AbstractCompositeLoss
-
Returns the component losses that make up the composite loss.
- getConfidence() - Method in class ai.djl.modality.cv.output.Joints.Joint
-
Returns the confidence probability for the joint.
- getContent() - Method in class ai.djl.modality.Input
-
Returns the content of the input.
- getContent() - Method in class ai.djl.modality.Output
-
Returns the content of the input.
- getData(Batch) - Method in class ai.djl.training.DataManager
-
Fetches data from the given
Batch
in required form.
- getData() - Method in class ai.djl.training.dataset.Batch
-
Gets the data of this Batch
.
- getData(NDManager) - Method in interface ai.djl.training.dataset.Dataset
-
Fetches an iterator that can iterate through the
Dataset
.
- getData(NDManager) - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Fetches an iterator that can iterate through the
Dataset
.
- getData(NDManager, Sampler) - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Fetches an iterator that can iterate through the
Dataset
with a custom sampler.
- getData() - Method in class ai.djl.training.dataset.Record
-
Gets the data of this Record
.
- getDataManager() - Method in class ai.djl.training.DefaultTrainingConfig
-
Gets the
DataManager
that computes data and labels from the output of dataset.
- getDataManager() - Method in class ai.djl.training.Trainer
-
- getDataManager() - Method in interface ai.djl.training.TrainingConfig
-
Gets the
DataManager
that computes data and labels from the output of dataset.
- getDataset(Dataset.Usage) - Method in class ai.djl.training.hyperparameter.EasyHpo
-
Returns the dataset to train with.
- getDataType() - Method in class ai.djl.BaseModel
-
Returns the standard data type used within the model.
- getDataType() - Method in interface ai.djl.Model
-
Returns the standard data type used within the model.
- getDataType() - Method in interface ai.djl.ndarray.NDArray
-
- getDataType() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
- getDataType() - Method in class ai.djl.ndarray.types.DataDesc
-
- getDataType() - Method in class ai.djl.repository.zoo.ZooModel
-
Returns the standard data type used within the model.
- getDefaultArtifact() - Method in class ai.djl.repository.Resource
-
Returns the default artifact.
- getDescription() - Method in class ai.djl.repository.Metadata
-
Returns the description.
- getDevice() - Method in class ai.djl.ndarray.BaseNDManager
-
Returns the default
Device
of this
NDManager
.
- getDevice() - Method in interface ai.djl.ndarray.NDArray
-
Returns the
Device
of this
NDArray
.
- getDevice() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the
Device
of this
NDArray
.
- getDevice() - Method in interface ai.djl.ndarray.NDManager
-
Returns the default
Device
of this
NDManager
.
- getDevice() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the
Device
of the model to be loaded on.
- getDeviceId() - Method in class ai.djl.Device
-
Returns the deviceId
of the Device.
- getDevices() - Static method in class ai.djl.Device
-
Returns an array of devices.
- getDevices(int) - Static method in class ai.djl.Device
-
Returns an array of devices given the maximum number of GPUs to use.
- getDevices() - Method in class ai.djl.training.DefaultTrainingConfig
-
Gets the
Device
that are available for computation.
- getDevices() - Method in class ai.djl.training.Trainer
-
Returns the devices used for training.
- getDevices() - Method in interface ai.djl.training.TrainingConfig
-
Gets the
Device
that are available for computation.
- getDeviceType() - Method in class ai.djl.Device
-
Returns the device type of the Device.
- getDirectParameters() - Method in class ai.djl.nn.AbstractBlock
-
Returns a list of all the direct parameters of the block.
- getDirectParameters() - Method in interface ai.djl.nn.Block
-
Returns a list of all the direct parameters of the block.
- getDouble(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a double element from this NDArray
.
- getEllipsisIndex() - Method in class ai.djl.ndarray.index.NDIndex
-
Returns the index of the ellipsis.
- getEmbeddingSize() - Method in class ai.djl.nn.transformer.BertBlock
-
Returns the embedding size used for tokens.
- getEmbeddingType() - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Returns the embedded type.
- getEncoded() - Method in class ai.djl.ndarray.types.Shape
-
Gets the byte array representation of this Shape
for serialization.
- getEngine(String) - Static method in class ai.djl.engine.Engine
-
Returns the Engine
with the given name.
- getEngine() - Method in interface ai.djl.engine.EngineProvider
-
Returns the instance of the
Engine
class EngineProvider should bind to.
- getEngine() - Method in interface ai.djl.ndarray.NDManager
-
Returns the
Engine
associated with this manager.
- getEngine() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the engine name.
- getEngineName() - Method in class ai.djl.engine.Engine
-
Returns the name of the Engine.
- getEpoch() - Method in class ai.djl.training.TrainingResult
-
Returns the actual number of epoch.
- getEvaluations() - Method in class ai.djl.training.TrainingResult
-
Returns the raw evaluation metrics.
- getEvaluators() - Method in class ai.djl.training.DefaultTrainingConfig
-
Returns the list of
Evaluator
s that should be computed during training.
- getEvaluators() - Method in class ai.djl.training.Trainer
-
- getEvaluators() - Method in interface ai.djl.training.TrainingConfig
-
Returns the list of
Evaluator
s that should be computed during training.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Conv1d
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Conv2d
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Conv3d
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Convolution
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Deconvolution
-
Returns the expected layout of the input.
- getExtension() - Method in class ai.djl.repository.Artifact.Item
-
Returns the type of file extension.
- getFile(Artifact.Item, String) - Method in class ai.djl.repository.AbstractRepository
-
Returns the path to a file for the item.
- getFile(Artifact.Item, String) - Method in interface ai.djl.repository.Repository
-
Returns the path to a file for the item.
- getFileExtension(String) - Static method in class ai.djl.repository.FilenameUtils
-
Returns the file name extension of the file.
- getFiles() - Method in class ai.djl.repository.Artifact
-
Returns all the file items in the artifact.
- getFileType(String) - Static method in class ai.djl.repository.FilenameUtils
-
Returns the type of the file.
- getFilters() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the search filters that must match the properties of the model.
- getFloat(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a float element from this NDArray
.
- getFloatValue(Map<String, ?>, String, float) - Static method in class ai.djl.modality.cv.translator.BaseImageTranslator
-
- getFormat() - Method in enum ai.djl.ndarray.types.DataType
-
Returns the format of the data type.
- getGpuCount() - Static method in class ai.djl.Device
-
Returns the number of GPUs available in the system.
- getGradient() - Method in interface ai.djl.ndarray.NDArray
-
Returns the gradient NDArray
attached to this NDArray
.
- getGradient() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the gradient NDArray
attached to this NDArray
.
- getGroupId() - Method in class ai.djl.repository.Metadata
-
Returns the groupId.
- getGroupId() - Method in class ai.djl.repository.MRL
-
Returns the groupId.
- getGroupId() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the groupId of the
ModelZoo
to be searched.
- getGroupId() - Method in class ai.djl.repository.zoo.DefaultModelZoo
-
Returns the global unique identifier of the ModelZoo
.
- getGroupId() - Method in interface ai.djl.repository.zoo.ModelZoo
-
Returns the global unique identifier of the ModelZoo
.
- getHeight() - Method in interface ai.djl.modality.cv.Image
-
Gets the height of the image.
- getHeight() - Method in class ai.djl.modality.cv.output.Rectangle
-
Returns the height of the Rectangle.
- getHParam(String) - Method in class ai.djl.training.hyperparameter.param.HpSet
-
Returns the hyperparameter in the set with the given name.
- getId() - Method in class ai.djl.nn.Parameter
-
Gets the ID of this Parameter
.
- getId() - Method in class ai.djl.repository.License
-
Returns the identifier of the license.
- getImageHeight() - Method in class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
-
Get resized image height.
- getImageWidth() - Method in class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
-
Get resized image width.
- getIncrementalVersion() - Method in class ai.djl.repository.Version
-
Returns the incremental version (assuming major.minor.incremental...) of the version.
- getIndex(String) - Method in class ai.djl.modality.nlp.SimpleVocabulary
-
Returns the index of the given token.
- getIndex(String) - Method in interface ai.djl.modality.nlp.Vocabulary
-
Returns the index of the given token.
- getIndex() - Method in class ai.djl.ndarray.index.dim.NDIndexBooleans
-
Returns the mask binary NDArray
.
- getIndex() - Method in class ai.djl.ndarray.index.dim.NDIndexFixed
-
Returns the dimension of the index.
- getIndices() - Method in class ai.djl.ndarray.index.dim.NDIndexPick
-
Returns the indices to pick.
- getIndices() - Method in class ai.djl.ndarray.index.full.NDIndexFullPick
-
Returns the indices to pick.
- getIndices() - Method in class ai.djl.ndarray.index.NDIndex
-
Returns the indices.
- getInitializer() - Method in enum ai.djl.nn.ParameterType
-
- getInitializer() - Method in class ai.djl.training.DefaultTrainingConfig
-
Gets the
Initializer
to initialize the parameters of the model.
- getInitializer() - Method in interface ai.djl.training.TrainingConfig
-
Gets the
Initializer
to initialize the parameters of the model.
- getInputClass() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the input data type.
- getInstance() - Static method in class ai.djl.engine.Engine
-
Returns the default Engine.
- getInstance() - Static method in class ai.djl.modality.cv.ImageFactory
-
Gets new instance of Image factory from the provided factory implementation.
- getInt(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns an int element from this NDArray
.
- getIntValue(Map<String, ?>, String, int) - Static method in class ai.djl.modality.cv.translator.BaseImageTranslator
-
- getIoU(BoundingBox) - Method in interface ai.djl.modality.cv.output.BoundingBox
-
Gets the Intersection over Union (IoU) value between bounding boxes.
- getIoU(BoundingBox) - Method in class ai.djl.modality.cv.output.Rectangle
-
Gets the Intersection over Union (IoU) value between bounding boxes.
- getJoints() - Method in class ai.djl.modality.cv.output.Joints
-
Gets the joints for the image.
- getKeyProjection() - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock
-
Pointwise Linear projection of the keys.
- getLabels(Batch) - Method in class ai.djl.training.DataManager
-
Fetches labels from the given
Batch
in required form.
- getLabels() - Method in class ai.djl.training.dataset.Batch
-
Gets the labels corresponding to the data of this Batch
.
- getLabels() - Method in class ai.djl.training.dataset.Record
-
Gets the labels that correspond to the data of this Record
.
- getLabels() - Method in class ai.djl.training.listener.TrainingListener.BatchData
-
Returns the labels for each device.
- getLastUpdated() - Method in class ai.djl.repository.Metadata
-
Returns the last update date for the metadata.
- getLatestEvaluations() - Method in class ai.djl.training.listener.EvaluatorTrainingListener
-
Returns the latest evaluations.
- getLayout() - Method in class ai.djl.ndarray.types.Shape
-
Returns the layout type for each axis in this shape.
- getLayoutType(int) - Method in class ai.djl.ndarray.types.Shape
-
Returns the layout type in the given dimension.
- getLeadingOnes() - Method in class ai.djl.ndarray.types.Shape
-
Returns the number of leading ones in the array shape.
- getLicenses() - Method in class ai.djl.repository.Metadata
-
- getLong(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a long element from this NDArray
.
- getLoss(HpSet) - Method in class ai.djl.training.hyperparameter.optimizer.BaseHpOptimizer
-
Returns the recorded loss.
- getLoss(HpSet) - Method in interface ai.djl.training.hyperparameter.optimizer.HpOptimizer
-
Returns the recorded loss.
- getLoss() - Method in class ai.djl.training.Trainer
-
Gets the training
Loss
function of the trainer.
- getLossFunction() - Method in class ai.djl.training.DefaultTrainingConfig
-
Gets the
Loss
function to compute the loss against.
- getLossFunction() - Method in interface ai.djl.training.TrainingConfig
-
Gets the
Loss
function to compute the loss against.
- getMajorVersion() - Method in class ai.djl.repository.Version
-
Returns the major version (assuming major.minor.incremental...) of the version.
- getManager() - Method in interface ai.djl.ndarray.NDArray
-
Returns the
NDManager
used to create this
NDArray
.
- getManager() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the
NDManager
used to create this
NDArray
.
- getManager() - Method in class ai.djl.training.dataset.Batch
-
Gets the
NDManager
that is attached to this
Batch
.
- getManager() - Method in class ai.djl.training.ParameterStore
-
Get the
NDManager
associated with
ParameterStore
.
- getManager() - Method in class ai.djl.training.Trainer
-
- getMax() - Method in class ai.djl.ndarray.index.dim.NDIndexSlice
-
Returns the end of the range.
- getMax() - Method in class ai.djl.ndarray.index.full.NDIndexFullSlice
-
Returns the slice max for each axis.
- getMessage() - Method in class ai.djl.modality.Output
-
Returns the status code of the output.
- getMetadata() - Method in class ai.djl.repository.Artifact
-
Returns the metadata containing this artifact.
- getMetadataVersion() - Method in class ai.djl.repository.Artifact
-
Returns the metadata format version.
- getMetadataVersion() - Method in class ai.djl.repository.Metadata
-
Returns the metadata format version.
- getMetric(String) - Method in class ai.djl.metric.Metrics
-
Returns all
Metric
s with the specified metric name.
- getMetricName() - Method in class ai.djl.metric.Metric
-
Returns the name of the Metric
.
- getMetricNames() - Method in class ai.djl.metric.Metrics
-
Returns a set of String
metric names.
- getMetrics() - Method in class ai.djl.training.Trainer
-
Returns the Metrics param used for benchmarking.
- getMetrics() - Method in interface ai.djl.translate.TranslatorContext
-
Returns the Metric tool to do benchmark.
- getMin() - Method in class ai.djl.ndarray.index.dim.NDIndexSlice
-
Returns the start of the range.
- getMin() - Method in class ai.djl.ndarray.index.full.NDIndexFullSlice
-
Returns the slice min for each axis.
- getMinorVersion() - Method in class ai.djl.repository.Version
-
Returns the minor version (assuming major.minor.incremental...) of the version.
- getModel() - Method in class ai.djl.training.Trainer
-
Returns the model used to create this trainer.
- getModel() - Method in interface ai.djl.translate.TranslatorContext
-
Returns the
Model
object to understand the input/output.
- getModelLoader(String) - Method in interface ai.djl.repository.zoo.ModelZoo
-
- getModelLoaders() - Method in class ai.djl.repository.zoo.DefaultModelZoo
-
Lists the available model families in the ModelZoo.
- getModelLoaders() - Method in interface ai.djl.repository.zoo.ModelZoo
-
Lists the available model families in the ModelZoo.
- getModelName() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the optional model name to be used for
ZooModel
.
- getModelPath() - Method in class ai.djl.BaseModel
-
Returns the directory from where the model is loaded.
- getModelPath() - Method in interface ai.djl.Model
-
Returns the directory from where the model is loaded.
- getModelPath() - Method in class ai.djl.repository.zoo.ZooModel
-
Returns the directory from where the model is loaded.
- getModelZoo() - Method in class ai.djl.repository.zoo.Criteria
-
- getModelZoo() - Method in class ai.djl.repository.zoo.DefaultZooProvider
-
- getModelZoo() - Method in interface ai.djl.repository.zoo.ZooProvider
-
- getMrl() - Method in class ai.djl.repository.Resource
-
Returns the
MRL
of the resource.
- getName() - Method in class ai.djl.BaseModel
-
Gets the model name.
- getName() - Method in interface ai.djl.Model
-
Gets the model name.
- getName() - Method in class ai.djl.ndarray.BaseNDManager
-
Gets the name of the NDManager.
- getName() - Method in interface ai.djl.ndarray.NDArray
-
Returns the name of this NDArray
.
- getName() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the name of this NDArray
.
- getName() - Method in interface ai.djl.ndarray.NDManager
-
Gets the name of the NDManager.
- getName() - Method in class ai.djl.ndarray.types.DataDesc
-
- getName() - Method in class ai.djl.nn.Parameter
-
Gets the name of this Parameter
.
- getName() - Method in class ai.djl.repository.Artifact
-
Returns the artifact name.
- getName() - Method in class ai.djl.repository.Artifact.Item
-
Returns the item name.
- getName() - Method in class ai.djl.repository.JarRepository
-
Returns the repository name.
- getName() - Method in class ai.djl.repository.License
-
Returns the name of the license.
- getName() - Method in class ai.djl.repository.LocalRepository
-
Returns the repository name.
- getName() - Method in class ai.djl.repository.Metadata
-
Returns the metadata-level name.
- getName() - Method in class ai.djl.repository.RemoteRepository
-
Returns the repository name.
- getName() - Method in interface ai.djl.repository.Repository
-
Returns the repository name.
- getName() - Method in class ai.djl.repository.SimpleRepository
-
Returns the repository name.
- getName() - Method in class ai.djl.repository.SimpleUrlRepository
-
Returns the repository name.
- getName() - Method in class ai.djl.repository.zoo.ZooModel
-
Gets the model name.
- getName() - Method in interface ai.djl.repository.zoo.ZooProvider
-
- getName() - Method in class ai.djl.training.evaluator.Evaluator
-
Returns the name of this Evaluator
.
- getName() - Method in class ai.djl.training.hyperparameter.param.Hyperparameter
-
Returns the name of the hyperparameter.
- getNamePart(String) - Static method in class ai.djl.repository.FilenameUtils
-
Returns the name of the file without file extension.
- getNDArrayInternal() - Method in interface ai.djl.ndarray.NDArray
-
Returns an internal representative of Native NDArray
.
- getNDArrayInternal() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns an internal representative of Native NDArray
.
- getNDManager() - Method in class ai.djl.BaseModel
-
- getNDManager() - Method in interface ai.djl.Model
-
- getNDManager() - Method in class ai.djl.repository.zoo.ZooModel
-
- getNDManager() - Method in interface ai.djl.translate.TranslatorContext
-
- getNewValue(int) - Method in class ai.djl.training.tracker.CosineTracker
-
Fetches the value after the given number of steps/updates.
- getNewValue(int) - Method in class ai.djl.training.tracker.FactorTracker
-
Fetches the value after the given number of steps/updates.
- getNewValue(int) - Method in class ai.djl.training.tracker.LinearTracker
-
Fetches the value after the given number of steps/updates.
- getNewValue(int) - Method in class ai.djl.training.tracker.MultiFactorTracker
-
Fetches the value after the given number of steps/updates.
- getNewValue(int) - Method in class ai.djl.training.tracker.PolynomialDecayTracker
-
Fetches the value after the given number of steps/updates.
- getNewValue(int) - Method in interface ai.djl.training.tracker.Tracker
-
Fetches the value after the given number of steps/updates.
- getNewValue(int) - Method in class ai.djl.training.tracker.WarmUpTracker
-
Fetches the value after the given number of steps/updates.
- getNumberOfObjects() - Method in class ai.djl.modality.cv.output.DetectedObjects
-
Returns the number of objects found in an image.
- getNumDirections() - Method in class ai.djl.nn.recurrent.RecurrentBlock
-
- getNumEpochs() - Method in class ai.djl.training.listener.EpochTrainingListener
-
Returns the number of epochs.
- getNumOfBytes() - Method in enum ai.djl.ndarray.types.DataType
-
Returns the number of bytes for each element.
- getObservation() - Method in interface ai.djl.modality.rl.env.RlEnv
-
Returns the observation detailing the current state of the environment.
- getOptimizer() - Method in class ai.djl.training.DefaultTrainingConfig
-
- getOptimizer() - Method in interface ai.djl.training.TrainingConfig
-
- getOptions(Map<String, String>) - Method in class ai.djl.repository.Artifact
-
Returns the artifact options.
- getOptions() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the model loading options.
- getOutputClass() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the output data type.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.modality.nlp.Decoder
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.modality.nlp.embedding.TrainableTextEmbedding
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.modality.nlp.Encoder
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.modality.nlp.EncoderDecoder
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.AbstractSymbolBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in interface ai.djl.nn.Block
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.convolutional.Convolution
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.convolutional.Deconvolution
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.core.ConstantEmbedding
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.core.Embedding
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.core.Linear
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.core.Prelu
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.LambdaBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.norm.BatchNorm
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.norm.Dropout
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.ParallelBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.recurrent.RecurrentBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.SequentialBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.transformer.BertBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.transformer.BertMaskedLanguageModelBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.transformer.BertNextSentenceBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.transformer.BertPretrainingBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.transformer.IdEmbedding
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.transformer.PointwiseFeedForwardBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.transformer.TransformerEncoderBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOverrideModelName() - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
Returns the override model name to save checkpoints with.
- getParagraph() - Method in class ai.djl.modality.nlp.qa.QAInput
-
Gets the resource document that contains the answer.
- getParameters() - Method in class ai.djl.nn.AbstractBlock
-
Returns a list of all the parameters of the block, including the parameters of its children
fetched recursively.
- getParameters() - Method in interface ai.djl.nn.Block
-
Returns a list of all the parameters of the block, including the parameters of its children
fetched recursively.
- getParameterShape(String, Shape[]) - Method in class ai.djl.nn.AbstractBlock
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParameterShape(String, Shape[]) - Method in interface ai.djl.nn.Block
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParameterShape(String, Shape[]) - Method in class ai.djl.nn.recurrent.RecurrentBlock
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParentManager() - Method in class ai.djl.ndarray.BaseNDManager
-
Returns the parent NDManager
.
- getParentManager() - Method in interface ai.djl.ndarray.NDManager
-
Returns the parent NDManager
.
- getParsedVersion() - Method in class ai.djl.repository.Artifact
-
Returns the artifact version as a
Version
.
- getPath() - Method in class ai.djl.Application
-
Returns the repository path of the application.
- getPath() - Method in interface ai.djl.modality.cv.output.BoundingBox
-
Returns an iterator object that iterates along the BoundingBox
boundary and provides
access to the geometry of the BoundingBox
outline.
- getPath() - Method in class ai.djl.modality.cv.output.Rectangle
-
Returns an iterator object that iterates along the BoundingBox
boundary and provides
access to the geometry of the BoundingBox
outline.
