A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
All Classes All Packages
All Classes All Packages
All Classes All Packages
A
- abs() - Method in interface ai.djl.ndarray.NDArray
-
Returns the absolute value of this
NDArray
element-wise. - abs() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the absolute value of this
NDArray
element-wise. - AbstractAccuracy - Class in ai.djl.training.evaluator
-
Accuracy
is anEvaluator
that computes the accuracy score. - AbstractAccuracy(String) - Constructor for class ai.djl.training.evaluator.AbstractAccuracy
-
Creates an accuracy evaluator that computes accuracy across axis 1.
- AbstractAccuracy(String, int) - Constructor for class ai.djl.training.evaluator.AbstractAccuracy
-
Creates an accuracy evaluator.
- AbstractBaseBlock - Class in ai.djl.nn
-
This provides shared functionality for both the DJL-based
AbstractBlock
s and the importedAbstractSymbolBlock
s. - AbstractBaseBlock() - Constructor for class ai.djl.nn.AbstractBaseBlock
-
Constructs a new
AbstractBaseBlock
instance. - AbstractBaseBlock(byte) - Constructor for class ai.djl.nn.AbstractBaseBlock
-
Builds an empty block with the given version for parameter serialization.
- AbstractBlock - Class in ai.djl.nn
-
AbstractBlock
is an abstract implementation ofBlock
. - AbstractBlock() - Constructor for class ai.djl.nn.AbstractBlock
-
Constructs a new
AbstractBlock
instance. - AbstractBlock(byte) - Constructor for class ai.djl.nn.AbstractBlock
-
Builds an empty block with the given version for parameter serialization.
- AbstractCompositeLoss - Class in ai.djl.training.loss
- AbstractCompositeLoss(String) - Constructor for class ai.djl.training.loss.AbstractCompositeLoss
-
Constructs a composite loss with the given name.
- AbstractEmbedding<T> - Interface in ai.djl.nn.core
-
An Embedding maps elements of type T to a 1-Dimensional representative
NDArray
s. - AbstractIndexedEmbedding<T> - Interface in ai.djl.nn.core
-
An
AbstractEmbedding
where each embedded item can be assigned an integer index. - AbstractRepository - Class in ai.djl.repository
-
The
AbstractRepository
is the shared base for implementers of theRepository
interface. - AbstractRepository(String, URI) - Constructor for class ai.djl.repository.AbstractRepository
- AbstractSymbolBlock - Class in ai.djl.nn
-
AbstractSymbolBlock
is an abstract implementation ofSymbolBlock
. - AbstractSymbolBlock() - Constructor for class ai.djl.nn.AbstractSymbolBlock
-
Constructs a new
AbstractSymbolBlock
instance. - AbstractSymbolBlock(byte) - Constructor for class ai.djl.nn.AbstractSymbolBlock
-
Builds an empty block with the given version for parameter serialization.
- accuracy(NDList, NDList) - Method in class ai.djl.nn.transformer.BertMaskedLanguageModelLoss
-
Calculates the percentage of correctly predicted masked tokens.
- accuracy(NDList, NDList) - Method in class ai.djl.nn.transformer.BertNextSentenceLoss
-
Calculates the fraction of correct predictions.
- Accuracy - Class in ai.djl.training.evaluator
-
Accuracy
is theAbstractAccuracy
with multiple classes. - Accuracy() - Constructor for class ai.djl.training.evaluator.Accuracy
-
Creates a multiclass accuracy evaluator that computes accuracy across axis 1 along the 0th index.
- Accuracy(String) - Constructor for class ai.djl.training.evaluator.Accuracy
-
Creates a multiclass accuracy evaluator that computes accuracy across axis 1 along the 0th index.
- Accuracy(String, int) - Constructor for class ai.djl.training.evaluator.Accuracy
-
Creates a multiclass accuracy evaluator.
- accuracyHelper(NDList, NDList) - Method in class ai.djl.training.evaluator.AbstractAccuracy
-
A helper for classes extending
AbstractAccuracy
. - accuracyHelper(NDList, NDList) - Method in class ai.djl.training.evaluator.Accuracy
-
A helper for classes extending
AbstractAccuracy
. - accuracyHelper(NDList, NDList) - Method in class ai.djl.training.evaluator.BinaryAccuracy
-
A helper for classes extending
AbstractAccuracy
. - accuracyHelper(NDList, NDList) - Method in class ai.djl.training.evaluator.SingleShotDetectionAccuracy
-
A helper for classes extending
AbstractAccuracy
. - accuracyHelper(NDList, NDList) - Method in class ai.djl.training.evaluator.TopKAccuracy
-
A helper for classes extending
AbstractAccuracy
. - acos() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse trigonometric cosine of this
NDArray
element-wise. - acos() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the inverse trigonometric cosine of this
NDArray
element-wise. - acosh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse hyperbolic cosine of this
NDArray
element-wise. - acosh() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the inverse hyperbolic cosine of this
NDArray
element-wise. - ACTION_RECOGNITION - Static variable in interface ai.djl.Application.CV
-
An application that accepts an image or video and classifies the action being done in it.
- ActionSpace - Class in ai.djl.modality.rl
-
Contains the available actions that can be taken in an
RlEnv
. - ActionSpace() - Constructor for class ai.djl.modality.rl.ActionSpace
- activation - Variable in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
- Activation - Class in ai.djl.nn
-
Utility class that provides activation functions and blocks.
- adadelta() - Static method in class ai.djl.training.optimizer.Optimizer
-
Returns a new instance of
Adadelta.Builder
that can build anAdadelta
optimizer. - Adadelta - Class in ai.djl.training.optimizer
-
Adadelta
is an AdadeltaOptimizer
. - Adadelta(Adadelta.Builder) - Constructor for class ai.djl.training.optimizer.Adadelta
-
Creates a new instance of
Adadelta
. - Adadelta.Builder - Class in ai.djl.training.optimizer
-
The Builder to construct an
Adadelta
object. - adagrad() - Static method in class ai.djl.training.optimizer.Optimizer
-
Returns a new instance of
Adagrad.Builder
that can build anAdagrad
optimizer. - Adagrad - Class in ai.djl.training.optimizer
-
Adagrad
is an AdaGradOptimizer
. - Adagrad(Adagrad.Builder) - Constructor for class ai.djl.training.optimizer.Adagrad
-
Creates a new instance of
Adam
optimizer. - Adagrad.Builder - Class in ai.djl.training.optimizer
-
The Builder to construct an
Adagrad
object. - adam() - Static method in class ai.djl.training.optimizer.Optimizer
-
Returns a new instance of
Adam.Builder
that can build anAdam
optimizer. - Adam - Class in ai.djl.training.optimizer
-
Adam
is a generalization of the AdaGradOptimizer
. - Adam(Adam.Builder) - Constructor for class ai.djl.training.optimizer.Adam
-
Creates a new instance of
Adam
optimizer. - Adam.Builder - Class in ai.djl.training.optimizer
-
The Builder to construct an
Adam
object. - add(byte[]) - Method in class ai.djl.modality.Input
-
Appends an item at the end of the input.
- add(int, Transform) - Method in class ai.djl.translate.Pipeline
- add(int, String, BytesSupplier) - Method in class ai.djl.modality.Input
-
Inserts the specified element at the specified position in the input.
- add(long...) - Method in class ai.djl.ndarray.types.Shape
-
Joins this shape with axes.
- add(BytesSupplier) - Method in class ai.djl.modality.Input
-
Appends an item at the end of the input.
