Package ai.djl.training.loss
Class MaskedSoftmaxCrossEntropyLoss
- java.lang.Object
-
- ai.djl.training.evaluator.Evaluator
-
- ai.djl.training.loss.Loss
-
- ai.djl.training.loss.MaskedSoftmaxCrossEntropyLoss
-
-
Field Summary
-
Fields inherited from class ai.djl.training.evaluator.Evaluator
totalInstances
-
-
Constructor Summary
Constructors Constructor Description MaskedSoftmaxCrossEntropyLoss()
Creates a new instance ofSoftmaxCrossEntropyLoss
with default parameters.MaskedSoftmaxCrossEntropyLoss(java.lang.String name)
Creates a new instance ofSoftmaxCrossEntropyLoss
with default parameters.MaskedSoftmaxCrossEntropyLoss(java.lang.String name, float weight, int classAxis, boolean sparseLabel, boolean fromLogit)
Creates a new instance ofMaskedSoftmaxCrossEntropyLoss
with the given parameters.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description NDArray
evaluate(NDList labels, NDList predictions)
Calculates the evaluation between the labels and the predictions.-
Methods inherited from class ai.djl.training.loss.Loss
addAccumulator, elasticNetWeightedDecay, elasticNetWeightedDecay, elasticNetWeightedDecay, elasticNetWeightedDecay, getAccumulator, hingeLoss, hingeLoss, hingeLoss, l1Loss, l1Loss, l1Loss, l1WeightedDecay, l1WeightedDecay, l1WeightedDecay, l2Loss, l2Loss, l2Loss, l2WeightedDecay, l2WeightedDecay, l2WeightedDecay, maskedSoftmaxCrossEntropyLoss, maskedSoftmaxCrossEntropyLoss, maskedSoftmaxCrossEntropyLoss, resetAccumulator, sigmoidBinaryCrossEntropyLoss, sigmoidBinaryCrossEntropyLoss, sigmoidBinaryCrossEntropyLoss, softmaxCrossEntropyLoss, softmaxCrossEntropyLoss, softmaxCrossEntropyLoss, updateAccumulator
-
Methods inherited from class ai.djl.training.evaluator.Evaluator
checkLabelShapes, checkLabelShapes, getName
-
-
-
-
Constructor Detail
-
MaskedSoftmaxCrossEntropyLoss
public MaskedSoftmaxCrossEntropyLoss()
Creates a new instance ofSoftmaxCrossEntropyLoss
with default parameters.
-
MaskedSoftmaxCrossEntropyLoss
public MaskedSoftmaxCrossEntropyLoss(java.lang.String name)
Creates a new instance ofSoftmaxCrossEntropyLoss
with default parameters.- Parameters:
name
- the name of the loss
-
MaskedSoftmaxCrossEntropyLoss
public MaskedSoftmaxCrossEntropyLoss(java.lang.String name, float weight, int classAxis, boolean sparseLabel, boolean fromLogit)
Creates a new instance ofMaskedSoftmaxCrossEntropyLoss
with the given parameters.- Parameters:
name
- the name of the lossweight
- the weight to apply on the loss value, default 1classAxis
- the axis that represents the class probabilities, default -1sparseLabel
- whether labels are integer array or probabilities, default truefromLogit
- whether predictions are log probabilities or un-normalized numbers, default false
-
-