- getPipeline() - Method in class ai.djl.modality.cv.translator.BaseImageTranslator
-
- getPipeline() - Method in interface ai.djl.translate.PreProcessor
-
- getPoint() - Method in interface ai.djl.modality.cv.output.BoundingBox
-
Returns the top left point of the bounding box.
- getPoint() - Method in class ai.djl.modality.cv.output.Rectangle
-
Returns the top left point of the bounding box.
- getPostActionSpace() - Method in interface ai.djl.modality.rl.env.RlEnv.Step
-
Returns the available actions after the step.
- getPostObservation() - Method in interface ai.djl.modality.rl.env.RlEnv.Step
-
Returns the observation detailing the state after the action.
- getPredictions() - Method in class ai.djl.training.listener.TrainingListener.BatchData
-
Returns the predictions for each device.
- getPreObservation() - Method in interface ai.djl.modality.rl.env.RlEnv.Step
-
Returns the observation detailing the state before the action.
- getPreprocessors(boolean) - Static method in class ai.djl.modality.nlp.bert.BertFullTokenizer
-
Get a list of
TextProcessor
s to process input text for Bert models.
- getProbability() - Method in class ai.djl.modality.Classifications.Classification
-
Returns the probability.
- getProbDist() - Method in class ai.djl.modality.cv.output.Mask
-
Returns the probability for each pixel.
- getProgress() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the optional Progress
for the model loading.
- getProgress() - Method in class ai.djl.training.dataset.Batch
-
Returns the progress of the batch if it is part of some kind of iteration like a dataset
iteration.
- getProgressTotal() - Method in class ai.djl.training.dataset.Batch
-
Returns the total or end value for the progress of the batch if it is part of some kind of
iteration like a dataset iteration.
- getProperties() - Method in class ai.djl.modality.Input
-
Returns the properties of the input.
- getProperties() - Method in class ai.djl.modality.Output
-
Returns the properties of the output.
- getProperties() - Method in class ai.djl.repository.Artifact
-
Returns the artifact properties.
- getProperty(String) - Method in class ai.djl.BaseModel
-
Gets the property of the model based on property name.
- getProperty(String, String) - Method in class ai.djl.modality.Input
-
Returns the value to which the specified key is mapped.
- getProperty(String) - Method in interface ai.djl.Model
-
Gets the property of the model based on property name.
- getProperty(String) - Method in class ai.djl.repository.zoo.ZooModel
-
Gets the property of the model based on property name.
- getQueryProjection() - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock
-
Pointwise Linear projection of the queries.
- getQuestion() - Method in class ai.djl.modality.nlp.qa.QAInput
-
Gets the question for the model.
- getRank() - Method in class ai.djl.engine.Engine
-
Return the rank of the Engine
.
- getRank() - Method in class ai.djl.ndarray.index.dim.NDIndexAll
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in class ai.djl.ndarray.index.dim.NDIndexBooleans
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in interface ai.djl.ndarray.index.dim.NDIndexElement
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in class ai.djl.ndarray.index.dim.NDIndexFixed
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in class ai.djl.ndarray.index.dim.NDIndexPick
-
- getRank() - Method in class ai.djl.ndarray.index.dim.NDIndexSlice
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in class ai.djl.ndarray.index.NDIndex
-
Returns the number of dimensions specified in the Index.
- getRecommendedVersion() - Method in class ai.djl.repository.VersionRange
-
Returns the recommended version in the range.
- getRepository() - Method in class ai.djl.repository.Resource
-
- getRepositoryUri() - Method in class ai.djl.repository.Metadata
-
Returns the URI to the repository storing the metadata.
- getRequestId() - Method in class ai.djl.modality.Input
-
Returns the requestId of the input.
- getRequestId() - Method in class ai.djl.modality.Output
-
Returns the requestId of the output.
- getResourceDirectory(Artifact) - Method in interface ai.djl.repository.Repository
-
Returns the resource directory for the an artifact.
- getResourceDirectory(Artifact) - Method in class ai.djl.repository.SimpleRepository
-
Returns the resource directory for the an artifact.
- getResources() - Method in class ai.djl.repository.AbstractRepository
-
Returns a list of
MRL
s in the repository.
- getResources() - Method in class ai.djl.repository.JarRepository
-
Returns a list of
MRL
s in the repository.
- getResources() - Method in class ai.djl.repository.LocalRepository
-
Returns a list of
MRL
s in the repository.
- getResources() - Method in interface ai.djl.repository.Repository
-
Returns a list of
MRL
s in the repository.
- getResources() - Method in class ai.djl.repository.SimpleRepository
-
Returns a list of
MRL
s in the repository.
- getResources() - Method in class ai.djl.repository.SimpleUrlRepository
-
Returns a list of
MRL
s in the repository.
- getResourceType() - Method in class ai.djl.repository.Metadata
-
Returns the resource type.
- getResourceUri() - Method in class ai.djl.repository.Artifact
-
Returns the location of the resource directory.
- getRestrictions() - Method in class ai.djl.repository.VersionRange
-
Returns the restrictions that compose the range.
- getResultProjection() - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock
-
Pointwise Linear projection of the results.
- getReward() - Method in interface ai.djl.modality.rl.env.RlEnv.Step
-
Returns the reward given for the action.
- getSampler() - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- getScalar(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a scalar NDArray
corresponding to a single element.
- getScopeManager() - Method in class ai.djl.nn.transformer.MemoryScope
-
Returns the NDManager used to manage this scopes resources.
- getSha1Hash() - Method in class ai.djl.repository.Artifact.Item
-
Returns the hash of the item.
- getShape() - Method in class ai.djl.ndarray.index.full.NDIndexFullSlice
-
Returns the slice shape without squeezing.
- getShape() - Method in interface ai.djl.ndarray.NDArray
-
Returns the
Shape
of this
NDArray
.
- getShape() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the
Shape
of this
NDArray
.
- getShape() - Method in class ai.djl.ndarray.types.DataDesc
-
- getShape() - Method in class ai.djl.ndarray.types.Shape
-
Returns the dimensions of the Shape
.
- getShapeFromEmptyNDArrayForReductionOp(Shape, int) - Static method in class ai.djl.ndarray.NDUtils
-
Get
Shape
of the empty
NDArray
after applying reduction operations.
- getShapes() - Method in class ai.djl.ndarray.NDList
-
Gets all of shapes in the NDList
.
- getSize() - Method in class ai.djl.repository.Artifact.Item
-
Returns the file size.
- getSize() - Method in class ai.djl.training.dataset.Batch
-
Returns the batchSize.
- getSparseFormat() - Method in interface ai.djl.ndarray.NDArray
-
- getSparseFormat() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
- getSqueezedShape() - Method in class ai.djl.ndarray.index.full.NDIndexFullSlice
-
Returns the slice shape with squeezing.
- getStates(NDList) - Method in class ai.djl.modality.nlp.Encoder
-
Gets the state of the encoder from the given encoder output.
- getStep() - Method in class ai.djl.ndarray.index.dim.NDIndexSlice
-
Returns the step between each slice.
- getStep() - Method in class ai.djl.ndarray.index.full.NDIndexFullSlice
-
Returns the slice step for each axis.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Conv1d
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Conv2d
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Conv3d
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Convolution
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Deconvolution
-
Returns the string representing the layout of the input.
- getStringValue(Map<String, ?>, String, String) - Static method in class ai.djl.modality.cv.translator.BaseImageTranslator
-
- getSubimage(int, int, int, int) - Method in interface ai.djl.modality.cv.Image
-
Gets the subimage defined by a specified rectangular region.
- getSupportedEngines() - Method in class ai.djl.repository.zoo.DefaultModelZoo
-
Returns all supported engine names.
- getSupportedEngines() - Method in interface ai.djl.repository.zoo.ModelZoo
-
Returns all supported engine names.
- getSupportedScheme() - Method in interface ai.djl.repository.RepositoryFactory
-
Returns a set of URI scheme that the RepositoryFactory
supports.
- getTimestamp() - Method in class ai.djl.metric.Metric
-
Returns the timestamp of the Metric
.
- getToken(long) - Method in class ai.djl.modality.nlp.SimpleVocabulary
-
Returns the token corresponding to the given index.
- getToken(long) - Method in interface ai.djl.modality.nlp.Vocabulary
-
Returns the token corresponding to the given index.
- getTokenDictionarySize() - Method in class ai.djl.nn.transformer.BertBlock
-
Returns the size of the token dictionary.
- getTokenEmbedding() - Method in class ai.djl.nn.transformer.BertBlock
-
Returns the token embedding used by this Bert model.
- getTokens() - Method in class ai.djl.modality.nlp.bert.BertToken
-
Gets the indices of input sequence tokens in the vocabulary.
- getTokenTypes() - Method in class ai.djl.modality.nlp.bert.BertToken
-
Gets segment token indices to indicate first and second portions of the inputs.
- getToSqueeze() - Method in class ai.djl.ndarray.index.full.NDIndexFullSlice
-
Returns the squeeze array of axis.
- getTrailingOnes() - Method in class ai.djl.ndarray.types.Shape
-
Returns the number of trailing ones in the array shape.
- getTrainEvaluation(String) - Method in class ai.djl.training.TrainingResult
-
Returns the evaluation to which the specified key is mapped.
- getTrainingListeners() - Method in class ai.djl.training.DefaultTrainingConfig
-
- getTrainingListeners() - Method in interface ai.djl.training.TrainingConfig
-
- getTrainingResult() - Method in class ai.djl.training.Trainer
-
- getTrainLoss() - Method in class ai.djl.training.TrainingResult
-
Returns the train loss.
- getTranslator() - Method in class ai.djl.repository.zoo.ZooModel
-
Returns the default translator.
- getTranslatorFactory() - Method in class ai.djl.repository.zoo.Criteria
-
- getType() - Method in enum ai.djl.ndarray.types.SparseFormat
-
Returns the SparseFormat
name.
- getType() - Method in class ai.djl.nn.Parameter
-
Gets the type of this Parameter
.
- getType() - Method in class ai.djl.repository.Artifact.Item
-
Sets the type of the item.
- getTypeDictionarySize() - Method in class ai.djl.nn.transformer.BertBlock
-
Returns the size of the type dictionary.
- getUid() - Method in interface ai.djl.ndarray.NDArray
-
Returns unique identifier of this NDArray
.
- getUid() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns unique identifier of this NDArray
.
- getUint8(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns an integer element from this NDArray
that represent unsigned integer with 8
bits.
- getUnit() - Method in class ai.djl.metric.Metric
-
Returns the unit of the Metric
.
- getUnknownValueCount() - Method in class ai.djl.ndarray.types.Shape
-
Return the count of unknown value in this Shape
.
- getUri() - Method in class ai.djl.repository.Artifact.Item
-
Returns the URI of the item.
- getUrl() - Method in class ai.djl.repository.License
-
Returns the url of the license.
- getValidateEvaluation(String) - Method in class ai.djl.training.TrainingResult
-
Returns the evaluation to which the specified key is mapped.
- getValidateLoss() - Method in class ai.djl.training.TrainingResult
-
Returns the validate loss.
- getValidLength() - Method in class ai.djl.modality.nlp.bert.BertToken
-
Gets the length of the original sentence which has question and paragraph.
- getValue() - Method in class ai.djl.metric.Metric
-
Returns the value of the Metric
.
- getValue() - Method in enum ai.djl.ndarray.types.LayoutType
-
Returns the character representation of the layout type.
- getValue() - Method in enum ai.djl.ndarray.types.SparseFormat
-
Returns the integer value of this SparseFormat
.
- getValue(ParameterStore, Device, boolean) - Method in class ai.djl.nn.transformer.IdEmbedding
-
Quick hack for bert model to acces embedding table, replace by a proper function to calculate
raw logits from embeddings.
- getValue(Parameter, Device, boolean) - Method in class ai.djl.training.ParameterStore
-
Returns the value of a mirrored parameter on a device.
- getValueProjection() - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock
-
Pointwise Linear projection of the values.
- getVersion() - Method in class ai.djl.engine.Engine
-
Returns the version of the deep learning engine.
- getVersion() - Method in class ai.djl.repository.Artifact
-
Returns the artifact version.
- getVersion() - Method in class ai.djl.repository.Resource
-
Returns the version of the resource.
- getVocabulary() - Method in class ai.djl.modality.nlp.bert.BertFullTokenizer
-
- getWebsite() - Method in class ai.djl.repository.Metadata
-
Returns the website.
- getWeightDecay() - Method in class ai.djl.training.optimizer.Optimizer
-
Gets the value of weight decay.
- getWidth() - Method in interface ai.djl.modality.cv.Image
-
Gets the width of the image.
- getWidth() - Method in class ai.djl.modality.cv.output.Rectangle
-
Returns the width of the Rectangle.
- getWrappedImage() - Method in interface ai.djl.modality.cv.Image
-
Gets the wrapped image.
- getWrappedModel() - Method in class ai.djl.repository.zoo.ZooModel
-
Returns the wrapped model.
- getX() - Method in class ai.djl.modality.cv.output.Point
-
Returns the X coordinate of this Point
in double
precision.
- getX() - Method in class ai.djl.modality.cv.output.Rectangle
-
Returns the left x-coordinate of the Rectangle.
- getY() - Method in class ai.djl.modality.cv.output.Point
-
Returns the Y coordinate of this Point
in double
precision.
- getY() - Method in class ai.djl.modality.cv.output.Rectangle
-
Returns the top y-coordinate of the Rectangle.
- globalAvgPool1d(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 1-D Global Avg Pooling on the input.
- globalAvgPool1dBlock() - Static method in class ai.djl.nn.pooling.Pool
-
- globalAvgPool2d(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 2-D Global Avg Pooling on the input.
- globalAvgPool2dBlock() - Static method in class ai.djl.nn.pooling.Pool
-
- globalAvgPool3d(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 3-D Global Avg Pooling on the input.
- globalAvgPool3dBlock() - Static method in class ai.djl.nn.pooling.Pool
-
- globalLpPool1d(NDArray, float) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 1-D Global LP Pooling on the input.
- globalLpPool1dBlock(float) - Static method in class ai.djl.nn.pooling.Pool
-
- globalLpPool2d(NDArray, float) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 2-D Global LP Pooling on the input.
- globalLpPool2dBlock(float) - Static method in class ai.djl.nn.pooling.Pool
-
- globalLpPool3d(NDArray, float) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 3-D Global LP Pooling on the input.
- globalLpPool3dBlock(float) - Static method in class ai.djl.nn.pooling.Pool
-
- globalMaxPool1d(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 1-D Global Max Pooling on the input.
- globalMaxPool1dBlock() - Static method in class ai.djl.nn.pooling.Pool
-
- globalMaxPool2d(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 2-D Global Max Pooling on the input.
- globalMaxPool2dBlock() - Static method in class ai.djl.nn.pooling.Pool
-
- globalMaxPool3d(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 3-D Global Max Pooling on the input.
- globalMaxPool3dBlock() - Static method in class ai.djl.nn.pooling.Pool
-
- gpu() - Static method in class ai.djl.Device
-
Returns the default GPU Device.
- gpu(int) - Static method in class ai.djl.Device
-
Returns a new instance of GPU Device
with the specified deviceId
.
- GPU - Static variable in interface ai.djl.Device.Type
-
- GradientCollector - Interface in ai.djl.training
-
An interface that provides a mechanism to collect gradients during training.
- GROUP_ID - Static variable in class ai.djl.repository.zoo.DefaultModelZoo
-
- groupId - Variable in class ai.djl.repository.Metadata
-
- groups - Variable in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
- groups - Variable in class ai.djl.nn.convolutional.Convolution
-
- groups - Variable in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
- groups - Variable in class ai.djl.nn.convolutional.Deconvolution
-
- GRU - Class in ai.djl.nn.recurrent
-
GRU
is an abstract implementation of recurrent neural networks which applies GRU (Gated
Recurrent Unit) recurrent layer to input.
- GRU.Builder - Class in ai.djl.nn.recurrent
-
The Builder to construct a
GRU
type of
Block
.
- gt(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Greater" comparison.
- gt(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Greater Than" comparison.
- gt(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean NDArray
for element-wise "Greater" comparison.
- gt(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean NDArray
for element-wise "Greater Than" comparison.
- gt(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater Than" comparison.
- gt(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater Than" comparison.
- gt(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater Than" comparison.
- gte(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Greater or equals" comparison.
- gte(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Greater or equals" comparison.
- gte(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean NDArray
for element-wise "Greater or equals" comparison.
- gte(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean NDArray
for element-wise "Greater or equals" comparison.
- gte(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater or equals" comparison.
- gte(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater or equals" comparison.
- gte(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater or equals" comparison.
- L1Loss - Class in ai.djl.training.loss
-
L1Loss
calculates L1 loss between label and prediction.
- L1Loss() - Constructor for class ai.djl.training.loss.L1Loss
-
Calculates L1 Loss between the label and prediction, a.k.a.
- L1Loss(String) - Constructor for class ai.djl.training.loss.L1Loss
-
Calculates L1 Loss between the label and prediction, a.k.a.
- L1Loss(String, float) - Constructor for class ai.djl.training.loss.L1Loss
-
Calculates L1 Loss between the label and prediction, a.k.a.
- l1Loss() - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L1Loss
with default weight and batch axis.
- l1Loss(String) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L1Loss
with default weight and batch axis.
- l1Loss(String, float) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L1Loss
with given weight and batch axis.
- L2Loss - Class in ai.djl.training.loss
-
Calculates L2Loss between label and prediction, a.k.a.
- L2Loss() - Constructor for class ai.djl.training.loss.L2Loss
-
Calculate L2Loss between the label and prediction, a.k.a.
- L2Loss(String) - Constructor for class ai.djl.training.loss.L2Loss
-
Calculate L2Loss between the label and prediction, a.k.a.
- L2Loss(String, float) - Constructor for class ai.djl.training.loss.L2Loss
-
Calculates L2Loss between the label and prediction, a.k.a.
- l2Loss() - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L2Loss
with default weight and batch axis.
- l2Loss(String) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L2Loss
with default weight and batch axis.
- l2Loss(String, float) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L2Loss
with given weight and batch axis.
- labelBatchifier - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- labelBatchifier - Variable in class ai.djl.training.dataset.RandomAccessDataset
-
- labels - Variable in class ai.djl.training.dataset.ArrayDataset
-
- LambdaBlock - Class in ai.djl.nn
-
LambdaBlock
is a
Block
with no parameters or children.
- LambdaBlock(Function<NDList, NDList>) - Constructor for class ai.djl.nn.LambdaBlock
-
Creates a LambdaBlock that can apply the specified function.
- LambdaProcessor - Class in ai.djl.modality.nlp.preprocess
-
TextProcessor
will apply user defined lambda function on input tokens.
- LambdaProcessor(Function<String, String>) - Constructor for class ai.djl.modality.nlp.preprocess.LambdaProcessor
-
Creates a LambdaProcessor
and specify the function to apply.
- large() - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets this builder's params to the LARGE config of the original BERT paper.
- latestMetric(String) - Method in class ai.djl.metric.Metrics
-
Returns the latest
Metric
with the specified metric name.
- LayoutType - Enum in ai.djl.ndarray.types
-
An enum to represent the meaning of a particular axis in an
NDArray
.
- LazyNDArray - Interface in ai.djl.ndarray
-
An
NDArray
that waits to compute values until they are needed.
- leakyRelu(NDArray, float) - Static method in class ai.djl.nn.Activation
-
Applies Leaky ReLU activation on the input
NDArray
.
- leakyRelu(NDList, float) - Static method in class ai.djl.nn.Activation
-
Applies Leaky ReLU activation on the input singleton
NDList
.
- leakyReluBlock(float) - Static method in class ai.djl.nn.Activation
-
- License - Class in ai.djl.repository
-
A License
is a container to save the license information.
- License() - Constructor for class ai.djl.repository.License
-
- licenses - Variable in class ai.djl.repository.Metadata
-
- like() - Method in interface ai.djl.ndarray.NDArray
-
- limit - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- limit - Variable in class ai.djl.training.dataset.RandomAccessDataset
-
- Linear - Class in ai.djl.nn.core
-
A Linear block applies a linear transformation \(Y = XW^T + b\).
- linear(NDArray, NDArray) - Static method in class ai.djl.nn.core.Linear
-
Applies a linear transformation to the incoming data.
- linear(NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.core.Linear
-
Applies a linear transformation to the incoming data.
- Linear.Builder - Class in ai.djl.nn.core
-
- LINEAR_REGRESSION - Static variable in interface ai.djl.Application.Tabular
-
An application that takes a feature vector (table row) and predicts a numerical feature
based on it.
- LinearTracker - Class in ai.djl.training.tracker
-
FactorTracker
is an implementation of
Tracker
which is updated by a constant
factor.
- LinearTracker(LinearTracker.Builder) - Constructor for class ai.djl.training.tracker.LinearTracker
-
Creates a new instance of FactorTracker
.
- LinearTracker.Builder - Class in ai.djl.training.tracker
-
- linspace(float, float, int, boolean) - Method in class ai.djl.ndarray.BaseNDManager
-
Returns evenly spaced numbers over a specified interval.
- linspace(int, int, int) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced numbers over a specified interval.
- linspace(float, float, int) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced numbers over a specified interval.
- linspace(int, int, int, boolean) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced numbers over a specified interval.
- linspace(float, float, int, boolean) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced numbers over a specified interval.
- linspace(float, float, int, boolean, Device) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced numbers over a specified interval.
- listArtifacts() - Method in class ai.djl.repository.Resource
-
Returns a list of artifacts in this resource.
- listDirectory(Artifact.Item, String) - Method in class ai.djl.repository.AbstractRepository
-
Returns the list of files directly within a specified directory in a zipped directory item.
- listDirectory(Artifact.Item, String) - Method in interface ai.djl.repository.Repository
-
Returns the list of files directly within a specified directory in a zipped directory item.