- add(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Adds other
NDArray
s to thisNDArray
element-wise. - add(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Adds other
NDArray
s to thisNDArray
element-wise. - add(NDArray...) - Static method in class ai.djl.ndarray.NDArrays
- add(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Adds a number to the
NDArray
element-wise. - add(Block) - Method in class ai.djl.nn.ParallelBlock
-
Adds the given
Block
to the block, which is one parallel branch. - add(Block) - Method in class ai.djl.nn.SequentialBlock
-
Adds the given
Block
to the block to be executed in order. - add(Hyperparameter<?>) - Method in class ai.djl.training.hyperparameter.param.HpSet
-
Adds a hyperparameter to the set.
- add(Transform) - Method in class ai.djl.translate.Pipeline
- add(Number) - Method in interface ai.djl.ndarray.NDArray
-
Adds a number to this
NDArray
element-wise. - add(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Adds a number to this
NDArray
element-wise. - add(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Adds a
NDArray
to a number element-wise. - add(String) - Method in class ai.djl.modality.Input
-
Appends an item at the end of the input.
- add(String, byte[]) - Method in class ai.djl.modality.Input
-
Adds a key/value pair to the input content.
- add(String, BytesSupplier) - Method in class ai.djl.modality.Input
-
Adds a key/value pair to the input content.
- add(String, Transform) - Method in class ai.djl.translate.Pipeline
- add(String, String) - Method in class ai.djl.modality.Input
-
Adds a key/value pair to the input content.
- add(Function<NDList, NDList>) - Method in class ai.djl.nn.ParallelBlock
-
Adds a
LambdaBlock
, that applies the given function, to the list of parallel branches. - add(Function<NDList, NDList>) - Method in class ai.djl.nn.SequentialBlock
-
Adds a
LambdaBlock
that applies the given function to the sequence of blocks. - add(List<String>) - Method in class ai.djl.modality.nlp.DefaultVocabulary.Builder
-
Adds the given sentence to the
DefaultVocabulary
. - addAccumulator(String) - Method in class ai.djl.training.evaluator.AbstractAccuracy
-
Adds an accumulator for the results of the evaluation with the given key.
- addAccumulator(String) - Method in class ai.djl.training.evaluator.BoundingBoxError
-
Adds an accumulator for the results of the evaluation with the given key.
- addAccumulator(String) - Method in class ai.djl.training.evaluator.Evaluator
-
Adds an accumulator for the results of the evaluation with the given key.
- addAccumulator(String) - Method in class ai.djl.training.evaluator.IndexEvaluator
-
Adds an accumulator for the results of the evaluation with the given key.
- addAccumulator(String) - Method in class ai.djl.training.loss.AbstractCompositeLoss
-
Adds an accumulator for the results of the evaluation with the given key.
- addAccumulator(String) - Method in class ai.djl.training.loss.Loss
-
Adds an accumulator for the results of the evaluation with the given key.
- addAll(NDList) - Method in class ai.djl.ndarray.NDList
-
Appends all of the NDArrays in the specified NDList to the end of this NDList, in the order that they are returned by the specified NDList's iterator.
- addAll(Shape) - Method in class ai.djl.ndarray.types.Shape
-
Joins this shape with specified
other
shape. - addAll(Block...) - Method in class ai.djl.nn.ParallelBlock
-
Adds an array of blocks, each of which is a parallel branch.
- addAll(Block...) - Method in class ai.djl.nn.SequentialBlock
-
Adds an array of blocks to be executed in sequence, in order.
- addAll(Collection<Block>) - Method in class ai.djl.nn.ParallelBlock
-
Adds a
Collection
of blocks, each of which is a parallel branch. - addAll(Collection<Block>) - Method in class ai.djl.nn.SequentialBlock
-
Adds a
Collection
of blocks to be executed in sequence, in order. - addAll(List<List<String>>) - Method in class ai.djl.modality.nlp.DefaultVocabulary.Builder
-
Adds the given list of sentences to the
DefaultVocabulary
. - addAllDim() - Method in class ai.djl.ndarray.index.NDIndex
-
Appends a new index to get all values in the dimension.
- addAllDim(int) - Method in class ai.djl.ndarray.index.NDIndex
-
Appends multiple new index to get all values in the dimension.
- addArtifact(Artifact) - Method in class ai.djl.repository.Metadata
-
Adds one artifact for the metadata.
- addBooleanIndex(NDArray) - Method in class ai.djl.ndarray.index.NDIndex
-
Updates the NDIndex by appending a boolean NDArray.
- addChildBlock(String, B) - Method in class ai.djl.nn.AbstractBlock
-
Use this to add a child block to this block.
- addEvaluator(Evaluator) - Method in class ai.djl.training.DefaultTrainingConfig
-
Adds an
Evaluator
that needs to be computed during training. - addEvaluators(Collection<T>) - Method in class ai.djl.training.DefaultTrainingConfig
-
Adds multiple
Evaluator
s that needs to be computed during training. - addFromCustomizedFile(URL, Function<URL, List<String>>) - Method in class ai.djl.modality.nlp.DefaultVocabulary.Builder
-
Adds a customized vocabulary to the
DefaultVocabulary
. - addFromTextFile(URL) - Method in class ai.djl.modality.nlp.DefaultVocabulary.Builder
-
Adds a text vocabulary to the
DefaultVocabulary
. - addFromTextFile(Path) - Method in class ai.djl.modality.nlp.DefaultVocabulary.Builder
-
Adds a text vocabulary to the
DefaultVocabulary
. - addi(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Adds other
NDArray
s to thisNDArray
element-wise in place. - addi(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Adds other
NDArray
s to thisNDArray
element-wise in place. - addi(NDArray...) - Static method in class ai.djl.ndarray.NDArrays
-
Adds all of the
NDArray
s together element-wise in place. - addi(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Adds a number to the
NDArray
element-wise in place. - addi(Number) - Method in interface ai.djl.ndarray.NDArray
-
Adds a number to this
NDArray
element-wise in place. - addi(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Adds a number to this
NDArray
element-wise in place. - addi(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Adds a
NDArray
to a number element-wise in place. - addIndices(long...) - Method in class ai.djl.ndarray.index.NDIndex
-
Updates the NDIndex by appending indices as specified values on the NDArray.
- addIndices(String, Object...) - Method in class ai.djl.ndarray.index.NDIndex
-
Updates the NDIndex by appending indices to the array.
- addLicense(License) - Method in class ai.djl.repository.Metadata
-
Adds one
License
. - addLoss(Loss) - Method in class ai.djl.training.loss.SimpleCompositeLoss
-
Adds a Loss that applies to all labels and predictions to this composite loss.
- addMetric(Metric) - Method in class ai.djl.metric.Metrics
-
Adds a
Metric
to the collection. - addMetric(String, long) - Method in class ai.djl.training.Trainer
-
Helper to add a metric for a time difference.
- addMetric(String, Number) - Method in class ai.djl.metric.Metrics
-
Adds a
Metric
given the metric'sname
andvalue
. - addMetric(String, Number, Unit) - Method in class ai.djl.metric.Metrics
-
Adds a
Metric
given the metric'sname
,value
, andunit
. - addPad(int, int, NDArraySupplier) - Method in class ai.djl.translate.PaddingStackBatchifier.Builder
-
Adds a new dimension to be padded in the input
NDList
. - addPad(int, int, NDArraySupplier, int) - Method in class ai.djl.translate.PaddingStackBatchifier.Builder
-
Adds a new dimension to be padded in the input
NDList
. - addParameter(P) - Method in class ai.djl.nn.AbstractBlock
-
Adds a parameter to this block.
- addPickDim(NDArray) - Method in class ai.djl.ndarray.index.NDIndex
-
Appends a picking index that gets values by index in the axis.
- addProperty(String, String) - Method in class ai.djl.modality.Input
-
Adds a property to the input.
- addResource(MRL) - Method in class ai.djl.repository.AbstractRepository
-
Adds resource to the repository.
- addResource(MRL) - Method in class ai.djl.repository.RemoteRepository
-
Adds resource to the repository.
- addResource(MRL) - Method in interface ai.djl.repository.Repository
-
Adds resource to the repository.