- listModels() - Method in class ai.djl.repository.zoo.BaseModelLoader
-
Returns a list of the available artifacts that can be loaded.
- listModels() - Method in interface ai.djl.repository.zoo.ModelLoader
-
Returns a list of the available artifacts that can be loaded.
- listModels() - Static method in interface ai.djl.repository.zoo.ModelZoo
-
Returns the available
Application
and their model artifact metadata.
- listModels(Criteria<?, ?>) - Static method in interface ai.djl.repository.zoo.ModelZoo
-
Returns the available
Application
and their model artifact metadata.
- load(Model) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.SynsetLoader
-
- load(Path) - Method in interface ai.djl.Model
-
Loads the model from the modelPath
.
- load(Path, String) - Method in interface ai.djl.Model
-
Loads the model from the modelPath
and the given name.
- load(Path, String, Map<String, ?>) - Method in interface ai.djl.Model
-
Loads the model from the modelPath
with the name and options provided.
- load(Path) - Method in class ai.djl.ndarray.BaseNDManager
-
Loads the NDArrays saved to a file.
- load(Path) - Method in interface ai.djl.ndarray.NDManager
-
Loads the NDArrays saved to a file.
- load(Path, Device) - Method in interface ai.djl.ndarray.NDManager
-
Loads the NDArrays saved to a file.
- load(NDManager, DataInputStream) - Method in class ai.djl.nn.Parameter
-
Loads parameter NDArrays from InputStream.
- load(Path, String, Map<String, ?>) - Method in class ai.djl.repository.zoo.ZooModel
-
Loads the model from the modelPath
with the name and options provided.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.AbstractBlock
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.convolutional.Convolution
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.convolutional.Deconvolution
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.core.Linear
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.core.Prelu
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.norm.BatchNorm
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.norm.Dropout
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.ParallelBlock
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.recurrent.RecurrentBlock
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.SequentialBlock
-
Overwrite this to load additional metadata with the parameter values.
- loadModel(Map<String, String>, Device, Progress) - Method in class ai.djl.modality.cv.zoo.ActionRecognitionModelLoader
-
Loads the model with the given search filters.
- loadModel() - Method in class ai.djl.modality.cv.zoo.ImageClassificationModelLoader
-
Loads the model.
- loadModel(Progress) - Method in class ai.djl.modality.cv.zoo.ImageClassificationModelLoader
-
Loads the model.
- loadModel(Map<String, String>, Device, Progress) - Method in class ai.djl.modality.cv.zoo.ImageClassificationModelLoader
-
Loads the model with the given search filters.
- loadModel() - Method in class ai.djl.modality.cv.zoo.InstanceSegmentationModelLoader
-
Loads the model.
- loadModel(Progress) - Method in class ai.djl.modality.cv.zoo.InstanceSegmentationModelLoader
-
Loads the model.
- loadModel(Map<String, String>, Device, Progress) - Method in class ai.djl.modality.cv.zoo.InstanceSegmentationModelLoader
-
Loads the model with the given search filters.
- loadModel() - Method in class ai.djl.modality.cv.zoo.ObjectDetectionModelLoader
-
Loads the model.
- loadModel(Progress) - Method in class ai.djl.modality.cv.zoo.ObjectDetectionModelLoader
-
Loads the model.
- loadModel(Map<String, String>, Device, Progress) - Method in class ai.djl.modality.cv.zoo.ObjectDetectionModelLoader
-
Loads the model with the given search filters.
- loadModel() - Method in class ai.djl.modality.cv.zoo.SimplePoseModelLoader
-
Loads the model.
- loadModel(Progress) - Method in class ai.djl.modality.cv.zoo.SimplePoseModelLoader
-
Loads the model.
- loadModel(Map<String, String>, Device, Progress) - Method in class ai.djl.modality.cv.zoo.SimplePoseModelLoader
-
Loads the model with the given search filters.
- loadModel(Criteria<I, O>) - Method in class ai.djl.repository.zoo.BaseModelLoader
-
Loads the model with the given criteria.
- loadModel(Criteria<I, O>) - Method in interface ai.djl.repository.zoo.ModelLoader
-
Loads the model with the given criteria.
- loadModel(Criteria<I, O>) - Static method in interface ai.djl.repository.zoo.ModelZoo
-
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.modality.nlp.Decoder
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.modality.nlp.Encoder
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.modality.nlp.EncoderDecoder
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.AbstractBlock
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in interface ai.djl.nn.Block
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.core.ConstantEmbedding
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.core.Embedding
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.LambdaBlock
-
Loads the parameters from the given input stream.
- LocalParameterServer - Class in ai.djl.training
-
LocalParameterServer
is an implementation of the ParameterServer
interface.
- LocalParameterServer(Optimizer) - Constructor for class ai.djl.training.LocalParameterServer
-
Create a new instance of LocalParameterServer
for the given optimizer.
- LocalRepository - Class in ai.djl.repository
-
A
LocalRepository
is a
Repository
located in a filesystem directory.
- LocalRepository(String, Path) - Constructor for class ai.djl.repository.LocalRepository
-
(Internal) Constructs a LocalRepository
from the path with inferred name.
- locate(MRL) - Method in class ai.djl.repository.JarRepository
-
Returns the metadata at a mrl.
- locate(MRL) - Method in class ai.djl.repository.LocalRepository
-
Returns the metadata at a mrl.
- locate(MRL) - Method in class ai.djl.repository.RemoteRepository
-
Returns the metadata at a mrl.
- locate(MRL) - Method in interface ai.djl.repository.Repository
-
Returns the metadata at a mrl.
- locate(MRL) - Method in class ai.djl.repository.SimpleRepository
-
Returns the metadata at a mrl.
- locate(MRL) - Method in class ai.djl.repository.SimpleUrlRepository
-
Returns the metadata at a mrl.
- log() - Method in interface ai.djl.ndarray.NDArray
-
Returns the natural logarithmic value of this NDArray
element-wise.
- log() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the natural logarithmic value of this NDArray
element-wise.
- log10() - Method in interface ai.djl.ndarray.NDArray
-
Returns the base 10 logarithm of this NDArray
element-wise.
- log10() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the base 10 logarithm of this NDArray
element-wise.
- log2() - Method in interface ai.djl.ndarray.NDArray
-
Returns the base 2 logarithm of this NDArray
element-wise.
- log2() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the base 2 logarithm of this NDArray
element-wise.
- logging() - Static method in interface ai.djl.training.listener.TrainingListener.Defaults
-
- logging(int) - Static method in interface ai.djl.training.listener.TrainingListener.Defaults
-
- logging(String) - Static method in interface ai.djl.training.listener.TrainingListener.Defaults
-
A default
TrainingListener
set including batch output logging and output
directory.
- LoggingTrainingListener - Class in ai.djl.training.listener
-
TrainingListener
that outputs the progress of training each batch and epoch into logs.
- LoggingTrainingListener() - Constructor for class ai.djl.training.listener.LoggingTrainingListener
-
Constructs a LoggingTrainingListener
instance.
- LoggingTrainingListener(int) - Constructor for class ai.djl.training.listener.LoggingTrainingListener
-
Constructs a LoggingTrainingListener
instance with specified steps.
- logicalAnd(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the truth value of this NDArray
AND the other NDArray
element-wise.
- logicalAnd(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the truth value of this NDArray
AND the other NDArray
element-wise.
- logicalAnd(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- logicalNot() - Method in interface ai.djl.ndarray.NDArray
-
Computes the truth value of NOT this NDArray
element-wise.
- logicalNot() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Computes the truth value of NOT this NDArray
element-wise.
- logicalOr(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Computes the truth value of this NDArray
OR the other NDArray
element-wise.
- logicalOr(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Computes the truth value of this NDArray
OR the other NDArray
element-wise.
- logicalOr(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- logicalXor(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Computes the truth value of this NDArray
XOR the other NDArray
element-wise.
- logicalXor(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Computes the truth value of this NDArray
XOR the other NDArray
element-wise.
- logicalXor(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- logSoftmax(int) - Method in interface ai.djl.ndarray.NDArray
-
Applies the softmax function followed by a logarithm.
- logSoftmax(int) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Applies the softmax function followed by a logarithm.
- Loss - Class in ai.djl.training.loss
-
Loss functions (or Cost functions) are used to evaluate the model predictions against true labels
for optimization.
- Loss(String) - Constructor for class ai.djl.training.loss.Loss
-
Base class for metric with abstract update methods.
- LowerCaseConvertor - Class in ai.djl.modality.nlp.preprocess
-
LowerCaseConvertor
converts every character of the input tokens to it's respective lower
case character.
- LowerCaseConvertor(Locale) - Constructor for class ai.djl.modality.nlp.preprocess.LowerCaseConvertor
-
Creates a
TextProcessor
that converts input text into lower case character given the
Locale
.
- LowerCaseConvertor() - Constructor for class ai.djl.modality.nlp.preprocess.LowerCaseConvertor
-
Creates a
TextProcessor
that converts input text into lower case character with the
default english
Locale
.
- lpPool1d(NDArray, float, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 1-D LP Pooling on the input.
- lpPool1dBlock(float, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
- lpPool1dBlock(float, Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- lpPool1dBlock(float, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- lpPool2d(NDArray, float, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 2-D LP Pooling on the input.
- lpPool2dBlock(float, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
- lpPool2dBlock(float, Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- lpPool2dBlock(float, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- lpPool2dBlock(float, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- lpPool3d(NDArray, float, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 3-D LP Pooling on the input.
- lpPool3dBlock(float, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
- lpPool3dBlock(float, Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- lpPool3dBlock(float, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- lpPool3dBlock(float, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- LruReplayBuffer - Class in ai.djl.modality.rl
-
A simple
ReplayBuffer
that randomly selects across the whole buffer, but always removes
the oldest items in the buffer once it is full.
- LruReplayBuffer(int, int) - Constructor for class ai.djl.modality.rl.LruReplayBuffer
-
- LSTM - Class in ai.djl.nn.recurrent
-
LSTM
is an implementation of recurrent neural networks which applies Long Short-Term
Memory recurrent layer to input.
- LSTM.Builder - Class in ai.djl.nn.recurrent
-
The Builder to construct a
LSTM
type of
Block
.
- lt(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Less" comparison.
- lt(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Less" comparison.
- lt(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean NDArray
for element-wise "Less" comparison.
- lt(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean NDArray
for element-wise "Less" comparison.
- lt(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less" comparison.
- lt(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less" comparison.
- lt(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less" comparison.
- lte(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Less or equals" comparison.
- lte(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Less or equals" comparison.
- lte(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean NDArray
for element-wise "Less or equals" comparison.
- lte(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean NDArray
for element-wise "Less or equals" comparison.
- lte(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less or equals" comparison.
- lte(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less or equals" comparison.
- lte(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less or equals" comparison.
- MACHINE_TRANSLATION - Static variable in interface ai.djl.Application.NLP
-
An application that translates text from one language to another.
- MalformedModelException - Exception in ai.djl
-
Thrown to indicate Model parameters are not in expected format or are malformed.
- MalformedModelException(String) - Constructor for exception ai.djl.MalformedModelException
-
Constructs a new exception with the specified detail message.
- MalformedModelException(String, Throwable) - Constructor for exception ai.djl.MalformedModelException
-
Constructs a new exception with the specified detail message and cause.
- MalformedModelException(Throwable) - Constructor for exception ai.djl.MalformedModelException
-
Constructs a new exception with the specified cause and a detail message of (cause==null ? null : cause.toString())
which typically contains the class and detail
message of cause
.
- manager - Variable in class ai.djl.BaseModel
-
- map(Function<Pair<Long, LayoutType>, Pair<Long, LayoutType>>) - Method in class ai.djl.ndarray.types.Shape
-
Returns a mapped shape.
- Mask - Class in ai.djl.modality.cv.output
-
A mask with a probability for each pixel within a bounding rectangle.
- Mask(double, double, double, double, float[][]) - Constructor for class ai.djl.modality.cv.output.Mask
-
Constructs a Mask with the given data.
- maskedSoftmaxCrossEntropyLoss() - Static method in class ai.djl.training.loss.Loss
-
- maskedSoftmaxCrossEntropyLoss(String) - Static method in class ai.djl.training.loss.Loss
-
- maskedSoftmaxCrossEntropyLoss(String, float, int, boolean, boolean) - Static method in class ai.djl.training.loss.Loss
-
- MaskedSoftmaxCrossEntropyLoss - Class in ai.djl.training.loss
-
MaskedSoftmaxCrossEntropyLoss
is an implementation of
Loss
that only considers a
specific number of values for the loss computations, and masks the rest according to the given
sequence.
- MaskedSoftmaxCrossEntropyLoss() - Constructor for class ai.djl.training.loss.MaskedSoftmaxCrossEntropyLoss
-
Creates a new instance of SoftmaxCrossEntropyLoss
with default parameters.
- MaskedSoftmaxCrossEntropyLoss(String) - Constructor for class ai.djl.training.loss.MaskedSoftmaxCrossEntropyLoss
-
Creates a new instance of SoftmaxCrossEntropyLoss
with default parameters.
- MaskedSoftmaxCrossEntropyLoss(String, float, int, boolean, boolean) - Constructor for class ai.djl.training.loss.MaskedSoftmaxCrossEntropyLoss
-
Creates a new instance of MaskedSoftmaxCrossEntropyLoss
with the given parameters.
- match(Map<String, String>) - Method in class ai.djl.repository.Resource
-
Returns the first artifact that matches a given criteria.
- MatchAllMetadata() - Constructor for class ai.djl.repository.Metadata.MatchAllMetadata
-
Creates a MatchAllMetadata
instance.
- matches(Application) - Method in class ai.djl.Application
-
Returns whether this application matches the test application set.
- matches(List<Artifact>) - Method in class ai.djl.repository.VersionRange
-
Filters the provided artifacts to those that match the version range.
- matMul(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Product matrix of this NDArray
and the other NDArray
.
- matMul(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Product matrix of this NDArray
and the other NDArray
.
- matMul(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Product matrix of this NDArray
and the other NDArray
.
- max() - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this NDArray
.
- max(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this NDArray
along given axes.
- max(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this NDArray
along given axes.
- max() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the maximum of this NDArray
.
- max(int[], boolean) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the maximum of this NDArray
along given axes.
- maximum(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this NDArray
and a number element-wise.
- maximum(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this NDArray
and the other NDArray
element-wise.
- maximum(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the maximum of this NDArray
and a number element-wise.
- maximum(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the maximum of this NDArray
and the other NDArray
element-wise.
- maximum(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the maximum of a
NDArray
and a number element-wise.
- maximum(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the maximum of a number and a
NDArray
element-wise.
- maximum(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- maxPool1d(NDArray, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 1-D Max Pooling on the input.
- maxPool1dBlock(Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
- maxPool1dBlock(Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- maxPool1dBlock(Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- maxPool1dBlock(Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- maxPool2d(NDArray, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 2-D Max Pooling on the input.
- maxPool2dBlock(Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
- maxPool2dBlock(Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- maxPool2dBlock(Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- maxPool2dBlock(Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- maxPool3d(NDArray, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 3-D Max Pooling on the input.
- maxPool3dBlock(Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
- maxPool3dBlock(Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- maxPool3dBlock(Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- maxPool3dBlock(Shape) - Static method in class ai.djl.nn.pooling.Pool
-
- md5hash(String) - Static method in class ai.djl.repository.AbstractRepository
-
- mean(String) - Method in class ai.djl.metric.Metrics
-
Returns the average value of the specified metric.
- mean() - Method in interface ai.djl.ndarray.NDArray
-
Returns the average of this NDArray
.
- mean(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the average of this NDArray
along given axes.
- mean(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the average of this NDArray
along given axes.
- mean() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the average of this NDArray
.
- mean(int[], boolean) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the average of this NDArray
along given axes.
- median() - Method in interface ai.djl.ndarray.NDArray
-
Returns median value for this NDArray
.
- median(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns median value along given axes.
- median() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns median value for this NDArray
.
- median(int[]) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns median value along given axes.
- MemoryScope - Class in ai.djl.nn.transformer
-
Helper class for more complicated memory management scenarios.
- MemoryTrainingListener - Class in ai.djl.training.listener
-
- MemoryTrainingListener() - Constructor for class ai.djl.training.listener.MemoryTrainingListener
-
- MemoryTrainingListener(String) - Constructor for class ai.djl.training.listener.MemoryTrainingListener
-
- Metadata - Class in ai.djl.repository
-
A
Metadata
is a collection of
Artifact
s with unified metadata (including
MRL
) that are stored in the same "metadata.json" file.
- Metadata() - Constructor for class ai.djl.repository.Metadata
-
- Metadata.MatchAllMetadata - Class in ai.djl.repository
-
A Metadata
class that matches all any search criteria.
- Metric - Class in ai.djl.metric
-
A class representing a single recorded Metric
value.
- Metric(String, Number) - Constructor for class ai.djl.metric.Metric
-
Constructs a Metric
instance with the specified metricName
and
value
.
- Metric(String, Number, String) - Constructor for class ai.djl.metric.Metric
-
Constructs a Metric
instance with the specified metricName
, value
, and unit
.
- metricName(Evaluator, String) - Static method in class ai.djl.training.listener.EvaluatorTrainingListener
-
Returns the metric created with the evaluator for the given stage.
- Metrics - Class in ai.djl.metric
-
A collection of
Metric
objects organized by metric name.
- Metrics() - Constructor for class ai.djl.metric.Metrics
-
Constructs an empty Metrics
instance.
- micro() - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets this builder's params to a minimal configuration that nevertheless performs quite
well.
- min() - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this NDArray
.
- min(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this NDArray
along given axes.
- min(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this NDArray
along given axes.
- min() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the minimum of this NDArray
.
- min(int[], boolean) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the minimum of this NDArray
along given axes.
- minimum(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this NDArray
and a number element-wise.
- minimum(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this NDArray
and the other NDArray
element-wise.
- minimum(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the minimum of this NDArray
and a number element-wise.
- minimum(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the maximum of this NDArray
and the other NDArray
element-wise.
- minimum(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the minimum of a
NDArray
and a number element-wise.
- minimum(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the minimum of a number and a
NDArray
element-wise.
- minimum(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- mish(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies Mish activation on the input
NDArray
.
- mish(NDList) - Static method in class ai.djl.nn.Activation
-
Applies Mish activation on the input singleton
NDList
.
- mishBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies the
Mish
activation function
in its forward function.
- MissingOps - Class in ai.djl.nn.transformer
-
Operators missing from NDArray that are necessary to implement Bert pretraining.
- MKL - Static variable in class ai.djl.engine.StandardCapabilities
-
- MKLDNN - Static variable in class ai.djl.engine.StandardCapabilities
-
- mod(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns element-wise remainder of division.
- mod(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns element-wise remainder of division.
- mod(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns element-wise remainder of division.
- mod(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns element-wise remainder of division.
- mod(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division.
- mod(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division.
- mod(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division.
- Model - Interface in ai.djl
-
A model is a collection of artifacts that is created by the training process.
- model(Application, String, String) - Static method in class ai.djl.repository.MRL
-
Creates a model MRL
with specified application.
- modelDir - Variable in class ai.djl.BaseModel
-
- ModelException - Exception in ai.djl
-
Thrown to indicate Model parameter or load exceptions parent to Model Exceptions.
- ModelException(String) - Constructor for exception ai.djl.ModelException
-
Constructs a new exception with the specified detail message.
- ModelException(String, Throwable) - Constructor for exception ai.djl.ModelException
-
Constructs a new exception with the specified detail message and cause.
- ModelException(Throwable) - Constructor for exception ai.djl.ModelException
-
Constructs a new exception with the specified cause and a detail message of (cause==null ? null : cause.toString())
which typically contains the class and detail
message of cause
.
- ModelLoader - Interface in ai.djl.repository.zoo
-
A ModelLoader loads a particular
ZooModel
from a Repository for a model zoo.
- modelName - Variable in class ai.djl.BaseModel
-
- ModelNotFoundException - Exception in ai.djl.repository.zoo
-
Thrown when an application tries to load a model from repository search path.
- ModelNotFoundException(String) - Constructor for exception ai.djl.repository.zoo.ModelNotFoundException
-
Constructs a new exception with the specified detail message.
- ModelNotFoundException(String, Throwable) - Constructor for exception ai.djl.repository.zoo.ModelNotFoundException
-
Constructs a new exception with the specified detail message and cause.
- ModelNotFoundException(Throwable) - Constructor for exception ai.djl.repository.zoo.ModelNotFoundException
-
Constructs a new exception with the specified cause and a detail message of (cause==null ? null : cause.toString())
(which typically contains the class and detail
message of cause
).
- modelZoo - Variable in class ai.djl.repository.zoo.BaseModelLoader
-
- ModelZoo - Interface in ai.djl.repository.zoo
-
An interface represents a collection of models.
- ModelZooTextEmbedding - Class in ai.djl.modality.nlp.embedding
-
- ModelZooTextEmbedding(Model) - Constructor for class ai.djl.modality.nlp.embedding.ModelZooTextEmbedding
-
- modi(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns element-wise remainder of division in place.
- modi(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns in place element-wise remainder of division in place.
- modi(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns element-wise remainder of division in place.
- modi(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns in place element-wise remainder of division in place.
- modi(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division in place.
- modi(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division in place.
- modi(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division.
- MRL - Class in ai.djl.repository
-
The
MRL
(Machine learning Resource Locator) is a pointer to a
Metadata
"resource"
on a machine learning
Repository
.
- mul(Number) - Method in interface ai.djl.ndarray.NDArray
-
Multiplies this NDArray
by a number element-wise.
- mul(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Multiplies this NDArray
by other NDArray
s element-wise.
- mul(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Multiplies this NDArray
by a number element-wise.
- mul(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Multiplies this NDArray
by other NDArray
s element-wise.
- mul(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies the
NDArray
by a number element-wise.
- mul(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies a number by a
NDArray
element-wise.
- mul(NDArray...) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies all of the
NDArray
s together element-wise.
- muli(Number) - Method in interface ai.djl.ndarray.NDArray
-
Multiplies this NDArray
by a number element-wise in place.
- muli(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Multiplies this NDArray
by other NDArray
element-wise in place.
- muli(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Multiplies this NDArray
by a number element-wise in place.
- muli(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Multiplies this NDArray
by other NDArray
element-wise in place.
- muli(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies the
NDArray
by a number element-wise in place.
- muli(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies a number by a
NDArray
element-wise.
- muli(NDArray...) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies all of the
NDArray
s together element-wise in place.
- MultiBoxDetection - Class in ai.djl.modality.cv
-
MultiBoxDetection
is the class that takes the output of a multi-box detection model, and
converts it into an NDList that contains the object detections.
- MultiBoxDetection(MultiBoxDetection.Builder) - Constructor for class ai.djl.modality.cv.MultiBoxDetection
-
- MultiBoxDetection.Builder - Class in ai.djl.modality.cv
-
- MultiBoxPrior - Class in ai.djl.modality.cv
-
MultiBoxPrior
is the class that generates anchor boxes that act as priors for object
detection.
- MultiBoxPrior(MultiBoxPrior.Builder) - Constructor for class ai.djl.modality.cv.MultiBoxPrior
-
- MultiBoxPrior.Builder - Class in ai.djl.modality.cv
-
- MultiBoxTarget - Class in ai.djl.modality.cv
-
MultiBoxTarget
is the class that computes the training targets for training a Single Shot
Detection (SSD) models.
- MultiBoxTarget(MultiBoxTarget.Builder) - Constructor for class ai.djl.modality.cv.MultiBoxTarget
-
- MultiBoxTarget.Builder - Class in ai.djl.modality.cv
-
- multiFactor() - Static method in interface ai.djl.training.tracker.Tracker
-
- MultiFactorTracker - Class in ai.djl.training.tracker
-
MultiFactorTracker
is an implementation of
Tracker
which returns piecewise
constant values for fixed numbers of steps.
- MultiFactorTracker(MultiFactorTracker.Builder) - Constructor for class ai.djl.training.tracker.MultiFactorTracker
-
Creates a new instance of MultiFactorTracker
.
- MultiFactorTracker.Builder - Class in ai.djl.training.tracker
-
- MULTIPLE_CHOICE - Static variable in interface ai.djl.Application.NLP
-
An application to represent a multiple choice question.
- OBJECT_DETECTION - Static variable in interface ai.djl.Application.CV
-
An application that finds zero or more objects in an image, the object class (see image
classification), and their locations as a
BoundingBox
.
- ObjectDetectionBuilder() - Constructor for class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
-
- ObjectDetectionModelLoader - Class in ai.djl.modality.cv.zoo
-
- ObjectDetectionModelLoader(Repository, String, String, String, ModelZoo) - Constructor for class ai.djl.modality.cv.zoo.ObjectDetectionModelLoader
-
Creates the Model loader from the given repository.
- ObjectDetectionTranslator - Class in ai.djl.modality.cv.translator
-
- ObjectDetectionTranslator(ObjectDetectionTranslator.ObjectDetectionBuilder<?>) - Constructor for class ai.djl.modality.cv.translator.ObjectDetectionTranslator
-
- ObjectDetectionTranslator.ObjectDetectionBuilder<T extends ObjectDetectionTranslator.ObjectDetectionBuilder> - Class in ai.djl.modality.cv.translator
-
The base builder for the object detection translator.
- of(String) - Static method in class ai.djl.Application
-
Converts a path string to a Application
.
- of(String, int) - Static method in class ai.djl.Device
-
Returns a Device
with device type and device id.
- oneHot(int, NDArray) - Static method in class ai.djl.nn.transformer.MissingOps
-
Creates a one-hot-encoding from the given data.
- onEpoch(Trainer) - Method in class ai.djl.training.listener.EpochTrainingListener
-
Listens to the end of an epoch during training.
- onEpoch(Trainer) - Method in class ai.djl.training.listener.EvaluatorTrainingListener
-
Listens to the end of an epoch during training.
- onEpoch(Trainer) - Method in class ai.djl.training.listener.LoggingTrainingListener
-
Listens to the end of an epoch during training.
- onEpoch(Trainer) - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
Listens to the end of an epoch during training.
- onEpoch(Trainer) - Method in class ai.djl.training.listener.TimeMeasureTrainingListener
-
Listens to the end of an epoch during training.
- onEpoch(Trainer) - Method in interface ai.djl.training.listener.TrainingListener
-
Listens to the end of an epoch during training.
- onEpoch(Trainer) - Method in class ai.djl.training.listener.TrainingListenerAdapter
-
Listens to the end of an epoch during training.
- ones(Shape, DataType) - Method in class ai.djl.ndarray.BaseNDManager
-
Creates an instance of
NDArray
with specified
Shape
filled with ones.
- ones(Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Creates an instance of
NDArray
with specified
Shape
filled with ones.
- ones(Shape) - Method in interface ai.djl.ndarray.NDManager
-
Creates an instance of
NDArray
with specified
Shape
filled with ones.
- ones(Shape, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
-
- ONES - Static variable in interface ai.djl.training.initializer.Initializer
-
- onesLike() - Method in interface ai.djl.ndarray.NDArray
-
- onesLike() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
- onTrainingBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.DivergenceCheckTrainingListener
-
Listens to the end of training one batch of data during training.
- onTrainingBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.EvaluatorTrainingListener
-
Listens to the end of training one batch of data during training.
- onTrainingBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.LoggingTrainingListener
-
Listens to the end of training one batch of data during training.
- onTrainingBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.MemoryTrainingListener
-
Listens to the end of training one batch of data during training.
- onTrainingBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.TimeMeasureTrainingListener
-
Listens to the end of training one batch of data during training.
- onTrainingBatch(Trainer, TrainingListener.BatchData) - Method in interface ai.djl.training.listener.TrainingListener
-
Listens to the end of training one batch of data during training.
- onTrainingBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.TrainingListenerAdapter
-
Listens to the end of training one batch of data during training.
- onTrainingBegin(Trainer) - Method in class ai.djl.training.listener.EpochTrainingListener
-
Listens to the beginning of training.
- onTrainingBegin(Trainer) - Method in class ai.djl.training.listener.EvaluatorTrainingListener
-
Listens to the beginning of training.
- onTrainingBegin(Trainer) - Method in class ai.djl.training.listener.LoggingTrainingListener
-
Listens to the beginning of training.
- onTrainingBegin(Trainer) - Method in interface ai.djl.training.listener.TrainingListener
-
Listens to the beginning of training.
- onTrainingBegin(Trainer) - Method in class ai.djl.training.listener.TrainingListenerAdapter
-
Listens to the beginning of training.
- onTrainingEnd(Trainer) - Method in class ai.djl.training.listener.EpochTrainingListener
-
Listens to the end of training.
- onTrainingEnd(Trainer) - Method in class ai.djl.training.listener.LoggingTrainingListener
-
Listens to the end of training.
- onTrainingEnd(Trainer) - Method in class ai.djl.training.listener.MemoryTrainingListener
-
Listens to the end of training.
- onTrainingEnd(Trainer) - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
Listens to the end of training.
- onTrainingEnd(Trainer) - Method in class ai.djl.training.listener.TimeMeasureTrainingListener
-
Listens to the end of training.
- onTrainingEnd(Trainer) - Method in interface ai.djl.training.listener.TrainingListener
-
Listens to the end of training.
- onTrainingEnd(Trainer) - Method in class ai.djl.training.listener.TrainingListenerAdapter
-
Listens to the end of training.
- onValidationBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.EvaluatorTrainingListener
-
Listens to the end of validating one batch of data during validation.
- onValidationBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.LoggingTrainingListener
-
Listens to the end of validating one batch of data during validation.
- onValidationBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.MemoryTrainingListener
-
Listens to the end of validating one batch of data during validation.
- onValidationBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.TimeMeasureTrainingListener
-
Listens to the end of validating one batch of data during validation.
- onValidationBatch(Trainer, TrainingListener.BatchData) - Method in interface ai.djl.training.listener.TrainingListener
-
Listens to the end of validating one batch of data during validation.
- onValidationBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.TrainingListenerAdapter
-
Listens to the end of validating one batch of data during validation.
- OPENMP - Static variable in class ai.djl.engine.StandardCapabilities
-
- openStream(Artifact.Item, String) - Method in class ai.djl.repository.AbstractRepository
-
Returns an InputStream
for an item in a repository.
- openStream(Artifact.Item, String) - Method in interface ai.djl.repository.Repository
-
Returns an InputStream
for an item in a repository.
- optApplication(Application) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the model application for this criteria.
- optApplySoftmax(boolean) - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslator.Builder
-
Sets whether to apply softmax when processing output.
- optArgument(String, Object) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the optional model loading argument for this criteria.
- optArguments(Map<String, Object>) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets an extra model loading argument for this criteria.
- optArtifactId(String) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets optional artifactId of the
ModelLoader
for this criteria.
- optAttentionHeadCount(int) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the number of attention heads to use in each transformer block.
- optAttentionProbsDropoutProb(float) - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock.Builder
-
Sets the probability of applying dropout to the attention probability distribution.
- optAxis(int) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
Set the axis in which channel is specified.
- optBackgroundId(int) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the class ID for the background.
- optBatchFirst(boolean) - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
Sets the optional batchFirst flag that indicates whether the input is batch major or not.
- optBatchifier(Batchifier) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
-
- optBatchifier(Batchifier) - Method in class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
-
- optBeginNumUpdate(int) - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
Sets the initial value of the number of updates.
- optBeta1(float) - Method in class ai.djl.training.optimizer.Adam.Builder
-
Sets the decay rate for the first moment estimates.
- optBeta2(float) - Method in class ai.djl.training.optimizer.Adam.Builder
-
Sets the decay rate for the second moment estimates.
- optBias(boolean) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the optional parameter of whether to include a bias vector.
- optBias(boolean) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the optional parameter of whether to include a bias vector.
- optBias(boolean) - Method in class ai.djl.nn.core.Linear.Builder
-
Sets the optional parameter that indicates whether to include a bias vector with default
value of true.
- optBidirectional(boolean) - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
Sets the optional parameter that indicates whether to use bidirectional recurrent layers.
- optBlock(Block) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets an optional model
Block
for this criteria.
- optCenter(boolean) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
If True, add offset of `beta` to normalized tensor.
- optCentered(boolean) - Method in class ai.djl.training.optimizer.RmsProp.Builder
-
Sets which version of RMSProp to use.
- optClip(boolean) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the boolean parameter that indicates whether to clip out-of-boundary boxes.
- optClip(boolean) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the boolean parameter that indicates whether to clip out-of-boundary boxes.
- optClipGrad(float) - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
Sets the value of the \(clipGrad\).
- optDataBatchifier(Batchifier) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- optDataManager(DataManager) - Method in class ai.djl.training.DefaultTrainingConfig
-
- optDataType(DataType) - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Sets the data type of the embedding arrays (default is Float32).
- optDefaultItem(T) - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Sets whether to use a default item's embedding for undefined items.
- optDevice(Device) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the
Device
for this criteria.
- optDevice(Device) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- optDevices(Device[]) - Method in class ai.djl.training.DefaultTrainingConfig
-
Sets the array of
Device
available for training.
- optDilation(Shape) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the dilation along each dimension.
- optDilation(Shape) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the dilation along each dimension.
- optDropRate(float) - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
Sets the drop rate of the dropout on the outputs of each RNN layer, except the last
layer.
- optEmbeddingSize(int) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the embedding size to use for input tokens.
- optEngine(String) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the engine name for this criteria.
- optEpsilon(float) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
Sets the epsilon value to prevent division by 0.
- optEpsilon(float) - Method in class ai.djl.training.optimizer.Adadelta.Builder
-
Sets \(epsilon\) - a small quantity for numerical stability.
- optEpsilon(float) - Method in class ai.djl.training.optimizer.Adagrad.Builder
-
Sets \(epsilon\) - a small quantity for numerical stability.
- optEpsilon(float) - Method in class ai.djl.training.optimizer.Adam.Builder
-
Sets \(epsilon\) - a small quantity for numerical stability.
- optEpsilon(float) - Method in class ai.djl.training.optimizer.RmsProp.Builder
-
Sets \(epsilon\) - a small quantity for numerical stability.
- optExecutor(ExecutorService, int) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets the ExecutorService
to spawn threads to fetch data.
- optFactor(float) - Method in class ai.djl.training.tracker.MultiFactorTracker.Builder
-
Set the value of the multiplicative factor.
- optFallthrough(AbstractIndexedEmbedding<T>) - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Sets a custom handler for items not found in the embedding.
- optFilter(String, String) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets an extra search filter for this criteria.
- optFilters(Map<String, String>) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the extra search filters for this criteria.
- optFinalValue(float) - Method in class ai.djl.training.tracker.CosineTracker.Builder
-
Sets the final value that the learning rate will remain constant as after the specified
max number of updates.
- optFlag(Image.Flag) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
-
Sets the optional
Image.Flag
(default is
Image.Flag#COLOR
).
- optForceSuppress(boolean) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the boolean parameter that indicates whether to suppress all detections regardless
of class_id.
- optGroupId(String) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets optional groupId of the
ModelZoo
for this criteria.
- optGroups(int) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the number of group partitions.
- optGroups(int) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the number of group partitions.
- optHasBiases(boolean) - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
Sets the optional biases flag that indicates whether to use biases or not.
- optHiddenDropoutProbability(float) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the dropout probabilty in the hidden fully connected networks.
- optHiddenSize(int) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the size of the hidden layers in the fully connected networks used.
- optIgnoreLabel(float) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the label for ignored anchors.
- Optimizer - Class in ai.djl.training.optimizer
-
An Optimizer
updates the weight parameters to minimize the loss function.
- Optimizer(Optimizer.OptimizerBuilder<?>) - Constructor for class ai.djl.training.optimizer.Optimizer
-
Creates a new instance of Optimizer
.
- Optimizer.OptimizerBuilder<T extends Optimizer.OptimizerBuilder> - Class in ai.djl.training.optimizer
-
- OptimizerBuilder() - Constructor for class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
- optIncludeValidLengths(boolean) - Method in class ai.djl.translate.PaddingStackBatchifier.Builder
-
Sets whether to include the valid lengths (length of non-padded data) for each array.
- optInitializer(Initializer) - Method in class ai.djl.training.DefaultTrainingConfig
-
- optIouThreshold(float) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the anchor-GroundTruth overlap threshold to be regarded as a positive match.
- optLabelBatchifier(Batchifier) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- optLabels(NDArray...) - Method in class ai.djl.training.dataset.ArrayDataset.Builder
-
Sets the labels for the data in the ArrayDataset
.
- optLearningRateTracker(Tracker) - Method in class ai.djl.training.optimizer.Adagrad.Builder
-
Sets the
Tracker
for this optimizer.
- optLearningRateTracker(Tracker) - Method in class ai.djl.training.optimizer.Adam.Builder
-
Sets the
Tracker
for this optimizer.
- optLearningRateTracker(Tracker) - Method in class ai.djl.training.optimizer.RmsProp.Builder
-
Sets the
Tracker
for this optimizer.
- optLimit(long) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets this dataset's limit.
- optMaxEdge(int) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator.Builder
-
Sets the maximum edge length of the rescaled image.
- optMaxSequenceLength(int) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the maximum sequence length this model can process.
- optMaxUpdates(int) - Method in class ai.djl.training.tracker.FactorTracker.Builder
-
Sets the maximum number of updates after which the value should remain constant.
- optMaxUpdates(int) - Method in class ai.djl.training.tracker.LinearTracker.Builder
-
Sets the maximum number of updates after which the value should remain constant.
- optMaxValue(float) - Method in class ai.djl.training.tracker.LinearTracker.Builder
-
Sets the maximum value for a positive slope.
- optMinFrequency(int) - Method in class ai.djl.modality.nlp.SimpleVocabulary.Builder
-
Sets the optional parameter that specifies the minimum frequency to consider a token to
be part of the
SimpleVocabulary
.
- optMinNegativeSamples(int) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the minimum number of negative samples.
- optMinValue(float) - Method in class ai.djl.training.tracker.FactorTracker.Builder
-
Sets the minimum value.
- optMinValue(float) - Method in class ai.djl.training.tracker.LinearTracker.Builder
-
Sets the minimum value for a negative slope.
- optModelName(String) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets an optional model name for this criteria.
- optModelPath(Path) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the optional model path of the
ModelLoader
for this criteria.
- optModelUrls(String) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets optional model urls of the
ModelLoader
for this criteria.
- optModelZoo(ModelZoo) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
- optMomentum(float) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
Set the momentum for moving average.
- optMomentum(float) - Method in class ai.djl.training.optimizer.RmsProp.Builder
-
Sets the momentum factor.
- optMomentum(float) - Method in class ai.djl.training.optimizer.Sgd.Builder
-
Sets the momentum for
Sgd
.
- optNegativeMinigRatio(float) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the max negative to positive samples ratio.
- optNegativeMiningThreshold(float) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the threshold used for negative mining.
- optNmsThreshold(float) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the non-maximum suppression(NMS) threshold.
- optNmsThreshold(float) - Method in class ai.djl.modality.cv.translator.YoloV5Translator.Builder
-
Sets the NMS threshold.
- optNmsTopK(int) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the boolean parameter that indicates whether to clip out-of-boundary boxes.
- optOffsets(List<Float>) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the value of the center-box offsets across \(x\) and \(y\) dimensions.
- optOptimizer(Optimizer) - Method in class ai.djl.training.DefaultTrainingConfig
-
- optOption(String, String) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the optional model loading option for this criteria.
- optOptions(Map<String, String>) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the model loading options for this criteria.
- optOutPadding(Shape) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the out_padding along each dimension.
- optOutputType(YoloV5Translator.YoloOutputType) - Method in class ai.djl.modality.cv.translator.YoloV5Translator.Builder
-
Sets the YoloOutputType
.
- optPadding(Shape) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the padding along each dimension.
- optPadding(Shape) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the padding along each dimension.
- optPipeline(Pipeline) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- optPower(float) - Method in class ai.djl.training.tracker.PolynomialDecayTracker.Builder
-
Sets the power of the polynomial to decay by.
- optProgress(Progress) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Set the optional Progress
.
- optRate(float) - Method in class ai.djl.nn.norm.Dropout.Builder
-
Sets the probability or the fraction of the input that gets dropped out during training
time.
- optRescaleSize(double, double) - Method in class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
-
Sets the optional rescale size.
- optReservedTokens(Collection<String>) - Method in class ai.djl.modality.nlp.SimpleVocabulary.Builder
-
Sets the optional parameter that sets the list of reserved tokens.
- optReturnState(boolean) - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
Sets the optional flag that indicates whether to return state or not.
- optRho(float) - Method in class ai.djl.training.optimizer.Adadelta.Builder
-
- optRho(float) - Method in class ai.djl.training.optimizer.RmsProp.Builder
-
Sets the decay factor for the moving average over the past squared gradient.
- optScale(boolean) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
If True, multiply result by `gamma`.
- optShortEdge(int) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator.Builder
-
Sets the shorter edge length of the rescaled image.
- optSlope(float) - Method in class ai.djl.training.tracker.LinearTracker.Builder
-
Sets the value of the linear slope.
- optSparseGrad(boolean) - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Sets the optional parameter whether to compute row sparse gradient in the backward
calculation.
- optSteps(List<Float>) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the step across \(x\) and \(y\) dimensions.
- optStride(Shape) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the stride of the convolution.
- optStride(Shape) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the stride of the deconvolution.
- optSynset(List<String>) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.ClassificationBuilder
-
Sets the potential classes for an image.
- optSynsetArtifactName(String) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.ClassificationBuilder
-
Sets the name of the synset file listing the potential classes for an image.
- optSynsetUrl(String) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.ClassificationBuilder
-
Sets the URL of the synset file.
- optTargetPipeline(Pipeline) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- optThreshold(float) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the threshold score for a detection to be a positive prediction.
- optThreshold(float) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator.Builder
-
Sets the threshold for prediction accuracy.
- optThreshold(float) - Method in class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
-
Sets the threshold for prediction accuracy.
- optThreshold(float) - Method in class ai.djl.modality.cv.translator.SimplePoseTranslator.Builder
-
Sets the threshold for prediction accuracy.
- optTransformerBlockCount(int) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the number of transformer blocks to use.
- optTranslator(Translator<I, O>) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the optional
Translator
to override default
Translator
.
- optTranslatorFactory(TranslatorFactory<I, O>) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
- optTypeDictionarySize(int) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the number of possible token types.
- optUnknownToken(String) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding.Builder
-
Sets the optional String
value for the unknown token.
- optUnknownToken(String) - Method in class ai.djl.modality.nlp.SimpleVocabulary.Builder
-
Sets the optional parameter that specifies the unknown token's string value.
- optUseDefault(boolean) - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Sets whether to use a default embedding for undefined items (default true).
- optWarmUpBeginValue(float) - Method in class ai.djl.training.tracker.WarmUpTracker.Builder
-
Sets the value at the beginning of warm-up mode.
- optWarmUpMode(WarmUpTracker.Mode) - Method in class ai.djl.training.tracker.WarmUpTracker.Builder
-
- optWarmUpSteps(int) - Method in class ai.djl.training.tracker.WarmUpTracker.Builder
-
Sets the number of steps until the point the value is updated in warm-up mode.
- optWeightDecays(float) - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
Sets the value of weight decay.
- outPadding - Variable in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
- outPadding - Variable in class ai.djl.nn.convolutional.Deconvolution
-
- Output - Class in ai.djl.modality
-
A class stores the generic inference results.
- Output(String) - Constructor for class ai.djl.modality.Output
-
Constructs a Output
with specified requestId
.
- Output(String, int, String) - Constructor for class ai.djl.modality.Output
-
Constructs a Output
with specified requestId
, code
and message
.