- addSingleton(Function<NDArray, NDArray>) - Method in class ai.djl.nn.SequentialBlock
-
Adds a
LambdaBlock.singleton(Function)
that applies the given function to the sequence of blocks. - addSliceDim(long, long) - Method in class ai.djl.ndarray.index.NDIndex
-
Appends a new index to slice the dimension and returns a range of values.
- addSliceDim(long, long, long) - Method in class ai.djl.ndarray.index.NDIndex
-
Appends a new index to slice the dimension and returns a range of values.
- addStep(RlEnv.Step) - Method in class ai.djl.modality.rl.LruReplayBuffer
-
Adds a new step to the buffer.
- addStep(RlEnv.Step) - Method in interface ai.djl.modality.rl.ReplayBuffer
-
Adds a new step to the buffer.
- addTargetTransform(Transform) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
- addTrainingListeners(TrainingListener...) - Method in class ai.djl.training.DefaultTrainingConfig
-
Adds
TrainingListener
s for training. - addTransform(Transform) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
- addTransform(Transform) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
- ai.djl - package ai.djl
-
Contains top level, engine-agnostic classes for both inference and training.
- ai.djl.engine - package ai.djl.engine
-
Contains classes responsible for loading a deep learning engine.
- ai.djl.inference - package ai.djl.inference
-
Contains classes to implement inference tasks.
- ai.djl.metric - package ai.djl.metric
-
Contains classes to collect metrics information.
- ai.djl.modality - package ai.djl.modality
-
Contains utility classes for each of the predefined modalities.
- ai.djl.modality.cv - package ai.djl.modality.cv
-
Contains utility classes for computer vision tasks and image processing.
- ai.djl.modality.cv.output - package ai.djl.modality.cv.output
-
Contains output types used in various computer vision applications.
- ai.djl.modality.cv.transform - package ai.djl.modality.cv.transform
-
Contains
Transform
s for working with Images. - ai.djl.modality.cv.translator - package ai.djl.modality.cv.translator
-
Contains translators used for computer vision applications.
- ai.djl.modality.cv.translator.wrapper - package ai.djl.modality.cv.translator.wrapper
-
Contains wrappers to for multiple input formats to a
BaseImageTranslator
. - ai.djl.modality.cv.util - package ai.djl.modality.cv.util
-
Contains utility classes for image manipulation.
- ai.djl.modality.nlp - package ai.djl.modality.nlp
-
Contains utility classes for natural language processing tasks.
- ai.djl.modality.nlp.bert - package ai.djl.modality.nlp.bert
-
Contains classes that deal with BERT for natural language pre-processing tasks.
- ai.djl.modality.nlp.embedding - package ai.djl.modality.nlp.embedding
-
Contains classes that deal with word embeddings for natural language pre-processing tasks.
- ai.djl.modality.nlp.preprocess - package ai.djl.modality.nlp.preprocess
-
Contains utility classes for natural language pre-processing tasks.
- ai.djl.modality.nlp.qa - package ai.djl.modality.nlp.qa
-
Contains utility classes for question and answer processing.
- ai.djl.modality.nlp.translator - package ai.djl.modality.nlp.translator
-
Contains utility classes for each of the predefined translator.
- ai.djl.modality.rl - package ai.djl.modality.rl
-
Contains utility classes for reinforcement learning.
- ai.djl.modality.rl.agent - package ai.djl.modality.rl.agent
-
Contains agents to learn using reinforcement learning.
- ai.djl.modality.rl.env - package ai.djl.modality.rl.env
-
Contains environments to train reinforcement learning in.
- ai.djl.ndarray - package ai.djl.ndarray
-
Contains classes and interfaces that define an n-dimensional array.
- ai.djl.ndarray.index - package ai.djl.ndarray.index
-
Contains classes that help access
NDArray
's indices. - ai.djl.ndarray.index.dim - package ai.djl.ndarray.index.dim
-
Contains classes that represent an index element in a
NDArray
's indices. - ai.djl.ndarray.index.full - package ai.djl.ndarray.index.full
-
Contains classes that represent simplified representations of an
NDArray
's indices. - ai.djl.ndarray.types - package ai.djl.ndarray.types
-
Contains classes that define n-dimensional array data types.
- ai.djl.nn - package ai.djl.nn
-
Contains classes to construct neural networks.
- ai.djl.nn.convolutional - package ai.djl.nn.convolutional
-
Contains classes that define convolutional operations extending
Convolution
andDeconvolution
. - ai.djl.nn.core - package ai.djl.nn.core
-
Contains classes that define simple neural network operations.
- ai.djl.nn.norm - package ai.djl.nn.norm
-
Contains classes that define normalizing neural network operations.
- ai.djl.nn.pooling - package ai.djl.nn.pooling
-
Contains pooling neural network operations in
Pool
and helpers for it. - ai.djl.nn.recurrent - package ai.djl.nn.recurrent
-
Contains classes for recurrent neural network operations.
- ai.djl.nn.transformer - package ai.djl.nn.transformer
-
Contains blocks for transformer models.
- ai.djl.repository - package ai.djl.repository
-
Contains a Maven-based Repository format for creating repositories of artifacts such as datasets and model zoos.
- ai.djl.repository.zoo - package ai.djl.repository.zoo
-
Contains classes for working with model zoo repositories.
- ai.djl.training - package ai.djl.training
-
Contains classes and implementations to train a neural network.
- ai.djl.training.dataset - package ai.djl.training.dataset
-
Contains classes to download and prepare training and testing data.
- ai.djl.training.evaluator - package ai.djl.training.evaluator
-
Contains classes for evaluating the effectiveness of models.
- ai.djl.training.hyperparameter - package ai.djl.training.hyperparameter
-
Contains utilities to train, describe, and manipulate
Hyperparameter
s. - ai.djl.training.hyperparameter.optimizer - package ai.djl.training.hyperparameter.optimizer
-
Contains classes to optimize
Hyperparameter
s. - ai.djl.training.hyperparameter.param - package ai.djl.training.hyperparameter.param
-
Contains different types of
Hyperparameter
s. - ai.djl.training.initializer - package ai.djl.training.initializer
- ai.djl.training.listener - package ai.djl.training.listener
-
Contains classes providing functionality during training through
TrainingListener
. - ai.djl.training.loss - package ai.djl.training.loss
-
Contains classes for measuring the
Loss
of a model. - ai.djl.training.optimizer - package ai.djl.training.optimizer
-
Contains classes for optimizing a neural network
Block
. - ai.djl.training.tracker - package ai.djl.training.tracker
-
Contains classes for having a gradually changing hyper-parameter.
- ai.djl.training.util - package ai.djl.training.util
-
Contains utilities to use during training.
- ai.djl.translate - package ai.djl.translate
-
Contains classes and interfaces that translate between java objects and NDArrays.
- all() - Method in interface ai.djl.ndarray.NDArray
-
Returns
true
if all elements within thisNDArray
are non-zero ortrue
. - allClose(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns
true
if twoNDArray
s are element-wise equal within a tolerance. - allClose(NDArray, double, double, boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns
true
if twoNDArray
are element-wise equal within a tolerance. - allClose(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns
true
if twoNDArray
are element-wise equal within a tolerance. - allClose(NDArray, NDArray, double, double, boolean) - Static method in class ai.djl.ndarray.NDArrays
-
Returns
true
if twoNDArray
are element-wise equal within a tolerance. - allocateDirect(int) - Method in interface ai.djl.ndarray.NDManager
-
Allocates a new engine specific direct byte buffer.