- overlap(double, double, double, double) - Method in class ai.djl.modality.cv.translator.YoloV5Translator
-
- pad(List<E>, E, int) - Method in class ai.djl.modality.nlp.bert.BertTokenizer
-
Pads the tokens to the required length.
- padding - Variable in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
- padding - Variable in class ai.djl.nn.convolutional.Convolution
-
- padding - Variable in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
- padding - Variable in class ai.djl.nn.convolutional.Deconvolution
-
- PaddingStackBatchifier - Class in ai.djl.translate
-
The padding stack batchifier is a
StackBatchifier
that also pads elements to reach the
same length.
- PaddingStackBatchifier.Builder - Class in ai.djl.translate
-
- ParallelBlock - Class in ai.djl.nn
-
ParallelBlock
is a
Block
whose children form a parallel branch in the network and
are combined to produce a single output.
- ParallelBlock(Function<List<NDList>, NDList>) - Constructor for class ai.djl.nn.ParallelBlock
-
Creates a parallel block whose branches are combined to form a single output by the given
function.
- ParallelBlock(Function<List<NDList>, NDList>, List<Block>) - Constructor for class ai.djl.nn.ParallelBlock
-
Creates a parallel block whose branches are formed by each block in the list of blocks, and
are combined to form a single output by the given function.
- ParallelTrain - Class in ai.djl.training
-
Helper for easy training of a whole model on multiple GPUs in parallel.
- ParallelTrain(Device[]) - Constructor for class ai.djl.training.ParallelTrain
-
Build a ParallelTrain for the given devices.
- Parameter - Class in ai.djl.nn
-
Parameter
is a container class that holds a learnable parameter of a model.
- Parameter(String, Block, ParameterType) - Constructor for class ai.djl.nn.Parameter
-
Creates a
Parameter
with the given name, and parameter type, and associated with the
given
Block
.
- Parameter(String, Block, ParameterType, boolean) - Constructor for class ai.djl.nn.Parameter
-
Creates a
Parameter
with the given name, and parameter type, and associated with the
given
Block
.
- Parameter(String, Block, ParameterType, boolean, SparseFormat) - Constructor for class ai.djl.nn.Parameter
-
Creates a
Parameter
with the given name, and parameter type, and associated with the
given
Block
.
- ParameterList - Class in ai.djl.nn
-
Represents a set of names and Parameters.
- ParameterList() - Constructor for class ai.djl.nn.ParameterList
-
Create an empty ParameterList
.
- ParameterList(int) - Constructor for class ai.djl.nn.ParameterList
-
Constructs an empty ParameterList
with the specified initial capacity.
- ParameterList(List<String>, List<Parameter>) - Constructor for class ai.djl.nn.ParameterList
-
Constructs a ParameterList
containing the elements of the specified keys and values.
- ParameterList(List<Pair<String, Parameter>>) - Constructor for class ai.djl.nn.ParameterList
-
Constructs a ParameterList
containing the elements of the specified list of Pairs.
- ParameterList(Map<String, Parameter>) - Constructor for class ai.djl.nn.ParameterList
-
Constructs a ParameterList
containing the elements of the specified map.
- parameters - Variable in class ai.djl.nn.AbstractBlock
-
All direct parameters of this Block.
- ParameterServer - Interface in ai.djl.training
-
An interface for a key-value store to store parameters, and their corresponding gradients.
- parameterShapeCallbacks - Variable in class ai.djl.nn.AbstractBlock
-
Callbacks to determine the shape of a parameter.
- parameterStore - Variable in class ai.djl.inference.Predictor
-
- ParameterStore - Class in ai.djl.training
-
The ParameterStore
contains a map from a parameter to the mirrors of it on other devices.
- ParameterStore(NDManager, boolean) - Constructor for class ai.djl.training.ParameterStore
-
Constructs an empty ParameterStore
.
- ParameterType - Enum in ai.djl.nn
-
- paramPathResolver(String, Map<String, ?>) - Method in class ai.djl.BaseModel
-
- parent - Variable in class ai.djl.ndarray.BaseNDManager
-
- parse(String) - Static method in class ai.djl.repository.VersionRange
-
Creates a new version range from a string version range.
- PathIterator - Interface in ai.djl.modality.cv.output
-
A sequence of points used to outline an object in an image.
- percentile(String, int) - Method in class ai.djl.metric.Metrics
-
Returns a percentile
Metric
object for the specified metric name.
- percentile(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns percentile for this NDArray
.
- percentile(Number, int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns median along given dimension(s).
- percentile(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns percentile for this NDArray
.
- percentile(Number, int[]) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns median along given dimension(s).
- pipeline - Variable in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
-
- pipeline - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- pipeline - Variable in class ai.djl.training.dataset.RandomAccessDataset
-
- Pipeline - Class in ai.djl.translate
-
Pipeline
allows applying multiple transforms on an input
NDList
.
- Pipeline() - Constructor for class ai.djl.translate.Pipeline
-
Creates a new instance of
Pipeline
that has no
Transform
defined yet.
- Pipeline(Transform...) - Constructor for class ai.djl.translate.Pipeline
-
Creates a new instance of Pipeline
that can apply the given transforms on its input.
- Point - Class in ai.djl.modality.cv.output
-
A point representing a location in (x,y)
coordinate space, specified in double precision.
- Point(double, double) - Constructor for class ai.djl.modality.cv.output.Point
-
Constructs and initializes a point at the specified (x,y)
location in the coordinate
space.
- PointwiseFeedForwardBlock - Class in ai.djl.nn.transformer
-
Fully connected Feed-Forward network, only applied to the last dimension of the input.
- PointwiseFeedForwardBlock(List<Integer>, int, Function<NDList, NDList>) - Constructor for class ai.djl.nn.transformer.PointwiseFeedForwardBlock
-
Creates a pointwise feed-forward block.
- PolynomialDecayTracker - Class in ai.djl.training.tracker
-
- PolynomialDecayTracker(PolynomialDecayTracker.Builder) - Constructor for class ai.djl.training.tracker.PolynomialDecayTracker
-
Builds a PolynomialDecayTracker.
- PolynomialDecayTracker.Builder - Class in ai.djl.training.tracker
-
Builder for PolynomialDecayTracker.
- Pool - Class in ai.djl.nn.pooling
-
Utility class that provides Block
and methods for different pooling functions.
- POSE_ESTIMATION - Static variable in interface ai.djl.Application.CV
-
An application that accepts an image of a single person and returns the
Joints
locations of the person.
- PostProcessor<O> - Interface in ai.djl.translate
-
An interface that provides post-processing functionality.
- pow(Number) - Method in interface ai.djl.ndarray.NDArray
-
Takes the power of this NDArray
with a number element-wise.
- pow(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Takes the power of this NDArray
with the other NDArray
element-wise.
- pow(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Takes the power of this NDArray
with a number element-wise.
- pow(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Takes the power of this NDArray
with the other NDArray
element-wise.
- pow(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Takes the power of the
NDArray
with a number element-wise.
- pow(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Takes the power of a number with a
NDArray
element-wise.
- pow(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- powi(Number) - Method in interface ai.djl.ndarray.NDArray
-
Takes the power of this NDArray
with a number element-wise in place.
- powi(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Takes the power of this NDArray
with the other NDArray
element-wise in place.
- powi(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Takes the power of this NDArray
with a number element-wise in place.
- powi(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Takes the power of this NDArray
with the other NDArray
element-wise in place.
- powi(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Takes the power of the
NDArray
with a number element-wise in place.
- powi(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Takes the power of a number with a
NDArray
element-wise in place.
- powi(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- predict(I) - Method in class ai.djl.inference.Predictor
-
Predicts an item for inference.
- Predictor<I,O> - Class in ai.djl.inference
-
The Predictor
interface provides a session for model inference.
- Predictor(Model, Translator<I, O>, boolean) - Constructor for class ai.djl.inference.Predictor
-
Creates a new instance of
BasePredictor
with the given
Model
and
Translator
.
- prefetchNumber - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- prefetchNumber - Variable in class ai.djl.training.dataset.RandomAccessDataset
-
- Prelu - Class in ai.djl.nn.core
-
Applies Leaky Parametric ReLU activation element-wise to the input.
- Prelu() - Constructor for class ai.djl.nn.core.Prelu
-
Creates a Parametric ReLU Block.
- prelu(NDArray, NDArray) - Static method in class ai.djl.nn.core.Prelu
-
Applies a Prelu activation on the input
NDArray
.
- preluBlock() - Static method in class ai.djl.nn.Activation
-
- prepare(NDManager, Model) - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslator
-
Prepares the translator with the manager and model to use.
- prepare(NDManager, Model) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator
-
Prepares the translator with the manager and model to use.
- prepare(NDManager, Model) - Method in class ai.djl.modality.cv.translator.ObjectDetectionTranslator
-
Prepares the translator with the manager and model to use.
- prepare(NDManager, Model) - Method in class ai.djl.modality.cv.translator.wrapper.FileTranslator
-
Prepares the translator with the manager and model to use.
- prepare(NDManager, Model) - Method in class ai.djl.modality.cv.translator.wrapper.InputStreamTranslator
-
Prepares the translator with the manager and model to use.
- prepare(NDManager, Model) - Method in class ai.djl.modality.cv.translator.wrapper.UrlTranslator
-
Prepares the translator with the manager and model to use.
- prepare(Artifact, Progress) - Method in class ai.djl.repository.AbstractRepository
-
Prepares the artifact for use with progress tracking.
- prepare(Artifact) - Method in interface ai.djl.repository.Repository
-
Prepares the artifact for use.
- prepare(Artifact, Progress) - Method in interface ai.djl.repository.Repository
-
Prepares the artifact for use with progress tracking.
- prepare(Artifact) - Method in class ai.djl.repository.Resource
-
Prepares the artifact for use.
- prepare(Artifact, Progress) - Method in class ai.djl.repository.Resource
-
Prepares the artifact for use with progress tracking.
- prepare(Artifact, Progress) - Method in class ai.djl.repository.SimpleRepository
-
Prepares the artifact for use with progress tracking.
- prepare(Progress) - Method in class ai.djl.training.dataset.ArrayDataset
-
Prepares the dataset for use with tracked progress.
- prepare() - Method in interface ai.djl.training.dataset.Dataset
-
Prepares the dataset for use.
- prepare(Progress) - Method in interface ai.djl.training.dataset.Dataset
-
Prepares the dataset for use with tracked progress.
- prepare(NDManager, Model) - Method in interface ai.djl.translate.Translator
-
Prepares the translator with the manager and model to use.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.HyphenNormalizer
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.LambdaProcessor
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.LowerCaseConvertor
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.PunctuationSeparator
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.TextCleaner
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in interface ai.djl.modality.nlp.preprocess.TextProcessor
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.TextTerminator
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.TextTruncator
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in interface ai.djl.modality.nlp.preprocess.Tokenizer
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.UnicodeNormalizer
-
Applies the preprocessing defined to the given input tokens.
- PreProcessor<I> - Interface in ai.djl.translate
-
An interface that provides pre-processing functionality.
- preprocessTextToEmbed(List<String>) - Method in class ai.djl.modality.nlp.embedding.ModelZooTextEmbedding
-
Preprocesses the text to embed into an array to pass into the model.
- preprocessTextToEmbed(List<String>) - Method in class ai.djl.modality.nlp.embedding.SimpleTextEmbedding
-
Preprocesses the text to embed into an array to pass into the model.
- preprocessTextToEmbed(List<String>) - Method in interface ai.djl.modality.nlp.embedding.TextEmbedding
-
Preprocesses the text to embed into an array to pass into the model.
- preprocessTextToEmbed(List<String>) - Method in class ai.djl.modality.nlp.embedding.TrainableTextEmbedding
-
Preprocesses the text to embed into an array to pass into the model.
- preprocessWordToEmbed(String) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Pre-processes the word to embed into an array to pass into the model.
- preprocessWordToEmbed(String) - Method in interface ai.djl.modality.nlp.embedding.WordEmbedding
-
Pre-processes the word to embed into an array to pass into the model.
- probabilities - Variable in class ai.djl.modality.Classifications
-
- probabilities(ParameterStore, NDArray, boolean) - Method in class ai.djl.nn.transformer.IdEmbedding
-
Turns an array of embeddings of shape (d0 ...
- processInput(TranslatorContext, Image) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator
-
Processes the
Image
input and converts it to NDList.
- processInput(TranslatorContext, Image) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator
-
Processes the
Image
input and converts it to NDList.
- processInput(TranslatorContext, Path) - Method in class ai.djl.modality.cv.translator.wrapper.FileTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, InputStream) - Method in class ai.djl.modality.cv.translator.wrapper.InputStreamTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, URL) - Method in class ai.djl.modality.cv.translator.wrapper.UrlTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, String) - Method in class ai.djl.modality.nlp.translator.SimpleText2TextTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, NDList) - Method in class ai.djl.translate.NoopTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, I) - Method in interface ai.djl.translate.PreProcessor
-
Processes the input and converts it to NDList.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.SimplePoseTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.SingleShotDetectionTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.wrapper.FileTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.wrapper.InputStreamTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.wrapper.UrlTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.YoloTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.YoloV5Translator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.nlp.translator.SimpleText2TextTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.translate.NoopTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in interface ai.djl.translate.PostProcessor
-
Processes the output NDList to the corresponding output object.
- prod() - Method in interface ai.djl.ndarray.NDArray
-
Returns the product of this NDArray
.
- prod(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the product of this NDArray
elements over the given axes.
- prod(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the product of this NDArray
elements over the given axes.
- prod() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the product of this NDArray
.
- prod(int[], boolean) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the product of this NDArray
elements over the given axes.
- ProgressBar - Class in ai.djl.training.util
-
ProgressBar
is an implementation of Progress
.
- ProgressBar() - Constructor for class ai.djl.training.util.ProgressBar
-
Creates an instance of ProgressBar
with a maximum value of 1.
- ProgressBar(String, long) - Constructor for class ai.djl.training.util.ProgressBar
-
Creates an instance of ProgressBar
with the given maximum value, and displays the
given message.
- ProgressBar(String, long, String) - Constructor for class ai.djl.training.util.ProgressBar
-
Creates an instance of ProgressBar
with the given maximum value, and displays the
given message.
- properties - Variable in class ai.djl.BaseModel
-
- PunctuationSeparator - Class in ai.djl.modality.nlp.preprocess
-
PunctuationSeparator
separates punctuation into a separate token.
- PunctuationSeparator() - Constructor for class ai.djl.modality.nlp.preprocess.PunctuationSeparator
-
- random() - Method in class ai.djl.training.hyperparameter.param.HpCategorical
-
Returns a random value for the hyperparameter for a range of a fixed value if it is a
HpVal
.
- random() - Method in class ai.djl.training.hyperparameter.param.HpFloat
-
Returns a random value for the hyperparameter for a range of a fixed value if it is a
HpVal
.
- random() - Method in class ai.djl.training.hyperparameter.param.HpInt
-
Returns a random value for the hyperparameter for a range of a fixed value if it is a
HpVal
.
- random() - Method in class ai.djl.training.hyperparameter.param.HpSet
-
Returns a random value for the hyperparameter for a range of a fixed value if it is a
HpVal
.
- random() - Method in class ai.djl.training.hyperparameter.param.HpVal
-
Returns a random value for the hyperparameter for a range of a fixed value if it is a
HpVal
.
- random() - Method in class ai.djl.training.hyperparameter.param.Hyperparameter
-
Returns a random value for the hyperparameter for a range of a fixed value if it is a
HpVal
.
- RANDOM_FOREST - Static variable in interface ai.djl.Application.Tabular
-
This is erroneous because random forest is a technique (not deep learning), not an
application.
- RandomAccessDataset - Class in ai.djl.training.dataset
-
RandomAccessDataset represent the dataset that support random access reads.
- RandomAccessDataset(RandomAccessDataset.BaseBuilder<?>) - Constructor for class ai.djl.training.dataset.RandomAccessDataset
-
- RandomAccessDataset.BaseBuilder<T extends RandomAccessDataset.BaseBuilder<T>> - Class in ai.djl.training.dataset
-
- randomAction() - Method in class ai.djl.modality.rl.ActionSpace
-
Returns a random action.
- RandomBrightness - Class in ai.djl.modality.cv.transform
-
A
Transform
that randomly jitters image brightness with a factor chosen from [max(0, 1 -
brightness), 1 + brightness].
- RandomBrightness(float) - Constructor for class ai.djl.modality.cv.transform.RandomBrightness
-
- randomBrightness(NDArray, float) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Randomly jitters image brightness with a factor chosen from [max(0, 1 - brightness), 1 +
brightness].
- RandomColorJitter - Class in ai.djl.modality.cv.transform
-
A
Transform
that randomly jitters the brightness, contrast, saturation, and hue of an
image.
- RandomColorJitter(float, float, float, float) - Constructor for class ai.djl.modality.cv.transform.RandomColorJitter
-
- randomColorJitter(NDArray, float, float, float, float) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Randomly jitters the brightness, contrast, saturation, and hue of an image.
- RandomFlipLeftRight - Class in ai.djl.modality.cv.transform
-
A
Transform
that randomly flip the input image left to right with a probability of 0.5.
- RandomFlipLeftRight() - Constructor for class ai.djl.modality.cv.transform.RandomFlipLeftRight
-
- randomFlipLeftRight(NDArray) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Randomly flip the input image left to right with a probability of 0.5.
- RandomFlipTopBottom - Class in ai.djl.modality.cv.transform
-
A
Transform
that randomly flip the input image top to bottom with a probability of 0.5.
- RandomFlipTopBottom() - Constructor for class ai.djl.modality.cv.transform.RandomFlipTopBottom
-
- randomFlipTopBottom(NDArray) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Randomly flip the input image top to bottom with a probability of 0.5.
- RandomHue - Class in ai.djl.modality.cv.transform
-
A
Transform
that randomly jitters image hue with a factor chosen from [max(0, 1 - hue), 1
+ hue].
- RandomHue(float) - Constructor for class ai.djl.modality.cv.transform.RandomHue
-
- randomHue(NDArray, float) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Randomly jitters image hue with a factor chosen from [max(0, 1 - hue), 1 + hue].
- randomInteger(long, long, Shape, DataType) - Method in class ai.djl.ndarray.BaseNDManager
-
Returns random integer values from low (inclusive) to high (exclusive).
- randomInteger(long, long, Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Returns random integer values from low (inclusive) to high (exclusive).
- randomMultinomial(int, NDArray) - Method in class ai.djl.ndarray.BaseNDManager
-
Draw samples from a multinomial distribution.
- randomMultinomial(int, NDArray, Shape) - Method in class ai.djl.ndarray.BaseNDManager
-
Draw samples from a multinomial distribution.
- randomMultinomial(int, NDArray) - Method in interface ai.djl.ndarray.NDManager
-
Draw samples from a multinomial distribution.
- randomMultinomial(int, NDArray, Shape) - Method in interface ai.djl.ndarray.NDManager
-
Draw samples from a multinomial distribution.
- randomNormal(float, float, Shape, DataType) - Method in class ai.djl.ndarray.BaseNDManager
-
Draws random samples from a normal (Gaussian) distribution.
- randomNormal(Shape) - Method in interface ai.djl.ndarray.NDManager
-
Draws random samples from a normal (Gaussian) distribution with mean 0 and standard deviation
1.
- randomNormal(Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Draws random samples from a normal (Gaussian) distribution with mean 0 and standard deviation
1.
- randomNormal(float, float, Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Draws random samples from a normal (Gaussian) distribution.
- randomNormal(float, float, Shape, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
-
Draws random samples from a normal (Gaussian) distribution.
- RandomResizedCrop - Class in ai.djl.modality.cv.transform
-
A
Transform
that crop the input image with random scale and aspect ratio.
- RandomResizedCrop(int, int, double, double, double, double) - Constructor for class ai.djl.modality.cv.transform.RandomResizedCrop
-
- randomResizedCrop(NDArray, int, int, double, double, double, double) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Crop the input image with random scale and aspect ratio.
- RandomSampler - Class in ai.djl.training.dataset
-
- RandomSampler() - Constructor for class ai.djl.training.dataset.RandomSampler
-
Creates a new instance of RandomSampler
.
- RandomSampler(int) - Constructor for class ai.djl.training.dataset.RandomSampler
-
Creates a new instance of RandomSampler
with the given seed.
- randomSplit(int...) - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Splits the dataset set into multiple portions.
- randomUniform(float, float, Shape, DataType) - Method in class ai.djl.ndarray.BaseNDManager
-
Draws samples from a uniform distribution.
- randomUniform(float, float, Shape) - Method in interface ai.djl.ndarray.NDManager
-
Draws samples from a uniform distribution.
- randomUniform(float, float, Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Draws samples from a uniform distribution.
- randomUniform(float, float, Shape, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
-
Draws samples from a uniform distribution.
- readInputShapes(DataInputStream) - Method in class ai.djl.nn.AbstractBlock
-
- readParameters(Path, Map<String, ?>) - Method in class ai.djl.BaseModel
-
- Record - Class in ai.djl.training.dataset
-
Record
represents a single element of data and labels from
Dataset
.
- Record(NDList, NDList) - Constructor for class ai.djl.training.dataset.Record
-
Creates a new instance of Record
with a single element of data and its corresponding
labels.
- Rectangle - Class in ai.djl.modality.cv.output
-
A
Rectangle
specifies an area in a coordinate space that is enclosed by the
Rectangle
object's upper-left point
Point
in the coordinate space, its width, and its
height.
- Rectangle(double, double, double, double) - Constructor for class ai.djl.modality.cv.output.Rectangle
-
Constructs a new Rectangle
whose upper-left corner is specified as (x,y)
and
whose width and height are specified by the arguments of the same name.
- Rectangle(Point, double, double) - Constructor for class ai.djl.modality.cv.output.Rectangle
-
Constructs a new Rectangle
whose upper-left corner is specified as coordinate point
and whose width and height are specified by the arguments of the same name.