- alternativeManager - Variable in class ai.djl.ndarray.BaseNDManager
- alternativeManager - Variable in class ai.djl.ndarray.NDArrayAdapter
- any() - Method in interface ai.djl.ndarray.NDArray
-
Returns
true
if any of the elements within thisNDArray
are non-zero ortrue
. - ANY - Static variable in interface ai.djl.Application.CV
-
Any computer vision application, including those in
Application.CV
. - ANY - Static variable in interface ai.djl.Application.NLP
-
Any NLP application, including those in
Application.NLP
. - ANY - Static variable in interface ai.djl.Application.Tabular
-
Any tabular application, including those in
Application.Tabular
. - apache() - Static method in class ai.djl.repository.License
-
The default Apache License.
- Application - Class in ai.djl
-
A class contains common tasks that can be completed using deep learning.
- Application.CV - Interface in ai.djl
-
The common set of applications for computer vision (image and video data).
- Application.NLP - Interface in ai.djl
-
The common set of applications for natural language processing (text data).
- Application.Tabular - Interface in ai.djl
-
The common set of applications for tabular data.
- arange(float) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values starting from 0.
- arange(float, float) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval with step 1.
- arange(float, float, float) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval.
- arange(float, float, float, DataType) - Method in class ai.djl.ndarray.BaseNDManager
-
Returns evenly spaced values within a given interval.
- arange(float, float, float, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval.
- arange(float, float, float, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval.
- arange(int) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values starting from 0.
- arange(int, int) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval with step 1.
- arange(int, int, int) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval.
- arange(int, int, int, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval.
- AREA - ai.djl.modality.cv.Image.Interpolation
- argMax() - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices of the maximum values into the flattened
NDArray
. - argMax() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the indices of the maximum values into the flattened
NDArray
. - argMax(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices of the maximum values along given axis.
- argMax(int) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the indices of the maximum values along given axis.
- argMin() - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices of the minimum values into the flattened
NDArray
. - argMin() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the indices of the minimum values into the flattened
NDArray
. - argMin(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices of the minimum values along given axis.
- argMin(int) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the indices of the minimum values along given axis.
- argSort() - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices that would sort this
NDArray
. - argSort(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices that would sort this
NDArray
given the axis. - argSort(int, boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices that would sort this
NDArray
given the axis. - argSort(int, boolean) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the indices that would sort this
NDArray
given the axis. - arguments - Variable in class ai.djl.repository.AbstractRepository
- ArgumentsUtil - Class in ai.djl.translate
-
A utility class to extract data from model's arguments.
- ArrayDataset - Class in ai.djl.training.dataset
- ArrayDataset(RandomAccessDataset.BaseBuilder<?>) - Constructor for class ai.djl.training.dataset.ArrayDataset
-
Creates a new instance of
ArrayDataset
with the arguments inArrayDataset.Builder
. - ArrayDataset.Builder - Class in ai.djl.training.dataset
-
The Builder to construct an
ArrayDataset
. - Artifact - Class in ai.djl.repository
-
An
Artifact
is a set of data files such as a model or dataset. - Artifact() - Constructor for class ai.djl.repository.Artifact
- Artifact.Item - Class in ai.djl.repository
-
A file (possibly compressed) within an
Artifact
. - Artifact.VersionComparator - Class in ai.djl.repository
-
A
Comparator
to compare artifacts based on their version numbers. - artifactId - Variable in class ai.djl.repository.Metadata
- artifacts - Variable in class ai.djl.BaseModel
- artifacts - Variable in class ai.djl.repository.Metadata
- asDataType(ByteBuffer) - Method in enum ai.djl.ndarray.types.DataType
-
Converts a
ByteBuffer
to a buffer for this data type. - asin() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse trigonometric sine of this
NDArray
element-wise. - asin() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the inverse trigonometric sine of this
NDArray
element-wise. - asinh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse hyperbolic sine of this
NDArray
element-wise. - asinh() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the inverse hyperbolic sine of this
NDArray
element-wise. - asNumpy() - Method in enum ai.djl.ndarray.types.DataType
-
Returns a numpy string value.
- atan() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse trigonometric tangent of this
NDArray
element-wise. - atan() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the inverse trigonometric tangent of this
NDArray
element-wise. - atanh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse hyperbolic tangent of this
NDArray
element-wise. - atanh() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the inverse hyperbolic tangent of this
NDArray
element-wise. - attach(NDManager) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Attaches this
NDResource
to the specifiedNDManager
. - attach(NDManager) - Method in class ai.djl.ndarray.NDList
-
Attaches this
NDResource
to the specifiedNDManager
. - attach(NDManager) - Method in interface ai.djl.ndarray.NDResource
-
Attaches this
NDResource
to the specifiedNDManager
. - attachAll(NDResource...) - Method in interface ai.djl.ndarray.NDManager
-
Attaches all resources to this manager.
- attachInternal(String, AutoCloseable) - Method in class ai.djl.ndarray.BaseNDManager
-
Attaches a resource to this
NDManager
. - attachInternal(String, AutoCloseable) - Method in interface ai.djl.ndarray.NDManager
-
Attaches a resource to this
NDManager
. - AUTO - ai.djl.modality.cv.translator.YoloV5Translator.YoloOutputType
- availableSize() - Method in class ai.djl.training.dataset.ArrayDataset
-
Returns the number of records available to be read in this
Dataset
. - availableSize() - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Returns the number of records available to be read in this
Dataset
. - AVG - ai.djl.training.initializer.XavierInitializer.FactorType
- avgPool1d(NDArray, Shape, Shape, Shape, boolean, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 1-D Avg Pooling on the input.
- avgPool1dBlock(Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool1dBlock
pooling function in its forward function. - avgPool1dBlock(Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool1dBlock
pooling function in its forward function. - avgPool1dBlock(Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool1dBlock
pooling function in its forward function. - avgPool1dBlock(Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool1dBlock
pooling function in its forward function. - avgPool1dBlock(Shape, Shape, Shape, boolean, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool1dBlock
pooling function in its forward function. - avgPool2d(NDArray, Shape, Shape, Shape, boolean, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 2-D Avg Pooling on the input.
- avgPool2dBlock(Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool2dBlock
pooling function in its forward function. - avgPool2dBlock(Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool2dBlock
pooling function in its forward function. - avgPool2dBlock(Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool2dBlock
pooling function in its forward function. - avgPool2dBlock(Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool2dBlock
pooling function in its forward function. - avgPool2dBlock(Shape, Shape, Shape, boolean, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool2dBlock
pooling function in its forward function. - avgPool3d(NDArray, Shape, Shape, Shape, boolean, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 3-D Avg Pooling on the input.
- avgPool3dBlock(Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool3dBlock
pooling function in its forward function. - avgPool3dBlock(Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool3dBlock
pooling function in its forward function. - avgPool3dBlock(Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool3dBlock
pooling function in its forward function. - avgPool3dBlock(Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool3dBlock
pooling function in its forward function. - avgPool3dBlock(Shape, Shape, Shape, boolean, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theavgPool3dBlock
pooling function in its forward function. - axis - Variable in class ai.djl.training.evaluator.AbstractAccuracy
- axis(int...) - Method in class ai.djl.nn.norm.LayerNorm.Builder
-
List the axis over which the mean and variance will be calculated (alternative to normalizedShape).
B
- backward(NDArray) - Method in interface ai.djl.training.GradientCollector
-
Calculate the gradient w.r.t previously marked variable (head).
- base() - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets this builder's params to the BASE config of the original BERT paper.
- BaseBuilder() - Constructor for class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
- BaseBuilder() - Constructor for class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
- BaseBuilder() - Constructor for class ai.djl.nn.core.Embedding.BaseBuilder
- BaseBuilder() - Constructor for class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
- BaseBuilder() - Constructor for class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
- BaseHpOptimizer - Class in ai.djl.training.hyperparameter.optimizer
-
A base containing shared implementations for
HpOptimizer
s. - BaseHpOptimizer(HpSet) - Constructor for class ai.djl.training.hyperparameter.optimizer.BaseHpOptimizer
-
Constructs a
BaseHpOptimizer
. - BaseImageTranslator<T> - Class in ai.djl.modality.cv.translator
-
Built-in
Translator
that provides default image pre-processing. - BaseImageTranslator(BaseImageTranslator.BaseBuilder<?>) - Constructor for class ai.djl.modality.cv.translator.BaseImageTranslator
-
Constructs an ImageTranslator with the provided builder.
- BaseImageTranslator.BaseBuilder<T extends BaseImageTranslator.BaseBuilder> - Class in ai.djl.modality.cv.translator
-
A builder to extend for all classes extending the
BaseImageTranslator
. - BaseImageTranslator.ClassificationBuilder<T extends BaseImageTranslator.BaseBuilder> - Class in ai.djl.modality.cv.translator
-
A Builder to construct a
ImageClassificationTranslator
. - BaseImageTranslator.SynsetLoader - Class in ai.djl.modality.cv.translator
- BaseModel - Class in ai.djl
-
BaseModel
is the basic implementation ofModel
. - BaseModel(String) - Constructor for class ai.djl.BaseModel
- BaseModelLoader - Class in ai.djl.repository.zoo
-
Shared code for the
ModelLoader
implementations. - BaseModelLoader(MRL) - Constructor for class ai.djl.repository.zoo.BaseModelLoader
-
Constructs a
ModelLoader
given the repository, mrl, and version. - BaseNDManager - Class in ai.djl.ndarray
-
BaseNDManager
is the default implementation ofNDManager
. - BaseNDManager(NDManager, Device) - Constructor for class ai.djl.ndarray.BaseNDManager
- BaseNDManager.TempResource - Class in ai.djl.ndarray
- basic() - Static method in interface ai.djl.training.listener.TrainingListener.Defaults
-
A basic
TrainingListener
set with minimal recommended functionality. - Batch - Class in ai.djl.training.dataset
-
A
Batch
is used to hold multiple items (data and label pairs) from aDataset
. - Batch(NDManager, NDList, NDList, int, Batchifier, Batchifier, long, long) - Constructor for class ai.djl.training.dataset.Batch
-
Creates a new instance of
Batch
with the given manager, data and labels. - BATCH - ai.djl.ndarray.types.LayoutType
- BatchData(Batch, Map<Device, NDList>, Map<Device, NDList>) - Constructor for class ai.djl.training.listener.TrainingListener.BatchData
-
Constructs a new
TrainingListener.BatchData
. - batchDot(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Batchwise product of this
NDArray
and the otherNDArray
. - batchDot(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Batchwise product of this
NDArray
and the otherNDArray
. - batchFirst - Variable in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
- batchFirst - Variable in class ai.djl.nn.recurrent.RecurrentBlock
- batchFlatten(NDArray) - Static method in class ai.djl.nn.Blocks
- batchFlatten(NDArray, long) - Static method in class ai.djl.nn.Blocks
- batchFlattenBlock() - Static method in class ai.djl.nn.Blocks
-
Creates a
Block
whose forward function applies thebatchFlatten
method. - batchFlattenBlock(long) - Static method in class ai.djl.nn.Blocks
-
Creates a
Block
whose forward function applies thebatchFlatten
method. - batchifier - Variable in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
- batchifier - Variable in class ai.djl.modality.nlp.translator.QATranslator
- Batchifier - Interface in ai.djl.translate
- batchify(NDList[]) - Method in interface ai.djl.translate.Batchifier
-
Converts an array of
NDList
into an NDList. - batchify(NDList[]) - Method in class ai.djl.translate.PaddingStackBatchifier
-
Converts an array of
NDList
into an NDList. - batchify(NDList[]) - Method in class ai.djl.translate.StackBatchifier
-
Converts an array of
NDList
into an NDList. - batchNorm(NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.norm.BatchNorm
-
Applies Batch Normalization for each channel across a batch of data.
- batchNorm(NDArray, NDArray, NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.norm.BatchNorm
-
Applies Batch Normalization for each channel across a batch of data.
- batchNorm(NDArray, NDArray, NDArray, NDArray, NDArray, int) - Static method in class ai.djl.nn.norm.BatchNorm
-
Applies Batch Normalization for each channel across a batch of data.
- batchNorm(NDArray, NDArray, NDArray, NDArray, NDArray, int, float, float, boolean) - Static method in class ai.djl.nn.norm.BatchNorm
-
Applies Batch Normalization for each channel across a batch of data.
- BatchNorm - Class in ai.djl.nn.norm
-
In batch training (training with more than one samples per iteration), a batch normalization layer works by normalizing the values of input data to have mean of 0 and variance of 1.
- BatchNorm.Builder - Class in ai.djl.nn.norm
-
The Builder to construct a
BatchNorm
. - batchPredict(List<I>) - Method in class ai.djl.inference.Predictor
-
Predicts a batch for inference.
- BatchSampler - Class in ai.djl.training.dataset
-
BatchSampler
is aSampler
that returns a single epoch over the data. - BatchSampler(Sampler.SubSampler, int) - Constructor for class ai.djl.training.dataset.BatchSampler
-
Creates a new instance of
BatchSampler
that samples from the givenSampler.SubSampler
, and yields a mini-batch of indices. - BatchSampler(Sampler.SubSampler, int, boolean) - Constructor for class ai.djl.training.dataset.BatchSampler
-
Creates a new instance of
BatchSampler
that samples from the givenSampler.SubSampler
, and yields a mini-batch of indices. - beforeInitialize(Shape...) - Method in class ai.djl.nn.AbstractBaseBlock
-
Performs any action necessary before initialization.
- beforeInitialize(Shape...) - Method in class ai.djl.nn.convolutional.Convolution
-
Performs any action necessary before initialization.
- beforeInitialize(Shape...) - Method in class ai.djl.nn.convolutional.Deconvolution
-
Performs any action necessary before initialization.
- beforeInitialize(Shape...) - Method in class ai.djl.nn.core.Linear
-
Performs any action necessary before initialization.
- beforeInitialize(Shape...) - Method in class ai.djl.nn.norm.BatchNorm
-
Performs any action necessary before initialization.
- beforeInitialize(Shape...) - Method in class ai.djl.nn.norm.LayerNorm
-
Performs any action necessary before initialization.
- beforeInitialize(Shape...) - Method in class ai.djl.nn.recurrent.RecurrentBlock
-
Performs any action necessary before initialization.
- BertBlock - Class in ai.djl.nn.transformer
-
Implements the core bert model (without next sentence and masked language task) of bert.
- BertBlock.Builder - Class in ai.djl.nn.transformer
- BertFullTokenizer - Class in ai.djl.modality.nlp.bert
-
BertFullTokenizer runs end to end tokenization of input text
- BertFullTokenizer(Vocabulary, boolean) - Constructor for class ai.djl.modality.nlp.bert.BertFullTokenizer
-
Creates an instance of
BertFullTokenizer
. - BertMaskedLanguageModelBlock - Class in ai.djl.nn.transformer
-
Block for the bert masked language task.
- BertMaskedLanguageModelBlock(BertBlock, Function<NDArray, NDArray>) - Constructor for class ai.djl.nn.transformer.BertMaskedLanguageModelBlock
-
Creates a new block that applies the masked language task.
- BertMaskedLanguageModelLoss - Class in ai.djl.nn.transformer
-
The loss for the bert masked language model task.
- BertMaskedLanguageModelLoss(int, int, int) - Constructor for class ai.djl.nn.transformer.BertMaskedLanguageModelLoss
-
Creates an MLM loss.
- BertNextSentenceBlock - Class in ai.djl.nn.transformer
-
Block to perform the Bert next-sentence-prediction task.
- BertNextSentenceBlock() - Constructor for class ai.djl.nn.transformer.BertNextSentenceBlock
-
Creates a next sentence block.