- RecurrentBlock - Class in ai.djl.nn.recurrent
-
RecurrentBlock
is an abstract implementation of recurrent neural networks.
- RecurrentBlock(RecurrentBlock.BaseBuilder<?>) - Constructor for class ai.djl.nn.recurrent.RecurrentBlock
-
Creates a RecurrentBlock
object.
- RecurrentBlock.BaseBuilder<T extends RecurrentBlock.BaseBuilder> - Class in ai.djl.nn.recurrent
-
- registerRepositoryFactory(RepositoryFactory) - Static method in interface ai.djl.repository.Repository
-
- relu(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies ReLU activation on the input
NDArray
.
- relu(NDList) - Static method in class ai.djl.nn.Activation
-
Applies ReLU activation on the input singleton
NDList
.
- reluBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies the
ReLU
activation function
in its forward function.
- RemoteRepository - Class in ai.djl.repository
-
A
RemoteRepository
is a
Repository
located on a remote web server.
- RemoteRepository(String, URI) - Constructor for class ai.djl.repository.RemoteRepository
-
(Internal) Constructs a remote repository.
- remove(String) - Method in class ai.djl.ndarray.NDList
-
Removes the first occurrence of the specified element from this NDList if it is present.
- remove(NDList...) - Method in class ai.djl.nn.transformer.MemoryScope
-
Remove the given arrays from this scope and attach them back to this scopes parent NDManager.
- remove(NDArray...) - Method in class ai.djl.nn.transformer.MemoryScope
-
Remove the given arrays from this scope and attach them back to this scopes parent NDManager.
- removeLastBlock() - Method in class ai.djl.nn.SequentialBlock
-
Removes the
Block
added last from the sequence of blocks.
- removeLastBlock() - Method in interface ai.djl.nn.SymbolBlock
-
Removes the last block in the symbolic graph.
- repeat(long) - Method in interface ai.djl.ndarray.NDArray
-
Repeats element of this NDArray
the number of times given repeats.
- repeat(int, long) - Method in interface ai.djl.ndarray.NDArray
-
Repeats element of this NDArray
the number of times given repeats along given axis.
- repeat(long[]) - Method in interface ai.djl.ndarray.NDArray
-
Repeats element of this NDArray
the number of times given repeats along each axis.
- repeat(Shape) - Method in interface ai.djl.ndarray.NDArray
-
Repeats element of this NDArray
to match the desired shape.
- repeat(long) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Repeats element of this NDArray
the number of times given repeats.
- repeat(int, long) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Repeats element of this NDArray
the number of times given repeats along given axis.
- repeat(long[]) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Repeats element of this NDArray
the number of times given repeats along each axis.
- repeat(Shape) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Repeats element of this NDArray
to match the desired shape.
- replaceLastBlock(Block) - Method in class ai.djl.nn.SequentialBlock
-
Replaces the
Block
last added from the sequence of blocks, and adds the given block.
- ReplayBuffer - Interface in ai.djl.modality.rl
-
Records
RlEnv.Step
s so that they can be trained on.
- Repository - Interface in ai.djl.repository
-
Repository
is a format for storing data
Artifact
s for various uses including deep
learning models and datasets.
- RepositoryFactory - Interface in ai.djl.repository
-
A interface responsible to create
Repository
instances.
- requireGradient() - Method in class ai.djl.nn.Parameter
-
Returns whether this parameter needs gradients to be computed.
- rescaleGrad - Variable in class ai.djl.training.optimizer.Optimizer
-
- reset() - Method in interface ai.djl.modality.rl.env.RlEnv
-
Resets the environment to it's default state.
- reset(String, long, String) - Method in class ai.djl.training.util.ProgressBar
- resetAccumulator(String) - Method in class ai.djl.training.evaluator.AbstractAccuracy
-
Resets the evaluator value with the given key.
- resetAccumulator(String) - Method in class ai.djl.training.evaluator.BoundingBoxError
-
Resets the evaluator value with the given key.
- resetAccumulator(String) - Method in class ai.djl.training.evaluator.Evaluator
-
Resets the evaluator value with the given key.
- resetAccumulator(String) - Method in class ai.djl.training.loss.AbstractCompositeLoss
-
Resets the evaluator value with the given key.
- resetAccumulator(String) - Method in class ai.djl.training.loss.Loss
-
Resets the evaluator value with the given key.
- reshape(long...) - Method in interface ai.djl.ndarray.NDArray
-
Reshapes this
NDArray
to the given
Shape
.
- reshape(Shape) - Method in interface ai.djl.ndarray.NDArray
-
Reshapes this
NDArray
to the given
Shape
.
- reshape(Shape) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Reshapes this
NDArray
to the given
Shape
.
- Resize - Class in ai.djl.modality.cv.transform
-
- Resize(int) - Constructor for class ai.djl.modality.cv.transform.Resize
-
Creates a
Resize
Transform
that resizes to the given size.
- Resize(int, int) - Constructor for class ai.djl.modality.cv.transform.Resize
-
Creates a
Resize
Transform
that resizes to the given width and height.
- Resize(int, int, Image.Interpolation) - Constructor for class ai.djl.modality.cv.transform.Resize
-
Creates a
Resize
Transform
that resizes to the given width and height with
given interpolation.
- resize(NDArray, int) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Resizes an image to the given width and height.
- resize(NDArray, int, int) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Resizes an image to the given width and height.
- resize(NDArray, int, int, Image.Interpolation) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Resizes an image to the given width and height with given interpolation.
- resolve(MRL, String, Map<String, String>) - Method in class ai.djl.repository.JarRepository
-
Returns the artifact matching a mrl, version, and property filter.
- resolve(MRL, String, Map<String, String>) - Method in class ai.djl.repository.LocalRepository
-
Returns the artifact matching a mrl, version, and property filter.
- resolve(MRL, String, Map<String, String>) - Method in class ai.djl.repository.RemoteRepository
-
Returns the artifact matching a mrl, version, and property filter.
- resolve(MRL, String, Map<String, String>) - Method in interface ai.djl.repository.Repository
-
Returns the artifact matching a mrl, version, and property filter.
- resolve(MRL, String, Map<String, String>) - Method in class ai.djl.repository.SimpleRepository
-
Returns the artifact matching a mrl, version, and property filter.
- resolve(MRL, String, Map<String, String>) - Method in class ai.djl.repository.SimpleUrlRepository
-
Returns the artifact matching a mrl, version, and property filter.
- resolvePath(Artifact.Item, String) - Method in class ai.djl.repository.AbstractRepository
-
- resolvePath(Artifact.Item, String) - Method in class ai.djl.repository.SimpleRepository
- Resource - Class in ai.djl.repository
-
- Resource(Repository, MRL, String) - Constructor for class ai.djl.repository.Resource
-
Constructs a Resource
instance.
- resource - Variable in class ai.djl.repository.zoo.BaseModelLoader
-
- resources - Variable in class ai.djl.ndarray.BaseNDManager
-
- results - Variable in class ai.djl.training.hyperparameter.optimizer.BaseHpOptimizer
-
- returnState - Variable in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
- returnState - Variable in class ai.djl.nn.recurrent.RecurrentBlock
-
- RlAgent - Interface in ai.djl.modality.rl.agent
-
An
RlAgent
is the model or technique to decide the actions to take in an
RlEnv
.
- RlEnv - Interface in ai.djl.modality.rl.env
-
An environment to use for reinforcement learning.
- RlEnv.Step - Interface in ai.djl.modality.rl.env
-
A record of taking a step in the environment.
- rmsprop() - Static method in class ai.djl.training.optimizer.Optimizer
-
- RmsProp - Class in ai.djl.training.optimizer
-
- RmsProp(RmsProp.Builder) - Constructor for class ai.djl.training.optimizer.RmsProp
-
Creates a new instance of RMSProp
optimizer.
- RmsProp.Builder - Class in ai.djl.training.optimizer
-
The Builder to construct an
RmsProp
object.
- RNN - Class in ai.djl.nn.recurrent
-
RNN
is an implementation of recurrent neural networks which applies a single-gate
recurrent layer to input.
- RNN.Activation - Enum in ai.djl.nn.recurrent
-
An enum that enumerates the type of activation.
- RNN.Builder - Class in ai.djl.nn.recurrent
-
The Builder to construct a
RNN
type of
Block
.
- rotate90(NDArray, int) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Rotate an image NDArray counter-clockwise 90 degree.
- rotate90(int, int[]) - Method in interface ai.djl.ndarray.NDArray
-
Rotates an array by 90 degrees in the plane specified by axes.
- rotate90(int, int[]) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Rotates an array by 90 degrees in the plane specified by axes.
- round() - Method in interface ai.djl.ndarray.NDArray
-
Returns the round of this NDArray
element-wise.
- round() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the round of this NDArray
element-wise.
- runEnvironment(RlAgent, boolean) - Method in interface ai.djl.modality.rl.env.RlEnv
-
Runs the environment from reset until done.
- sample(RandomAccessDataset) - Method in class ai.djl.training.dataset.BatchSampler
-
Fetches an iterator that iterates through the given
RandomAccessDataset
in
mini-batches of indices.
- sample(RandomAccessDataset) - Method in class ai.djl.training.dataset.RandomSampler
-
- sample(RandomAccessDataset) - Method in interface ai.djl.training.dataset.Sampler
-
Fetches an iterator that iterates through the given
RandomAccessDataset
in
mini-batches of indices.
- sample(RandomAccessDataset) - Method in interface ai.djl.training.dataset.Sampler.SubSampler
-
- sample(RandomAccessDataset) - Method in class ai.djl.training.dataset.SequenceSampler
-
- sampler - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- sampler - Variable in class ai.djl.training.dataset.RandomAccessDataset
-
- Sampler - Interface in ai.djl.training.dataset
-
- Sampler.SubSampler - Interface in ai.djl.training.dataset
-
An interface that samples a single data item at a time.
- save(Path, String) - Method in class ai.djl.BaseModel
-
Saves the model to the specified modelPath
with the name provided.
- save(BufferedImage, OutputStream, String) - Method in class ai.djl.modality.cv.BufferedImageFactory
-
- save(OutputStream, String) - Method in interface ai.djl.modality.cv.Image
-
Save the image to file.
- save(Path, String) - Method in interface ai.djl.Model
-
Saves the model to the specified modelPath
with the name provided.
- save(DataOutputStream) - Method in class ai.djl.nn.Parameter
-
Writes the parameter NDArrays to the given output stream.
- save(InputStream, Path, URI, Artifact.Item, Progress) - Method in class ai.djl.repository.AbstractRepository
-
- save(Path, String) - Method in class ai.djl.repository.zoo.ZooModel
-
Saves the model to the specified modelPath
with the name provided.
- saveInputShapes(DataOutputStream) - Method in class ai.djl.nn.AbstractBlock
-
- saveMetadata(DataOutputStream) - Method in class ai.djl.nn.AbstractBlock
-
Override this method to save additional data apart from parameter values.
- saveMetadata(DataOutputStream) - Method in class ai.djl.nn.core.Linear
-
Override this method to save additional data apart from parameter values.
- saveMetadata(DataOutputStream) - Method in class ai.djl.nn.norm.BatchNorm
-
Override this method to save additional data apart from parameter values.
- saveModel(Model, TrainingResult) - Method in class ai.djl.training.hyperparameter.EasyHpo
-
Saves the best hyperparameter set.
- saveModel(Trainer) - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
- SaveModelTrainingListener - Class in ai.djl.training.listener
-
- SaveModelTrainingListener(String) - Constructor for class ai.djl.training.listener.SaveModelTrainingListener
-
- SaveModelTrainingListener(String, String) - Constructor for class ai.djl.training.listener.SaveModelTrainingListener
-
- SaveModelTrainingListener(String, String, int) - Constructor for class ai.djl.training.listener.SaveModelTrainingListener
-
- saveParameters(DataOutputStream) - Method in class ai.djl.modality.nlp.Decoder
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.modality.nlp.Encoder
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.modality.nlp.EncoderDecoder
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.AbstractBlock
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in interface ai.djl.nn.Block
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.core.ConstantEmbedding
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.core.Embedding
-
Writes the parameters of the block to the given outputStream.
- ScaledDotProductAttentionBlock - Class in ai.djl.nn.transformer
-
A Block implementing scaled product attention according to
Vaswani et.
- ScaledDotProductAttentionBlock.Builder - Class in ai.djl.nn.transformer
-
- scaleGradient(double) - Method in interface ai.djl.ndarray.NDArray
-
Returns an NDArray equal to this that magnifies the gradient propagated to this by a
constant.
- search(VersionRange, Map<String, String>) - Method in class ai.djl.repository.Metadata.MatchAllMetadata
-
Returns the artifacts matching the version and property requirements.
- search(VersionRange, Map<String, String>) - Method in class ai.djl.repository.Metadata
-
Returns the artifacts matching the version and property requirements.
- self() - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
-
- self() - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslator.Builder
- self() - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator.Builder
- self() - Method in class ai.djl.modality.cv.translator.SimplePoseTranslator.Builder
- self() - Method in class ai.djl.modality.cv.translator.SingleShotDetectionTranslator.Builder
- self() - Method in class ai.djl.modality.cv.translator.YoloTranslator.Builder
- self() - Method in class ai.djl.modality.cv.translator.YoloV5Translator.Builder
- self() - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding.Builder
-
Returns this {code Builder} object.
- self() - Method in class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
-
- self() - Method in class ai.djl.nn.convolutional.Conv1d.Builder
- self() - Method in class ai.djl.nn.convolutional.Conv1dTranspose.Builder
- self() - Method in class ai.djl.nn.convolutional.Conv2d.Builder
- self() - Method in class ai.djl.nn.convolutional.Conv2dTranspose.Builder
- self() - Method in class ai.djl.nn.convolutional.Conv3d.Builder
- self() - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
- self() - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
- self() - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Returns this {code Builder} object.
- self() - Method in class ai.djl.nn.recurrent.GRU.Builder
- self() - Method in class ai.djl.nn.recurrent.LSTM.Builder
- self() - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
- self() - Method in class ai.djl.nn.recurrent.RNN.Builder
- self() - Method in class ai.djl.training.dataset.ArrayDataset.Builder
-
Returns this {code Builder} object.
- self() - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Returns this {code Builder} object.
- self() - Method in class ai.djl.training.optimizer.Adadelta.Builder
- self() - Method in class ai.djl.training.optimizer.Adagrad.Builder
- self() - Method in class ai.djl.training.optimizer.Adam.Builder
- self() - Method in class ai.djl.training.optimizer.Nag.Builder
- self() - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
- self() - Method in class ai.djl.training.optimizer.RmsProp.Builder
- self() - Method in class ai.djl.training.optimizer.Sgd.Builder
- selu(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies Scaled ELU activation on the input
NDArray
.
- selu(NDList) - Static method in class ai.djl.nn.Activation
-
Applies Scaled ELU activation on the input singleton
NDList
.
- seluBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies the
SELU
activation function
in its forward function.
- SEMANTIC_SEGMENTATION - Static variable in interface ai.djl.Application.CV
-
An application that classifies each pixel in an image into a category.
- SENTIMENT_ANALYSIS - Static variable in interface ai.djl.Application.NLP
-
- sequenceMask(NDArray, float) - Method in interface ai.djl.ndarray.NDArray
-
Sets all elements outside the sequence to a constant value.
- sequenceMask(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Sets all elements outside the sequence to 0.
- sequenceMask(NDArray, float) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Sets all elements outside the sequence to a constant value.
- sequenceMask(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Sets all elements outside the sequence to 0.
- sequenceMask(NDArray, NDArray, float) - Static method in class ai.djl.ndarray.NDArrays
-
Sets all elements of the given
NDArray
outside the sequence
NDArray
to a
constant value.
- sequenceMask(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Sets all elements of the given
NDArray
outside the sequence
NDArray
to 0.
- SequenceSampler - Class in ai.djl.training.dataset
-
- SequenceSampler() - Constructor for class ai.djl.training.dataset.SequenceSampler
-
- SequentialBlock - Class in ai.djl.nn
-
SequentialBlock
is a
Block
whose children form a chain of blocks with each child
block feeding its output to the next.
- SequentialBlock() - Constructor for class ai.djl.nn.SequentialBlock
-
Creates an empty sequential block.
- serialize(Classifications, Type, JsonSerializationContext) - Method in class ai.djl.modality.Classifications.ClassificationsSerializer
- ServingTranslator - Interface in ai.djl.translate
-
- ServingTranslatorFactory - Class in ai.djl.translate
-
- ServingTranslatorFactory() - Constructor for class ai.djl.translate.ServingTranslatorFactory
-
- set(NDArray, NDIndexFullSlice, NDArray) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Sets the values of the array at the fullSlice with an array.
- set(NDArray, NDIndexBooleans, NDArray) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Sets the values of the array at the boolean locations with an array.
- set(NDArray, NDIndex, NDArray) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Sets the values of the array at the index locations with an array.
- set(NDArray, NDIndexFullSlice, Number) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Sets the values of the array at the fullSlice with a number.
- set(NDArray, NDIndex, Number) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Sets the values of the array at the index locations with a number.
- set(Buffer) - Method in interface ai.djl.ndarray.NDArray
-
Sets this NDArray
value from Buffer
.
- set(float[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this NDArray
value from an array of floats.
- set(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this NDArray
value from an array of ints.
- set(double[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this NDArray
value from an array of doubles.
- set(long[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this NDArray
value from an array of longs.
- set(byte[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this NDArray
value from an array of bytes.
- set(NDIndex, NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Sets the specified index in this NDArray
with the given values.
- set(NDIndex, Number) - Method in interface ai.djl.ndarray.NDArray
-
Sets the specified index in this NDArray
with the given value.
- set(NDIndex, Function<NDArray, NDArray>) - Method in interface ai.djl.ndarray.NDArray
-
Sets the specific index by a function.
- set(Buffer) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Sets this NDArray
value from Buffer
.
- setActivation(RNN.Activation) - Method in class ai.djl.nn.recurrent.RNN.Builder
-
Sets the activation for the RNN - ReLu or Tanh.
- setApplication(Application) - Method in class ai.djl.repository.Metadata
-
- setArguments(Map<String, Object>) - Method in class ai.djl.repository.Artifact
-
Sets the artifact arguments.
- setArguments(Map<String, Object>) - Method in interface ai.djl.translate.ServingTranslator
-
Sets the configurations for the Translator
instance.
- setArray(NDArray) - Method in class ai.djl.nn.Parameter
-
Sets the values of this Parameter
.
- setArtifact(Artifact) - Method in class ai.djl.repository.Artifact.Item
-
Sets the artifact associated with this item.
- setArtifactId(String) - Method in class ai.djl.repository.Metadata
-
Sets the artifactId.
- setArtifacts(List<Artifact>) - Method in class ai.djl.repository.Metadata
-
Sets the artifacts for the metadata.
- setAttachment(String, Object) - Method in interface ai.djl.translate.TranslatorContext
-
Set a key-value pair of attachments.
- setBaseValue(float) - Method in class ai.djl.training.tracker.CosineTracker.Builder
-
Sets the initial value after no steps.
- setBaseValue(float) - Method in class ai.djl.training.tracker.FactorTracker.Builder
-
Sets the initial value after no steps.
- setBaseValue(float) - Method in class ai.djl.training.tracker.LinearTracker.Builder
-
Sets the initial value after no steps.
- setBaseValue(float) - Method in class ai.djl.training.tracker.MultiFactorTracker.Builder
-
Sets the initial value after no steps.
- setBaseValue(float) - Method in class ai.djl.training.tracker.PolynomialDecayTracker.Builder
-
Sets the initial value after no steps.
- setBatchifier(Batchifier) - Method in class ai.djl.translate.NoopTranslator
-
- setBlock(Block) - Method in class ai.djl.BaseModel
-
Sets the block for the Model for training and inference.
- setBlock(Block) - Method in interface ai.djl.Model
-
Sets the block for the Model for training and inference.
- setBlock(Block) - Method in class ai.djl.repository.zoo.ZooModel
-
Sets the block for the Model for training and inference.
- setCheckpoint(int) - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
Sets the checkpoint frequency.
- setCode(int) - Method in class ai.djl.modality.Output
-
Sets the status code of the output.
- setContent(PairList<String, byte[]>) - Method in class ai.djl.modality.Input
-
Sets the content of the input.
- setContent(byte[]) - Method in class ai.djl.modality.Output
-
Sets the content of the input.
- setContent(String) - Method in class ai.djl.modality.Output
-
Sets the content of the input with string value.
- setData(NDArray...) - Method in class ai.djl.training.dataset.ArrayDataset.Builder
-
Sets the data as an
NDArray
for the
ArrayDataset
.
- setDataType(DataType) - Method in class ai.djl.BaseModel
-
Sets the standard data type used within the model.
- setDataType(DataType) - Method in interface ai.djl.Model
-
Sets the standard data type used within the model.
- setDataType(DataType) - Method in class ai.djl.ndarray.types.DataDesc
-
- setDataType(DataType) - Method in class ai.djl.repository.zoo.ZooModel
-
Sets the standard data type used within the model.
- setDecaySteps(int) - Method in class ai.djl.training.tracker.PolynomialDecayTracker.Builder
-
Sets the number of training steps to decay learning rate in.
- setDescription(String) - Method in class ai.djl.repository.Metadata
-
Sets the description.
- setDictionarySize(int) - Method in class ai.djl.nn.transformer.IdEmbedding.Builder
-
Sets the number of ids that should be embedded.
- setEmbeddingSize(int) - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Sets the size of the embeddings.
- setEmbeddingSize(int) - Method in class ai.djl.nn.transformer.IdEmbedding.Builder
-
Sets the size of the embeddings.
- setEmbeddingSize(int) - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock.Builder
-
Sets the embedding Size to be used for the internal token representation.
- setEndLearningRate(float) - Method in class ai.djl.training.tracker.PolynomialDecayTracker.Builder
-
Sets the learning rate at which to end rate decay.