- BertNextSentenceLoss - Class in ai.djl.nn.transformer
-
Calculates the loss for the next sentence prediction task.
- BertNextSentenceLoss(int, int) - Constructor for class ai.djl.nn.transformer.BertNextSentenceLoss
-
Creates a new bert next sentence loss.
- BertPretrainingBlock - Class in ai.djl.nn.transformer
-
Creates a block that performs all bert pretraining tasks (next sentence and masked language).
- BertPretrainingBlock(BertBlock.Builder) - Constructor for class ai.djl.nn.transformer.BertPretrainingBlock
-
Creates a new Bert pretraining block fitting the given bert configuration.
- BertPretrainingLoss - Class in ai.djl.nn.transformer
-
Loss that combines the next sentence and masked language losses of bert pretraining.
- BertPretrainingLoss() - Constructor for class ai.djl.nn.transformer.BertPretrainingLoss
-
Creates a loss combining the next sentence and masked language loss for bert pretraining.
- BertToken - Class in ai.djl.modality.nlp.bert
-
BertToken contains all the information for Bert model after encoding question and paragraph.
- BertToken(List<String>, List<Long>, List<Long>, int) - Constructor for class ai.djl.modality.nlp.bert.BertToken
-
Creates an instance of BertToken which includes information for Bert model.
- BertTokenizer - Class in ai.djl.modality.nlp.bert
-
BertTokenizer is a class to help you encode question and paragraph sentence.
- BertTokenizer() - Constructor for class ai.djl.modality.nlp.bert.BertTokenizer
- best() - Method in class ai.djl.modality.Classifications
-
Returns the most likely class for the classification.
- BETA - ai.djl.nn.Parameter.Type
- bias - Variable in class ai.djl.nn.convolutional.Convolution
- bias - Variable in class ai.djl.nn.convolutional.Deconvolution
- BIAS - ai.djl.nn.Parameter.Type
- BICUBIC - ai.djl.modality.cv.Image.Interpolation
- bidirectional - Variable in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
- bidirectional - Variable in class ai.djl.nn.recurrent.RecurrentBlock
- BigGANTranslator - Class in ai.djl.modality.cv.translator
-
Built-in
Translator
that provides preprocessing and postprocessing for BigGAN. - BigGANTranslator(float) - Constructor for class ai.djl.modality.cv.translator.BigGANTranslator
-
Constructs a translator for BigGAN.
- BigGANTranslatorFactory - Class in ai.djl.modality.cv.translator
-
A
TranslatorFactory
that creates aBigGANTranslator
instance. - BigGANTranslatorFactory() - Constructor for class ai.djl.modality.cv.translator.BigGANTranslatorFactory
- BILINEAR - ai.djl.modality.cv.Image.Interpolation
- BinaryAccuracy - Class in ai.djl.training.evaluator
-
BinaryAccuracy
is theAbstractAccuracy
with two classes. - BinaryAccuracy() - Constructor for class ai.djl.training.evaluator.BinaryAccuracy
-
Creates a binary (two class) accuracy evaluator with 0 threshold.
- BinaryAccuracy(float) - Constructor for class ai.djl.training.evaluator.BinaryAccuracy
-
Creates a binary (two class) accuracy evaluator that computes accuracy across axis 1 along the 0th index.
- BinaryAccuracy(String, float) - Constructor for class ai.djl.training.evaluator.BinaryAccuracy
-
Creates a binary (two class) accuracy evaluator that computes accuracy across axis 1 along given index.
- BinaryAccuracy(String, float, int) - Constructor for class ai.djl.training.evaluator.BinaryAccuracy
-
Creates a binary (two class) accuracy evaluator.
- BITS - ai.djl.metric.Unit
- BITS_PER_SECOND - ai.djl.metric.Unit
- block - Variable in class ai.djl.BaseModel
- block - Variable in class ai.djl.inference.Predictor
- block - Variable in class ai.djl.modality.nlp.Decoder
- block - Variable in class ai.djl.modality.nlp.Encoder
- Block - Interface in ai.djl.nn
-
A
Block
is a composable function that forms a neural network. - BlockFactory - Interface in ai.djl.nn
-
Block factory is a component to make standard for block creating and saving procedure.
- BlockList - Class in ai.djl.nn
-
Represents a set of names and Blocks.
- BlockList() - Constructor for class ai.djl.nn.BlockList
-
Creates an empty
BlockList
. - BlockList(int) - Constructor for class ai.djl.nn.BlockList
-
Constructs an empty
BlockList
with the specified initial capacity. - BlockList(List<Pair<String, Block>>) - Constructor for class ai.djl.nn.BlockList
-
Constructs a
BlockList
containing the elements of the specified list of Pairs. - BlockList(List<String>, List<Block>) - Constructor for class ai.djl.nn.BlockList
-
Constructs a
BlockList
containing the elements of the specified keys and values. - BlockList(Map<String, Block>) - Constructor for class ai.djl.nn.BlockList
-
Constructs a
BlockList
containing the elements of the specified map. - Blocks - Class in ai.djl.nn
-
Utility class that provides some useful blocks.
- BOOLEAN - ai.djl.ndarray.types.DataType
- BOOLEAN - ai.djl.ndarray.types.DataType.Format
- booleanMask(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns portion of this
NDArray
given the index booleanNDArray
along first axis. - booleanMask(NDArray, int) - Method in interface ai.djl.ndarray.NDArray
-
Returns portion of this
NDArray
given the index booleanNDArray
along given axis. - booleanMask(NDArray, int) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns portion of this
NDArray
given the index booleanNDArray
along given axis. - booleanMask(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- booleanMask(NDArray, NDArray, int) - Static method in class ai.djl.ndarray.NDArrays
- booleanValue(Map<String, ?>, String) - Static method in class ai.djl.translate.ArgumentsUtil
-
Returns the boolean value from the arguments.
- booleanValue(Map<String, ?>, String, boolean) - Static method in class ai.djl.translate.ArgumentsUtil
-
Returns the boolean value from the arguments.
- BoundingBox - Interface in ai.djl.modality.cv.output
-
An interface representing a bounding box around an object inside an image.
- BoundingBoxError - Class in ai.djl.training.evaluator
-
BoundingBoxError
is anEvaluator
that computes the error in the prediction of bounding boxes in SingleShotDetection model. - BoundingBoxError(String) - Constructor for class ai.djl.training.evaluator.BoundingBoxError
-
Creates an BoundingBoxError evaluator.
- BOX - ai.djl.modality.cv.translator.YoloV5Translator.YoloOutputType
- boxIntersection(Rectangle, Rectangle) - Method in class ai.djl.modality.cv.translator.YoloV5Translator
- boxIou(Rectangle, Rectangle) - Method in class ai.djl.modality.cv.translator.YoloV5Translator
- boxUnion(Rectangle, Rectangle) - Method in class ai.djl.modality.cv.translator.YoloV5Translator
- broadcast(long...) - Method in interface ai.djl.ndarray.NDArray
-
Broadcasts this
NDArray
to be the given shape. - broadcast(Shape) - Method in interface ai.djl.ndarray.NDArray
-
Broadcasts this
NDArray
to be the given shape. - broadcast(Shape) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Broadcasts this
NDArray
to be the given shape. - BufferedImageFactory - Class in ai.djl.modality.cv
-
BufferedImageFactory
is the default implementation ofImageFactory
. - BufferedImageFactory() - Constructor for class ai.djl.modality.cv.BufferedImageFactory
- build() - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Builds a
MultiBoxDetection
block. - build() - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Builds a
MultiBoxPrior
block. - build() - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Builds a
MultiBoxTarget
block. - build() - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslator.Builder
-
Builds the
ImageClassificationTranslator
with the provided data. - build() - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator.Builder
-
Builds the translator.
- build() - Method in class ai.djl.modality.cv.translator.SimplePoseTranslator.Builder
-
Builds the translator.
- build() - Method in class ai.djl.modality.cv.translator.SingleShotDetectionTranslator.Builder
-
Builds the translator.
- build() - Method in class ai.djl.modality.cv.translator.YoloTranslator.Builder
-
Builds the translator.
- build() - Method in class ai.djl.modality.cv.translator.YoloV5Translator.Builder
-
Builds the translator.
- build() - Method in class ai.djl.modality.nlp.DefaultVocabulary.Builder
-
Builds the
DefaultVocabulary
object with the set arguments. - build() - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding.Builder
-
Builds a new instance of
TrainableWordEmbedding
based on the arguments in this builder. - build() - Method in class ai.djl.nn.convolutional.Conv1d.Builder
-
Builds a
Conv1d
block. - build() - Method in class ai.djl.nn.convolutional.Conv1dTranspose.Builder
-
Builds a
Conv1dTranspose
block. - build() - Method in class ai.djl.nn.convolutional.Conv2d.Builder
-
Builds a
Conv2d
block. - build() - Method in class ai.djl.nn.convolutional.Conv2dTranspose.Builder
-
Builds a
Conv2dTranspose
block. - build() - Method in class ai.djl.nn.convolutional.Conv3d.Builder
-
Builds a
Conv3d
block. - build() - Method in class ai.djl.nn.core.Linear.Builder
-
Returns the constructed
Linear
. - build() - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
Builds a
BatchNorm
block. - build() - Method in class ai.djl.nn.norm.Dropout.Builder
-
Builds a
Dropout
block. - build() - Method in class ai.djl.nn.norm.LayerNorm.Builder
-
Builds a
LayerNorm
block. - build() - Method in class ai.djl.nn.Parameter.Builder
-
Builds a
Parameter
instance. - build() - Method in class ai.djl.nn.recurrent.GRU.Builder
-
Builds a
GRU
block. - build() - Method in class ai.djl.nn.recurrent.LSTM.Builder
-
Builds a
LSTM
block. - build() - Method in class ai.djl.nn.recurrent.RNN.Builder
-
Builds a
RNN
block. - build() - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Returns a new BertBlock with the parameters of this builder.
- build() - Method in class ai.djl.nn.transformer.IdEmbedding.Builder
-
Builds the
IdEmbedding
. - build() - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock.Builder
-
Creates a new
ScaledDotProductAttentionBlock
with the current configuration. - build() - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Builds a
Criteria
instance. - build() - Method in class ai.djl.training.dataset.ArrayDataset.Builder
-
Builds a new instance of
ArrayDataset
with the specified data and labels. - build() - Method in class ai.djl.training.optimizer.Adadelta.Builder
-
Builds a
Adadelta
block. - build() - Method in class ai.djl.training.optimizer.Adagrad.Builder
-
Builds a
Adagrad
block. - build() - Method in class ai.djl.training.optimizer.Adam.Builder
-
Builds a
Adam
block. - build() - Method in class ai.djl.training.optimizer.Nag.Builder
-
Builds a
Nag
block. - build() - Method in class ai.djl.training.optimizer.RmsProp.Builder
-
Builds a
RmsProp
block. - build() - Method in class ai.djl.training.optimizer.Sgd.Builder
-
Builds a
Sgd
block. - build() - Method in class ai.djl.training.tracker.CosineTracker.Builder
-
Builds a
CosineTracker
block. - build() - Method in class ai.djl.training.tracker.FactorTracker.Builder
-
Builds a
FactorTracker
block. - build() - Method in class ai.djl.training.tracker.LinearTracker.Builder
-
Builds a
LinearTracker
block. - build() - Method in class ai.djl.training.tracker.MultiFactorTracker.Builder
-
Builds a
MultiFactorTracker
block. - build() - Method in class ai.djl.training.tracker.PolynomialDecayTracker.Builder
-
Builds a PolynomialDecayTracker.
- build() - Method in class ai.djl.training.tracker.WarmUpTracker.Builder
-
Builds a
WarmUpTracker
block. - build() - Method in class ai.djl.translate.PaddingStackBatchifier.Builder
-
Builds the
PaddingStackBatchifier
. - builder() - Static method in class ai.djl.modality.cv.MultiBoxDetection
-
Creates a builder to build a
MultiBoxDetection
. - builder() - Static method in class ai.djl.modality.cv.MultiBoxPrior
-
Creates a builder to build a
MultiBoxPrior
. - builder() - Static method in class ai.djl.modality.cv.MultiBoxTarget
-
Creates a builder to build a
MultiBoxTarget
. - builder() - Static method in class ai.djl.modality.cv.translator.ImageClassificationTranslator
-
Creates a builder to build a
ImageClassificationTranslator
. - builder() - Static method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator
-
Creates a builder to build a
InstanceSegmentationTranslator
. - builder() - Static method in class ai.djl.modality.cv.translator.SimplePoseTranslator
-
Creates a builder to build a
SimplePoseTranslator
. - builder() - Static method in class ai.djl.modality.cv.translator.SingleShotDetectionTranslator
-
Creates a builder to build a
SingleShotDetectionTranslator
. - builder() - Static method in class ai.djl.modality.cv.translator.YoloTranslator
-
Creates a builder to build a
YoloTranslator
. - builder() - Static method in class ai.djl.modality.cv.translator.YoloV5Translator
-
Creates a builder to build a
YoloV5Translator
. - builder() - Static method in class ai.djl.modality.nlp.DefaultVocabulary
-
Creates a new builder to build a
DefaultVocabulary
. - builder() - Static method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Creates a builder to build an
Embedding
. - builder() - Static method in class ai.djl.nn.convolutional.Conv1d
-
Creates a builder to build a
Conv1d
. - builder() - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Creates a builder to build a
Conv1dTranspose
. - builder() - Static method in class ai.djl.nn.convolutional.Conv2d
-
Creates a builder to build a
Conv2d
. - builder() - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Creates a builder to build a
Conv2dTranspose
. - builder() - Static method in class ai.djl.nn.convolutional.Conv3d
-
Creates a builder to build a
Conv3d
. - builder() - Static method in class ai.djl.nn.core.Linear
-
Creates a builder to build a
Linear
. - builder() - Static method in class ai.djl.nn.norm.BatchNorm
-
Creates a builder to build a
BatchNorm
. - builder() - Static method in class ai.djl.nn.norm.Dropout
-
Creates a builder to build a
Dropout
. - builder() - Static method in class ai.djl.nn.norm.LayerNorm
-
Creates a builder to build a
LayerNorm
. - builder() - Static method in class ai.djl.nn.Parameter
-
Creates a builder to build a
Parameter
. - builder() - Static method in class ai.djl.nn.recurrent.GRU
-
Creates a builder to build a
GRU
. - builder() - Static method in class ai.djl.nn.recurrent.LSTM
-
Creates a builder to build a
LSTM
. - builder() - Static method in class ai.djl.nn.recurrent.RNN
-
Creates a builder to build a
RNN
. - builder() - Static method in class ai.djl.nn.transformer.BertBlock
-
Returns a new BertBlock builder.
- builder() - Static method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock
-
Creates a new Builder to build an Attention Block with.
- builder() - Static method in class ai.djl.repository.zoo.Criteria
-
Creates a builder to build a
Criteria
. - builder() - Static method in class ai.djl.training.optimizer.Adagrad
-
Creates a builder to build a
Adam
. - builder() - Static method in class ai.djl.training.optimizer.Adam
-
Creates a builder to build a
Adam
. - builder() - Static method in class ai.djl.training.optimizer.RmsProp
-
Creates a builder to build a
RMSProp
. - builder() - Static method in class ai.djl.training.tracker.CosineTracker
-
Creates a new builder.
- builder() - Static method in class ai.djl.training.tracker.FactorTracker
-
Creates a new builder.