- setEpoch(int) - Method in class ai.djl.training.TrainingResult
-
Sets the actual number of epoch.
- setEvaluations(Map<String, Float>) - Method in class ai.djl.training.TrainingResult
-
Sets the raw evaluation metrics.
- setExtension(String) - Method in class ai.djl.repository.Artifact.Item
-
Sets the file extension.
- setFactor(float) - Method in class ai.djl.training.tracker.FactorTracker.Builder
-
Sets the value of the multiplicative factor.
- setFiles(Map<String, Artifact.Item>) - Method in class ai.djl.repository.Artifact
-
Sets the file items.
- setFilters(int) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the Required number of filters.
- setFilters(int) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the Required number of filters.
- setGroupId(String) - Method in class ai.djl.repository.Metadata
-
Sets the groupId.
- setHeadCount(int) - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock.Builder
-
Sets the number of attention Heads, must divide the embedding size without rest.
- setId(String) - Method in class ai.djl.repository.License
-
Sets the identifier of the license.
- setImageFactory(ImageFactory) - Static method in class ai.djl.modality.cv.ImageFactory
-
Sets a custom instance of ImageFactory
.
- setInitializer(Initializer) - Method in class ai.djl.nn.AbstractBlock
-
- setInitializer(Initializer, String) - Method in class ai.djl.nn.AbstractBlock
-
Sets an
Initializer
to the specified direct parameter of the block, overriding the
initializer of the parameter, if already set.
- setInitializer(Initializer) - Method in interface ai.djl.nn.Block
-
- setInitializer(Initializer, String) - Method in interface ai.djl.nn.Block
-
Sets an
Initializer
to the specified direct parameter of the block, overriding the
initializer of the parameter, if already set.
- setInitializer(Initializer, boolean) - Method in class ai.djl.nn.Parameter
-
Sets the
Initializer
for this
Parameter
, if not already set.
- setKernelShape(Shape) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the shape of the kernel.
- setKernelShape(Shape) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the shape of the kernel.
- setLastUpdated(Date) - Method in class ai.djl.repository.Metadata
-
Sets the last update date for the metadata.
- setLearningRateTracker(Tracker) - Method in class ai.djl.training.optimizer.Nag.Builder
-
Sets the
Tracker
for this optimizer.
- setLearningRateTracker(Tracker) - Method in class ai.djl.training.optimizer.Sgd.Builder
-
Sets the
Tracker
for this optimizer.
- setLicense(Map<String, License>) - Method in class ai.djl.repository.Metadata
-
- setMainTracker(Tracker) - Method in class ai.djl.training.tracker.WarmUpTracker.Builder
-
Sets the base value.
- setMandatoryDataType(DataType) - Method in class ai.djl.nn.Parameter
-
Sets the mandatory data type for this Parameter
.
- setMaxUpdates(int) - Method in class ai.djl.training.tracker.CosineTracker.Builder
-
Sets the maximum number of updates after which the value should remain constant.
- setMessage(String) - Method in class ai.djl.modality.Output
-
Sets the status message of the output.
- setMetadata(Metadata) - Method in class ai.djl.repository.Artifact
-
Sets the associated metadata.
- setMetadataVersion(String) - Method in class ai.djl.repository.Artifact
-
Sets the metadata format version.
- setMetadataVersion(String) - Method in class ai.djl.repository.Metadata
-
Sets the metadata format version.
- setMetrics(Metrics) - Method in class ai.djl.inference.Predictor
-
Attaches a Metrics param to use for benchmark.
- setMetrics(Metrics) - Method in class ai.djl.training.Trainer
-
Attaches a Metrics param to use for benchmarking.
- setModelDir(Path) - Method in class ai.djl.BaseModel
-
- setMomentum(float) - Method in class ai.djl.training.optimizer.Nag.Builder
-
Sets the momentum for
Nag
.
- setName(String) - Method in class ai.djl.ndarray.BaseNDManager
-
Sets the name for the NDManager.
- setName(String) - Method in interface ai.djl.ndarray.NDArray
-
Sets name of this NDArray
.
- setName(String) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Sets name of this NDArray
.
- setName(String) - Method in interface ai.djl.ndarray.NDManager
-
Sets the name for the NDManager.
- setName(String) - Method in class ai.djl.ndarray.types.DataDesc
-
- setName(String) - Method in class ai.djl.repository.Artifact.Item
-
Sets the item name.
- setName(String) - Method in class ai.djl.repository.Artifact
-
Sets the artifact name.
- setName(String) - Method in class ai.djl.repository.License
-
Sets the name of the license.
- setName(String) - Method in class ai.djl.repository.Metadata
-
Sets the metadata-level name.
- setNumLayers(int) - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
Sets the Required number of stacked layers.
- setOptions(Map<String, String>) - Method in class ai.djl.repository.Artifact
-
Sets the artifact arguments.
- setOverrideModelName(String) - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
Sets the override model name to save checkpoints with.
- setParameterServer(ParameterServer, Device[]) - Method in class ai.djl.training.ParameterStore
-
Sets the parameterServer used to apply updates to the parameters.
- setPipeline(Pipeline) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
-
Sets the
Pipeline
to use for pre-processing the image.
- setProperties(Map<String, String>) - Method in class ai.djl.modality.Input
-
Sets the properties of the input.
- setProperties(Map<String, String>) - Method in class ai.djl.modality.Output
-
Sets the properties of the output.
- setProperties(Map<String, String>) - Method in class ai.djl.repository.Artifact
-
Sets the artifact properties.
- setProperty(String, String) - Method in class ai.djl.BaseModel
-
Sets a property to the model.
- setProperty(String, String) - Method in interface ai.djl.Model
-
Sets a property to the model.
- setProperty(String, String) - Method in class ai.djl.repository.zoo.ZooModel
-
Sets a property to the model.
- setRandomSeed(int) - Method in class ai.djl.engine.Engine
-
Seeds the random number generator in DJL Engine.
- setRatios(List<Float>) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the aspect ratios of the anchor boxes to be generated around each pixel.
- setRepositoryUri(URI) - Method in class ai.djl.repository.Metadata
-
Sets the repository URI.
- setRescaleGrad(float) - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
Sets the value used to rescale the gradient.
- setResourceType(String) - Method in class ai.djl.repository.Metadata
-
Returns the resource type.
- setSampling(int, boolean) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets the
Sampler
with the given batch size.
- setSampling(int, boolean, boolean) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets the
Sampler
with the given batch size.
- setSampling(Sampler) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- setSaveModelCallback(Consumer<Trainer>) - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
Sets the callback function on model saving.
- setScalar(NDArray, NDIndex, Number) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Sets a scalar value in the array at the indexed location.
- setScalar(NDIndex, Number) - Method in interface ai.djl.ndarray.NDArray
-
Sets the specified scalar in this NDArray
with the given value.
- setSha1Hash(String) - Method in class ai.djl.repository.Artifact.Item
-
Sets the sha1hash of the item.
- setShape(Shape) - Method in class ai.djl.ndarray.types.DataDesc
-
- setSize(long) - Method in class ai.djl.repository.Artifact.Item
-
Sets the file size.
- setSizes(List<Float>) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the sizes of the anchor boxes to be generated around each pixel.
- setSnapshot(boolean) - Method in class ai.djl.repository.Artifact
-
Sets if the artifact is a snapshot.
- setStateSize(int) - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
Sets the Required size of the state for each layer.
- setSteps(int[]) - Method in class ai.djl.training.tracker.MultiFactorTracker.Builder
-
Sets an array of integers indicating when the value should be changed, usually in an
uneven interval of steps.
- setTokenDictionarySize(int) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the number of tokens in the dictionary.
- setType(Class<String>) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding.Builder
-
- setType(Class<T>) - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
- setType(String) - Method in class ai.djl.repository.Artifact.Item
-
Sets the type of the item.
- setTypes(Class<P>, Class<Q>) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Creates a new @{code Builder} class with the specified input and output data type.
- setUnits(long) - Method in class ai.djl.nn.core.Linear.Builder
-
Sets the number of output channels.
- setupHyperParams() - Method in class ai.djl.training.hyperparameter.EasyHpo
-
Returns the initial hyperparameters.
- setupTrainingConfig(HpSet) - Method in class ai.djl.training.hyperparameter.EasyHpo
-
- setUri(String) - Method in class ai.djl.repository.Artifact.Item
-
Sets the URI of the item.
- setUrl(String) - Method in class ai.djl.repository.License
-
Sets the url of the license.
- setVersion(String) - Method in class ai.djl.repository.Artifact
-
Sets the artifact version.
- setVocabulary(Vocabulary) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding.Builder
-
- setWebsite(String) - Method in class ai.djl.repository.Metadata
-
Sets the website.
- sgd() - Static method in class ai.djl.training.optimizer.Optimizer
-
Returns a new instance of
Sgd.Builder
that can build an
Sgd
optimizer.
- Sgd - Class in ai.djl.training.optimizer
-
Sgd
is a Stochastic Gradient Descent (SGD) optimizer.
- Sgd(Sgd.Builder) - Constructor for class ai.djl.training.optimizer.Sgd
-
Creates a new instance of Sgd
.
- Sgd.Builder - Class in ai.djl.training.optimizer
-
The Builder to construct an
Sgd
object.
- Shape - Class in ai.djl.ndarray.types
-
A class that presents the
NDArray
's shape information.
- Shape(long...) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a Shape
with specified dimension as {@code (long...
- Shape(List<Long>) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a Shape
with specified dimension.
- Shape(PairList<Long, LayoutType>) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a Shape
with specified shape and layout pairList.
- Shape(long[], String) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a Shape
with specified dimension and layout.
- Shape(long[], LayoutType[]) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a Shape
with specified dimension and layout.
- shapeEquals(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Checks 2 NDArray
s for equal shapes.
- shapeEquals(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Checks 2
NDArray
s for equal shapes.
- sigmoid(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies Sigmoid activation on the input
NDArray
.
- sigmoid(NDList) - Static method in class ai.djl.nn.Activation
-
Applies Sigmoid activation on the input singleton
NDList
.
- sigmoidBinaryCrossEntropyLoss() - Static method in class ai.djl.training.loss.Loss
-
- sigmoidBinaryCrossEntropyLoss(String) - Static method in class ai.djl.training.loss.Loss
-
- sigmoidBinaryCrossEntropyLoss(String, float, boolean) - Static method in class ai.djl.training.loss.Loss
-
- SigmoidBinaryCrossEntropyLoss - Class in ai.djl.training.loss
-
SigmoidBinaryCrossEntropyLoss
is a type of
Loss
.
- SigmoidBinaryCrossEntropyLoss() - Constructor for class ai.djl.training.loss.SigmoidBinaryCrossEntropyLoss
-
Performs Sigmoid cross-entropy loss for binary classification.
- SigmoidBinaryCrossEntropyLoss(String) - Constructor for class ai.djl.training.loss.SigmoidBinaryCrossEntropyLoss
-
Performs Sigmoid cross-entropy loss for binary classification.
- SigmoidBinaryCrossEntropyLoss(String, float, boolean) - Constructor for class ai.djl.training.loss.SigmoidBinaryCrossEntropyLoss
-
Performs Sigmoid cross-entropy loss for binary classification.
- sigmoidBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies the
Sigmoid
activation
function in its forward function.
- sign() - Method in interface ai.djl.ndarray.NDArray
-
Returns the element-wise sign.
- sign() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the element-wise sign.
- signi() - Method in interface ai.djl.ndarray.NDArray
-
Returns the element-wise sign in-place.
- signi() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the element-wise sign in-place.
- SimpleCompositeLoss - Class in ai.djl.training.loss
-
SimpleCompositeLoss
is an implementation of the
Loss
abstract class that can
combine different
Loss
functions by adding the individual losses together.
- SimpleCompositeLoss() - Constructor for class ai.djl.training.loss.SimpleCompositeLoss
-
Creates a new empty instance of
CompositeLoss
that can combine the given
Loss
components.
- SimpleCompositeLoss(String) - Constructor for class ai.djl.training.loss.SimpleCompositeLoss
-
Creates a new empty instance of
CompositeLoss
that can combine the given
Loss
components.
- SimplePoseModelLoader - Class in ai.djl.modality.cv.zoo
-
The translator for Simple Pose models.
- SimplePoseModelLoader(Repository, String, String, String, ModelZoo) - Constructor for class ai.djl.modality.cv.zoo.SimplePoseModelLoader
-
Creates the Model loader from the given repository.
- SimplePoseTranslator - Class in ai.djl.modality.cv.translator
-
- SimplePoseTranslator(SimplePoseTranslator.Builder) - Constructor for class ai.djl.modality.cv.translator.SimplePoseTranslator
-
Creates the Pose Estimation translator from the given builder.
- SimplePoseTranslator.Builder - Class in ai.djl.modality.cv.translator
-
The builder for Pose Estimation translator.
- SimpleRepository - Class in ai.djl.repository
-
A
SimpleRepository
is a
Repository
containing only a single artifact without
requiring a "metadata.json" file.
- SimpleRepository(String, Path, String, String) - Constructor for class ai.djl.repository.SimpleRepository
-
(Internal) Constructs a SimpleRepository.
- SimpleText2TextTranslator - Class in ai.djl.modality.nlp.translator
-
A
Translator
that performs pre-process and post-processing for a sequence-to-sequence
text model.
- SimpleText2TextTranslator() - Constructor for class ai.djl.modality.nlp.translator.SimpleText2TextTranslator
-
- SimpleTextEmbedding - Class in ai.djl.modality.nlp.embedding
-
- SimpleTextEmbedding(WordEmbedding) - Constructor for class ai.djl.modality.nlp.embedding.SimpleTextEmbedding
-
- SimpleTokenizer - Class in ai.djl.modality.nlp.preprocess
-
SimpleTokenizer
is an implementation of the
Tokenizer
interface that converts
sentences into token by splitting them by a given delimiter.
- SimpleTokenizer(String) - Constructor for class ai.djl.modality.nlp.preprocess.SimpleTokenizer
-
Creates an instance of SimpleTokenizer
with the given delimiter.
- SimpleTokenizer() - Constructor for class ai.djl.modality.nlp.preprocess.SimpleTokenizer
-
Creates an instance of SimpleTokenizer
with the default delimiter.
- SimpleUrlRepository - Class in ai.djl.repository
-
A
SimpleUrlRepository
is a
Repository
contains an archive file from a HTTP URL.
- SimpleVocabulary - Class in ai.djl.modality.nlp
-
The simple implementation of Vocabulary.
- SimpleVocabulary(SimpleVocabulary.Builder) - Constructor for class ai.djl.modality.nlp.SimpleVocabulary
-
- SimpleVocabulary(List<String>) - Constructor for class ai.djl.modality.nlp.SimpleVocabulary
-
Create a SimpleVocabulary
object with the given list of tokens.
- SimpleVocabulary.Builder - Class in ai.djl.modality.nlp
-
- sin() - Method in interface ai.djl.ndarray.NDArray
-
Returns the trigonometric sine of this NDArray
element-wise.
- sin() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the trigonometric sine of this NDArray
element-wise.
- SingleShotDetectionAccuracy - Class in ai.djl.training.evaluator
-
- SingleShotDetectionAccuracy(String) - Constructor for class ai.djl.training.evaluator.SingleShotDetectionAccuracy
-
- SingleShotDetectionLoss - Class in ai.djl.training.loss
-
SingleShotDetectionLoss
is an implementation of
Loss
.
- SingleShotDetectionLoss() - Constructor for class ai.djl.training.loss.SingleShotDetectionLoss
-
Base class for metric with abstract update methods.
- SingleShotDetectionTranslator - Class in ai.djl.modality.cv.translator
-
- SingleShotDetectionTranslator(SingleShotDetectionTranslator.Builder) - Constructor for class ai.djl.modality.cv.translator.SingleShotDetectionTranslator
-
Creates the SSD translator from the given builder.
- SingleShotDetectionTranslator.Builder - Class in ai.djl.modality.cv.translator
-
The builder for SSD translator.
- singleton(Function<NDArray, NDArray>) - Static method in class ai.djl.nn.LambdaBlock
-
- singletonOrThrow() - Method in class ai.djl.ndarray.NDList
-
Returns the only element if this is a singleton NDList or throws an exception if multiple
elements.
- sinh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the hyperbolic sine of this NDArray
element-wise.
- sinh() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the hyperbolic sine of this NDArray
element-wise.
- size() - Method in class ai.djl.modality.nlp.SimpleVocabulary
-
- size() - Method in interface ai.djl.modality.nlp.Vocabulary
-
- size(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the size of this NDArray
along a given axis.
- size() - Method in interface ai.djl.ndarray.NDArray
-
Returns the total number of elements in this NDArray
.
- size(int...) - Method in class ai.djl.ndarray.types.Shape
-
Returns the size of a specific dimension or several specific dimensions.
- size() - Method in class ai.djl.ndarray.types.Shape
-
Returns the total size.
- size() - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Returns the size of this Dataset
.
- slice(int) - Method in class ai.djl.ndarray.types.Shape
-
Creates a new Shape
whose content is a slice of this shape.
- slice(int, int) - Method in class ai.djl.ndarray.types.Shape
-
Creates a new Shape
whose content is a slice of this shape.
- sliceAxis(int, long, long) - Static method in class ai.djl.ndarray.index.NDIndex
-
Creates an
NDIndex
that just has one slice in the given axis.
- softmax(int) - Method in interface ai.djl.ndarray.NDArray
-
Applies the softmax function along the given axis.
- softmax(int) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Applies the softmax function along the given axis.
- SOFTMAX_REGRESSION - Static variable in interface ai.djl.Application.Tabular
-
An application that takes a feature vector (table row) and predicts a categorical feature
based on it.
- softmaxCrossEntropyLoss() - Static method in class ai.djl.training.loss.Loss
-
- softmaxCrossEntropyLoss(String) - Static method in class ai.djl.training.loss.Loss
-
- softmaxCrossEntropyLoss(String, float, int, boolean, boolean) - Static method in class ai.djl.training.loss.Loss
-
- SoftmaxCrossEntropyLoss - Class in ai.djl.training.loss
-
SoftmaxCrossEntropyLoss
is a type of
Loss
that calculates the softmax cross
entropy loss.
- SoftmaxCrossEntropyLoss() - Constructor for class ai.djl.training.loss.SoftmaxCrossEntropyLoss
-
Creates a new instance of SoftmaxCrossEntropyLoss
with default parameters.
- SoftmaxCrossEntropyLoss(String) - Constructor for class ai.djl.training.loss.SoftmaxCrossEntropyLoss
-
Creates a new instance of SoftmaxCrossEntropyLoss
with default parameters.
- SoftmaxCrossEntropyLoss(String, float, int, boolean, boolean) - Constructor for class ai.djl.training.loss.SoftmaxCrossEntropyLoss
-
Creates a new instance of SoftmaxCrossEntropyLoss
with the given parameters.
- softPlus(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies softPlus activation on the input
NDArray
.
- softPlus(NDList) - Static method in class ai.djl.nn.Activation
-
Applies softPlus activation on the input singleton
NDList
.
- softPlusBlock() - Static method in class ai.djl.nn.Activation
-
- sort() - Method in interface ai.djl.ndarray.NDArray
-
Sorts the flattened NDArray
.
- sort(int) - Method in interface ai.djl.ndarray.NDArray
-
Sorts the flattened NDArray
.
- sort() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Sorts the flattened NDArray
.
- sort(int) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Sorts the flattened NDArray
.
- SparseFormat - Enum in ai.djl.ndarray.types
-
An enum representing Sparse matrix storage formats.
- sparseGrad - Variable in class ai.djl.nn.core.Embedding.BaseBuilder
-
- sparseGrad - Variable in class ai.djl.nn.core.Embedding
-
- SparseNDArray - Interface in ai.djl.ndarray
-
An interface representing a Sparse NDArray.
- split(long) - Method in interface ai.djl.ndarray.NDArray
-
Splits this NDArray
into multiple subNDArray
s given sections along first
axis.
- split(long[]) - Method in interface ai.djl.ndarray.NDArray
-
Splits this NDArray
into multiple sub-NDArray
s given indices along first
axis.
- split(long, int) - Method in interface ai.djl.ndarray.NDArray
-
Splits this NDArray
into multiple subNDArray
s given sections along the given
axis.
- split(long[], int) - Method in interface ai.djl.ndarray.NDArray
-
Splits this NDArray
into multiple sub-NDArray
s given indices along given
axis.
- split(long[], int) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Splits this NDArray
into multiple sub-NDArray
s given indices along given
axis.
- split(Device[], boolean) - Method in class ai.djl.training.dataset.Batch
-
Splits the data and labels in the Batch
across the given devices.
- split(NDList, int, boolean) - Method in interface ai.djl.translate.Batchifier
-
Splits the given
NDList
into the given number of slices.
- split(NDList, int, boolean) - Method in class ai.djl.translate.PaddingStackBatchifier
-
Splits the given
NDList
into the given number of slices.
- split(NDList, int, boolean) - Method in class ai.djl.translate.StackBatchifier
-
Splits the given
NDList
into the given number of slices.
- sqrt() - Method in interface ai.djl.ndarray.NDArray
-
Returns the square root of this NDArray
element-wise.
- sqrt() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the square root of this NDArray
element-wise.
- square() - Method in interface ai.djl.ndarray.NDArray
-
Returns the square of this NDArray
element-wise.
- square() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the square of this NDArray
element-wise.
- squeeze() - Method in interface ai.djl.ndarray.NDArray
-
Removes all singleton dimensions from this
NDArray
Shape
.
- squeeze(int) - Method in interface ai.djl.ndarray.NDArray
-
Removes a singleton dimension at the given axis.
- squeeze(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Removes singleton dimensions at the given axes.
- squeeze(int[]) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Removes singleton dimensions at the given axes.
- stack(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Joins a NDArray
along the first axis.
- stack(NDArray, int) - Method in interface ai.djl.ndarray.NDArray
-
Joins a NDArray
along a new axis.
- stack(NDList) - Static method in class ai.djl.ndarray.NDArrays
-
- stack(NDList, int) - Static method in class ai.djl.ndarray.NDArrays
-
- STACK - Static variable in interface ai.djl.translate.Batchifier
-
- StackBatchifier - Class in ai.djl.translate
-
StackBatchifier
is used to merge a list of samples to form a mini-batch of NDArray(s).
- StackBatchifier() - Constructor for class ai.djl.translate.StackBatchifier
-
- StandardCapabilities - Class in ai.djl.engine
-
Constant definitions for the standard capability.
- start(long) - Method in class ai.djl.training.util.ProgressBar
- stateSize - Variable in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
- stateSize - Variable in class ai.djl.nn.recurrent.RecurrentBlock
-
- step(NDList, boolean) - Method in interface ai.djl.modality.rl.env.RlEnv
-
Takes a step by performing an action in this environment.
- step() - Method in class ai.djl.training.Trainer
-
Updates all of the parameters of the model once.
- stopGradient() - Method in interface ai.djl.ndarray.NDArray
-
Returns an NDArray equal to this that stop gradient propagation through it.
- stopGradient() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns an NDArray equal to this that stop gradient propagation through it.
- stream() - Method in class ai.djl.ndarray.index.NDIndex
-
Returns a stream of the NDIndexElements.
- stream() - Method in class ai.djl.ndarray.types.Shape
-
Returns a stream of the Shape.
- stride - Variable in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
- stride - Variable in class ai.djl.nn.convolutional.Convolution
-
- stride - Variable in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
- stride - Variable in class ai.djl.nn.convolutional.Deconvolution
-
- sub(Number) - Method in interface ai.djl.ndarray.NDArray
-
Subtracts a number from this NDArray
element-wise.
- sub(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Subtracts the other NDArray
from this NDArray
element-wise.
- sub(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Subtracts a number from this NDArray
element-wise.
- sub(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Subtracts the other NDArray
from this NDArray
element-wise.
- sub(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Subtracts a number from the
NDArray
element-wise.
- sub(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Subtracts a
NDArray
from a number element-wise.
- sub(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- subDataset(int, int) - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Returns a view of the portion of this data between the specified fromIndex
,
inclusive, and toIndex
, exclusive.
- subi(Number) - Method in interface ai.djl.ndarray.NDArray
-
Subtracts a number from this NDArray
element-wise in place.
- subi(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Subtracts the other NDArray
from this NDArray
element-wise in place.
- subi(Number) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Subtracts a number from this NDArray
element-wise in place.
- subi(NDArray) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Subtracts the other NDArray
from this NDArray
element-wise in place.
- subi(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Subtracts a number from the
NDArray
element-wise in place.
- subi(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Subtracts a
NDArray
from a number element-wise in place.
- subi(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- subNDList(int) - Method in class ai.djl.ndarray.NDList
-
Returns a view of the portion of this NDList between the specified fromIndex, inclusive, and
to the end.
- sum() - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum of this NDArray
.
- sum(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum of this NDArray
along given axes.
- sum(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum of this NDArray
along given axes.
- sum() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the sum of this NDArray
.
- sum(int[], boolean) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the sum of this NDArray
along given axes.
- swapAxes(int, int) - Method in interface ai.djl.ndarray.NDArray
-
Interchanges two axes of this NDArray
.
- swish(NDArray, float) - Static method in class ai.djl.nn.Activation
-
Applies Swish activation on the input
NDArray
.
- swish(NDList, float) - Static method in class ai.djl.nn.Activation
-
Applies SWish activation on the input singleton
NDList
.
- swishBlock(float) - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies the
Swish
activation
function in its forward function.
- SymbolBlock - Interface in ai.djl.nn
-
SymbolBlock
is a
Block
is used to load models that were exported directly from
the engine in its native format.
- sync() - Method in class ai.djl.training.ParameterStore
-
Synchronizes the values on all mirrors with the main parameter.
- synsetLoader - Variable in class ai.djl.modality.cv.translator.BaseImageTranslator.ClassificationBuilder
-
- SynsetLoader(List<String>) - Constructor for class ai.djl.modality.cv.translator.BaseImageTranslator.SynsetLoader
-
- SynsetLoader(URL) - Constructor for class ai.djl.modality.cv.translator.BaseImageTranslator.SynsetLoader
-
- SynsetLoader(String) - Constructor for class ai.djl.modality.cv.translator.BaseImageTranslator.SynsetLoader
-
- tail() - Method in class ai.djl.ndarray.types.Shape
-
Returns the tail index of the shape.
- tan() - Method in interface ai.djl.ndarray.NDArray
-
Returns the trigonometric tangent of this NDArray
element-wise.
- tan() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the trigonometric tangent of this NDArray
element-wise.
- tanh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the hyperbolic tangent of this NDArray
element-wise.
- tanh() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the hyperbolic tangent of this NDArray
element-wise.
- tanh(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies Tanh activation on the input
NDArray
.
- tanh(NDList) - Static method in class ai.djl.nn.Activation
-
Applies Tanh activation on the input singleton
NDList
.
- tanhBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies the
Tanh
activation function
in its forward function.
- target(NDList) - Method in class ai.djl.modality.cv.MultiBoxTarget
-
Computes multi-box training targets.
- targetPipeline - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- targetPipeline - Variable in class ai.djl.training.dataset.RandomAccessDataset
-
- TEXT_CLASSIFICATION - Static variable in interface ai.djl.Application.NLP
-
An application that classifies text data.
- TEXT_EMBEDDING - Static variable in interface ai.djl.Application.NLP
-
An application that takes text and returns a feature vector that represents the text.
- TextCleaner - Class in ai.djl.modality.nlp.preprocess
-
Applies remove or replace of certain characters based on condition.
- TextCleaner(Function<Character, Boolean>) - Constructor for class ai.djl.modality.nlp.preprocess.TextCleaner
-
Remove a character if it meets the condition supplied.
- TextCleaner(Function<Character, Boolean>, char) - Constructor for class ai.djl.modality.nlp.preprocess.TextCleaner
-
Replace a character if it meets the condition supplied.
- TextEmbedding - Interface in ai.djl.modality.nlp.embedding
-
A class to manage 1-D
NDArray
representations of multiple words.
- TextProcessor - Interface in ai.djl.modality.nlp.preprocess
-
TextProcessor
allows applying pre-processing to input tokens for natural language
applications.
- TextTerminator - Class in ai.djl.modality.nlp.preprocess
-
A
TextProcessor
that adds a beginning of string and end of string token.
- TextTerminator() - Constructor for class ai.djl.modality.nlp.preprocess.TextTerminator
-
- TextTerminator(boolean, boolean) - Constructor for class ai.djl.modality.nlp.preprocess.TextTerminator
-
- TextTerminator(boolean, boolean, String, String) - Constructor for class ai.djl.modality.nlp.preprocess.TextTerminator
-
- TextTruncator - Class in ai.djl.modality.nlp.preprocess
-
- TextTruncator(int) - Constructor for class ai.djl.modality.nlp.preprocess.TextTruncator
-
- threshold - Variable in class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
-
- threshold - Variable in class ai.djl.modality.cv.translator.ObjectDetectionTranslator
-
- tile(long) - Method in interface ai.djl.ndarray.NDArray
-
Constructs a NDArray
by repeating this NDArray
the number of times given
repeats.
- tile(int, long) - Method in interface ai.djl.ndarray.NDArray
-
Constructs a NDArray
by repeating this NDArray
the number of times given by
repeats along given axis.
- tile(long[]) - Method in interface ai.djl.ndarray.NDArray
-
Constructs a NDArray
by repeating this NDArray
the number of times given by
repeats.
- tile(Shape) - Method in interface ai.djl.ndarray.NDArray
-
Constructs a NDArray
by repeating this NDArray
the number of times to match
the desired shape.
- tile(long) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Constructs a NDArray
by repeating this NDArray
the number of times given
repeats.
- tile(int, long) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Constructs a NDArray
by repeating this NDArray
the number of times given by
repeats along given axis.
- tile(long[]) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Constructs a NDArray
by repeating this NDArray
the number of times given by
repeats.
- tile(Shape) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Constructs a NDArray
by repeating this NDArray
the number of times to match
the desired shape.
- TimeMeasureTrainingListener - Class in ai.djl.training.listener
-
- TimeMeasureTrainingListener(String) - Constructor for class ai.djl.training.listener.TimeMeasureTrainingListener
-
- toArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to a Number array based on its
DataType
.
- toArray() - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Returns the dataset contents as a Java array.
- toBooleanArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to a boolean array.
- toByteArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to a byte array.
- toByteBuffer() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to a ByteBuffer.
- toByteBuffer() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Converts this NDArray
to a ByteBuffer.
- toDebugString(int, int, int, int) - Method in interface ai.djl.ndarray.NDArray
-
Runs the debug string representation of this NDArray
.
- toDegrees() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
from radians to degrees element-wise.
- toDegrees() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Converts this NDArray
from radians to degrees element-wise.
- toDense() - Method in interface ai.djl.ndarray.NDArray
-
Returns a dense representation of the sparse NDArray
.
- toDense() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns a dense representation of the sparse NDArray
.
- toDevice(Device, boolean) - Method in interface ai.djl.ndarray.NDArray
-
Moves this
NDArray
to a different
Device
.
- toDevice(Device, boolean) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Moves this
NDArray
to a different
Device
.
- toDevice(Device, boolean) - Method in class ai.djl.ndarray.NDList
-
Converts all the
NDArray
in
NDList
to a different
Device
.
- toDeviceType(Device) - Static method in interface ai.djl.DeviceType
-
Map device to its type number.
- toDoubleArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to a double array.
- toFloatArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to a float array.
- toIntArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to an int array.
- tokenize(String) - Method in class ai.djl.modality.nlp.bert.BertFullTokenizer
-
Breaks down the given sentence into a list of tokens that can be represented by embeddings.
- tokenize(String) - Method in class ai.djl.modality.nlp.bert.BertTokenizer
-
Breaks down the given sentence into a list of tokens that can be represented by embeddings.
- tokenize(String) - Method in class ai.djl.modality.nlp.bert.WordpieceTokenizer
-
Breaks down the given sentence into a list of tokens that can be represented by embeddings.
- tokenize(String) - Method in class ai.djl.modality.nlp.preprocess.SimpleTokenizer
-
Breaks down the given sentence into a list of tokens that can be represented by embeddings.
- tokenize(String) - Method in interface ai.djl.modality.nlp.preprocess.Tokenizer
-
Breaks down the given sentence into a list of tokens that can be represented by embeddings.
- Tokenizer - Interface in ai.djl.modality.nlp.preprocess
-
Tokenizer
interface provides the ability to break-down sentences into embeddable tokens.
- toLayoutString() - Method in class ai.djl.ndarray.types.Shape
-
Returns the string layout type for each axis in this shape.
- toLongArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to a long array.
- toNDArray(NDManager) - Method in interface ai.djl.modality.cv.Image
-
- toNDArray(NDManager, Image.Flag) - Method in interface ai.djl.modality.cv.Image
-
- topK(int) - Method in class ai.djl.modality.Classifications
-
Returns a list of the top k
best classes.
- TopKAccuracy - Class in ai.djl.training.evaluator
-
TopKAccuracy
is an
Evaluator
that computes the accuracy of the top k predictions.
- TopKAccuracy(String, int, int) - Constructor for class ai.djl.training.evaluator.TopKAccuracy
-
Creates a TopKAccuracy
instance.
- TopKAccuracy(int, int) - Constructor for class ai.djl.training.evaluator.TopKAccuracy
-
Creates an instance of TopKAccuracy
evaluator that computes topK accuracy across axis
1 along the given index.
- TopKAccuracy(int) - Constructor for class ai.djl.training.evaluator.TopKAccuracy
-
Creates an instance of TopKAccuracy
evaluator that computes topK accuracy across axis
1 along the 0th index.
- toRadians() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
from degrees to radians element-wise.
- toRadians() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Converts this NDArray
from degrees to radians element-wise.
- toSparse(SparseFormat) - Method in interface ai.djl.ndarray.NDArray
-
Returns a sparse representation of NDArray
.
- toSparse(SparseFormat) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns a sparse representation of NDArray
.
- toString() - Method in class ai.djl.Application
- toString() - Method in class ai.djl.Device
- toString() - Method in class ai.djl.metric.Metric
- toString() - Method in class ai.djl.modality.Classifications.Classification
- toString() - Method in class ai.djl.modality.Classifications
- toString() - Method in class ai.djl.modality.cv.output.DetectedObjects.DetectedObject
- toString() - Method in class ai.djl.modality.cv.output.Joints.Joint
- toString() - Method in class ai.djl.modality.cv.output.Joints
- toString() - Method in class ai.djl.modality.cv.output.Rectangle
- toString() - Method in class ai.djl.ndarray.BaseNDManager
- toString() - Method in class ai.djl.ndarray.NDList
- toString() - Method in class ai.djl.ndarray.types.DataDesc
- toString() - Method in enum ai.djl.ndarray.types.DataType
- toString(LayoutType[]) - Static method in enum ai.djl.ndarray.types.LayoutType
-
Converts a layout type array to a string of the character representations.
- toString() - Method in class ai.djl.ndarray.types.Shape
- toString() - Method in class ai.djl.nn.AbstractBlock
- toString() - Method in class ai.djl.nn.LambdaBlock
- toString() - Method in class ai.djl.nn.norm.Dropout
- toString() - Method in class ai.djl.nn.ParallelBlock
- toString() - Method in class ai.djl.nn.SequentialBlock
- toString() - Method in class ai.djl.repository.Artifact
- toString() - Method in class ai.djl.repository.MRL
- toString() - Method in class ai.djl.repository.Version
- toString() - Method in class ai.djl.repository.VersionRange
- toString() - Method in class ai.djl.repository.zoo.BaseModelLoader
- toString() - Method in class ai.djl.repository.zoo.Criteria
- toString() - Method in class ai.djl.training.hyperparameter.param.HpCategorical
- toString() - Method in class ai.djl.training.hyperparameter.param.HpFloat
- toString() - Method in class ai.djl.training.hyperparameter.param.HpInt
- toString() - Method in class ai.djl.training.hyperparameter.param.HpSet
- toString() - Method in class ai.djl.training.hyperparameter.param.HpVal
- totalInstances - Variable in class ai.djl.training.evaluator.Evaluator
-
- ToTensor - Class in ai.djl.modality.cv.transform
-
A
Transform
that converts an image
NDArray
from preprocessing format to Neural
Network format.
- ToTensor() - Constructor for class ai.djl.modality.cv.transform.ToTensor
-
- toTensor(NDArray) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Converts an image NDArray from preprocessing format to Neural Network format.
- toType(DataType, boolean) - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to a different
DataType
.
- toType(DataType, boolean) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Converts this
NDArray
to a different
DataType
.
- toUint8Array() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to a uint8 array.
- toURI() - Method in class ai.djl.repository.MRL
-
Returns the URI to the metadata location (used for
Repository
implementations).
- trace() - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum along diagonals of this NDArray
.
- trace(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum along diagonals of this NDArray
.
- trace(int, int, int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum along diagonals of this NDArray
.
- trace(int, int, int) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the sum along diagonals of this NDArray
.
- Tracker - Interface in ai.djl.training.tracker
-
A Tracker
represents a hyper-parameter that changes gradually through the training
process.
- TRAIN_ALL - Static variable in class ai.djl.training.listener.EvaluatorTrainingListener
-
- TRAIN_EPOCH - Static variable in class ai.djl.training.listener.EvaluatorTrainingListener
-
- TRAIN_PROGRESS - Static variable in class ai.djl.training.listener.EvaluatorTrainingListener
-
- TrainableTextEmbedding - Class in ai.djl.modality.nlp.embedding
-
- TrainableTextEmbedding(TrainableWordEmbedding) - Constructor for class ai.djl.modality.nlp.embedding.TrainableTextEmbedding
-
- TrainableWordEmbedding - Class in ai.djl.modality.nlp.embedding
-
- TrainableWordEmbedding(TrainableWordEmbedding.Builder) - Constructor for class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
- TrainableWordEmbedding(Vocabulary, int) - Constructor for class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Constructs a new instance of
TrainableWordEmbedding
from a
SimpleVocabulary
and a given embedding size.
- TrainableWordEmbedding(NDArray, List<String>) - Constructor for class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Constructs a pretrained embedding.
- TrainableWordEmbedding(NDArray, List<String>, boolean) - Constructor for class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Constructs a pretrained embedding.
- TrainableWordEmbedding.Builder - Class in ai.djl.modality.nlp.embedding
-
- trainBatch(RlEnv.Step[]) - Method in class ai.djl.modality.rl.agent.EpsilonGreedy
-
- trainBatch(RlEnv.Step[]) - Method in class ai.djl.modality.rl.agent.QAgent
-
- trainBatch(RlEnv.Step[]) - Method in interface ai.djl.modality.rl.agent.RlAgent
-
- trainBatch(Trainer, Batch) - Static method in class ai.djl.training.EasyTrain
-
Trains the model with one iteration of the given
Batch
of data.
- trainBatch(Trainer, Batch) - Method in class ai.djl.training.ParallelTrain
-
Trains the model with one iteration of the given
Batch
of data.
- Trainer - Class in ai.djl.training
-
The Trainer
interface provides a session for model training.
- Trainer(Model, TrainingConfig) - Constructor for class ai.djl.training.Trainer
-
- TrainingConfig - Interface in ai.djl.training
-
An interface that is responsible for holding the configuration required by
Trainer
.
- TrainingDivergedException - Exception in ai.djl
-
Thrown to indicate when there is a divergence during Training.
- TrainingDivergedException(String) - Constructor for exception ai.djl.TrainingDivergedException
-
Constructs a new exception with the specified detail message.
- TrainingDivergedException(String, Throwable) - Constructor for exception ai.djl.TrainingDivergedException
-
Constructs a new exception with the specified detail message and cause.
- TrainingDivergedException(Throwable) - Constructor for exception ai.djl.TrainingDivergedException
-
Constructs a new exception with the specified cause and a detail message of (cause==null ? null : cause.toString())
which typically contains the class and detail
message of cause
.
- TrainingListener - Interface in ai.djl.training.listener
-
TrainingListener
offers an interface that performs some actions when certain events have
occurred in the
Trainer
.
- TrainingListener.BatchData - Class in ai.djl.training.listener
-
A class to pass data from the batch into the training listeners.
- TrainingListener.Defaults - Interface in ai.djl.training.listener
-
- TrainingListenerAdapter - Class in ai.djl.training.listener
-
Base implementation of the training listener that does nothing.
- TrainingListenerAdapter() - Constructor for class ai.djl.training.listener.TrainingListenerAdapter
-
- TrainingResult - Class in ai.djl.training
-
A class that is responsible for holding the training result produced by
Trainer
.
- TrainingResult() - Constructor for class ai.djl.training.TrainingResult
-
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.CenterCrop
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.Crop
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.Normalize
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.RandomBrightness
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.RandomColorJitter
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.RandomFlipLeftRight
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.RandomFlipTopBottom
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.RandomHue
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.RandomResizedCrop
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.Resize
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.ToTensor
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator
-
Applies the
Transform
to the given
NDArray
.
- transform(NDList) - Method in class ai.djl.translate.Pipeline
-
Applies the transforms configured in this object on the input
NDList
.
- Transform - Interface in ai.djl.translate
-
An interface to apply various transforms to the input.
- transform(NDArray) - Method in interface ai.djl.translate.Transform
-
Applies the
Transform
to the given
NDArray
.
- TransformerEncoderBlock - Class in ai.djl.nn.transformer
-
Self-Attention based transformer encoder block.
- TransformerEncoderBlock(int, int, int, float, Function<NDList, NDList>) - Constructor for class ai.djl.nn.transformer.TransformerEncoderBlock
-
Creates a transformer encoder block.
- TranslateException - Exception in ai.djl.translate
-
Thrown to indicate that an error is raised during processing of the input or output.
- TranslateException(String) - Constructor for exception ai.djl.translate.TranslateException
-
Constructs a new exception with the specified detail message.
- TranslateException(String, Throwable) - Constructor for exception ai.djl.translate.TranslateException
-
Constructs a new exception with the specified detail message and cause.
- TranslateException(Throwable) - Constructor for exception ai.djl.translate.TranslateException
-
Constructs a new exception with the specified cause and a detail message of (cause==null ? null : cause.toString())
which typically contains the class and detail
message of cause
.
- Translator<I,O> - Interface in ai.djl.translate
-
The Translator
interface provides model pre-processing and postprocessing functionality.
- TranslatorContext - Interface in ai.djl.translate
-
The TranslatorContext
interface provides a toolkit for pre-processing and postprocessing
functionality.
- TranslatorFactory<I,O> - Interface in ai.djl.translate
-
- transpose() - Method in interface ai.djl.ndarray.NDArray
-
Returns this NDArray
with axes transposed.
- transpose(int...) - Method in interface ai.djl.ndarray.NDArray
-
Returns this NDArray
with given axes transposed.
- transpose() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns this NDArray
with axes transposed.
- transpose(int...) - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns this NDArray
with given axes transposed.
- trunc() - Method in interface ai.djl.ndarray.NDArray
-
Returns the truncated value of this NDArray
element-wise.
- trunc() - Method in interface ai.djl.ndarray.NDArrayAdapter
-
Returns the truncated value of this NDArray
element-wise.
- TruncatedNormalInitializer - Class in ai.djl.training.initializer
-
Naive implementation of a truncated normal initializer.
- TruncatedNormalInitializer() - Constructor for class ai.djl.training.initializer.TruncatedNormalInitializer
-
Creates an instance of TruncatedNormalInitializer
with a default sigma of 0.01.
- TruncatedNormalInitializer(float) - Constructor for class ai.djl.training.initializer.TruncatedNormalInitializer
-
Creates a TruncatedNormalInitializer initializer.