- builder() - Static method in class ai.djl.training.tracker.LinearTracker
-
Creates a new builder.
- builder() - Static method in class ai.djl.training.tracker.MultiFactorTracker
-
Creates a new builder.
- builder() - Static method in class ai.djl.training.tracker.PolynomialDecayTracker
-
Creates a new builder.
- builder() - Static method in class ai.djl.training.tracker.WarmUpTracker
-
Creates a new builder.
- builder() - Static method in class ai.djl.translate.PaddingStackBatchifier
-
Returns a
PaddingStackBatchifier.Builder
. - builder(Map<String, ?>) - Static method in class ai.djl.modality.cv.translator.ImageClassificationTranslator
-
Creates a builder to build a
ImageClassificationTranslator
with specified arguments. - builder(Map<String, ?>) - Static method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator
-
Creates a builder to build a
InstanceSegmentationTranslator
with specified arguments. - builder(Map<String, ?>) - Static method in class ai.djl.modality.cv.translator.SimplePoseTranslator
-
Creates a builder to build a
SimplePoseTranslator
with specified arguments. - builder(Map<String, ?>) - Static method in class ai.djl.modality.cv.translator.SingleShotDetectionTranslator
-
Creates a builder to build a
SingleShotDetectionTranslator
with specified arguments. - builder(Map<String, ?>) - Static method in class ai.djl.modality.cv.translator.YoloTranslator
-
Creates a builder to build a
YoloTranslator
with specified arguments. - builder(Map<String, ?>) - Static method in class ai.djl.modality.cv.translator.YoloV5Translator
-
Creates a builder to build a
YoloV5Translator
with specified arguments. - Builder() - Constructor for class ai.djl.modality.cv.translator.SingleShotDetectionTranslator.Builder
- Builder() - Constructor for class ai.djl.modality.cv.translator.YoloTranslator.Builder
- Builder() - Constructor for class ai.djl.modality.cv.translator.YoloV5Translator.Builder
- Builder() - Constructor for class ai.djl.nn.Parameter.Builder
- Builder() - Constructor for class ai.djl.nn.recurrent.GRU.Builder
- Builder() - Constructor for class ai.djl.nn.recurrent.LSTM.Builder
- Builder() - Constructor for class ai.djl.nn.recurrent.RNN.Builder
- Builder() - Constructor for class ai.djl.nn.transformer.IdEmbedding.Builder
- Builder() - Constructor for class ai.djl.training.dataset.ArrayDataset.Builder
- buildModel(HpSet) - Method in class ai.djl.training.hyperparameter.EasyHpo
- buildSentence(List<String>) - Method in class ai.djl.modality.nlp.preprocess.SimpleTokenizer
-
Combines a list of tokens to form a sentence.
- buildSentence(List<String>) - Method in interface ai.djl.modality.nlp.preprocess.Tokenizer
-
Combines a list of tokens to form a sentence.
- BYTES - ai.djl.metric.Unit
- BYTES_PER_SECOND - ai.djl.metric.Unit
- BytesSupplier - Interface in ai.djl.ndarray
-
Represents a supplier of
byte[]
.
C
- cast(DataType) - Method in interface ai.djl.Model
-
Casts the model to support a different precision level.
- cast(DataType) - Method in class ai.djl.nn.AbstractBaseBlock
-
Guaranteed to throw an exception.
- cast(DataType) - Method in interface ai.djl.nn.Block
-
Guaranteed to throw an exception.
- cast(DataType) - Method in class ai.djl.repository.zoo.ZooModel
-
Casts the model to support a different precision level.
- cbrt() - Method in interface ai.djl.ndarray.NDArray
-
Returns the cube-root of this
NDArray
element-wise. - cbrt() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the cube-root of this
NDArray
element-wise. - ceil() - Method in interface ai.djl.ndarray.NDArray
-
Returns the ceiling of this
NDArray
element-wise. - ceil() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the ceiling of this
NDArray
element-wise. - centerCrop(NDArray) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Crops an image to a square of size
min(width, height)
. - centerCrop(NDArray, int, int) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Crops an image to a given width and height from the center of the image.
- CenterCrop - Class in ai.djl.modality.cv.transform
-
A
Transform
that crops the center of an image. - CenterCrop() - Constructor for class ai.djl.modality.cv.transform.CenterCrop
- CenterCrop(int, int) - Constructor for class ai.djl.modality.cv.transform.CenterCrop
-
Creates a
CenterCrop
Transform
that crops the given width and height. - CHANNEL - ai.djl.ndarray.types.LayoutType
- checkConcatInput(NDList) - Static method in class ai.djl.ndarray.NDUtils
-
Check two criteria of concat input: 1.
- checkLabelShapes(NDArray, NDArray) - Method in class ai.djl.training.evaluator.Evaluator
-
Checks the length of NDArrays.
- checkLabelShapes(NDArray, NDArray, boolean) - Method in class ai.djl.training.evaluator.Evaluator
-
Checks if the two input
NDArray
have the same length or shape. - children - Variable in class ai.djl.nn.AbstractBlock
-
All direct children of this Block.
- chooseAction(RlEnv, boolean) - Method in class ai.djl.modality.rl.agent.EpsilonGreedy
-
Chooses the next action to take within the
RlEnv
. - chooseAction(RlEnv, boolean) - Method in class ai.djl.modality.rl.agent.QAgent
-
Chooses the next action to take within the
RlEnv
. - chooseAction(RlEnv, boolean) - Method in interface ai.djl.modality.rl.agent.RlAgent
-
Chooses the next action to take within the
RlEnv
. - classes - Variable in class ai.djl.modality.cv.translator.ObjectDetectionTranslator
- Classification(String, double) - Constructor for class ai.djl.modality.Classifications.Classification
-
Constructs a single class result for a classification.
- ClassificationBuilder() - Constructor for class ai.djl.modality.cv.translator.BaseImageTranslator.ClassificationBuilder
- Classifications - Class in ai.djl.modality
-
Classifications
is the container that stores the classification results for classification on a single input. - Classifications(List<String>, NDArray) - Constructor for class ai.djl.modality.Classifications
-
Constructs a
Classifications
using list of classNames parallel to an NDArray of probabilities. - Classifications(List<String>, NDArray, int) - Constructor for class ai.djl.modality.Classifications
-
Constructs a
Classifications
using list of classNames parallel to an NDArray of probabilities. - Classifications(List<String>, List<Double>) - Constructor for class ai.djl.modality.Classifications
-
Constructs a
Classifications
using a parallel list of classNames and probabilities. - Classifications.Classification - Class in ai.djl.modality
-
A
Classification
stores the classification result for a single class on a single input. - Classifications.ClassificationsSerializer - Class in ai.djl.modality
-
A customized Gson serializer to serialize the
Classifications
object. - ClassificationsSerializer() - Constructor for class ai.djl.modality.Classifications.ClassificationsSerializer
- classNames - Variable in class ai.djl.modality.Classifications
- clear() - Method in class ai.djl.nn.AbstractBaseBlock
-
Closes all the parameters of the block.
- clear() - Method in interface ai.djl.nn.Block
-
Closes all the parameters of the block.
- clip(Number, Number) - Method in interface ai.djl.ndarray.NDArray
-
Clips (limit) the values in this
NDArray
. - clip(Number, Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Clips (limit) the values in this
NDArray
. - clipGrad - Variable in class ai.djl.training.optimizer.Optimizer
- close() - Method in class ai.djl.BaseModel
- close() - Method in class ai.djl.inference.Predictor
- close() - Method in class ai.djl.modality.nlp.embedding.ModelZooTextEmbedding
- close() - Method in interface ai.djl.modality.rl.env.RlEnv
- close() - Method in interface ai.djl.modality.rl.env.RlEnv.Step
- close() - Method in interface ai.djl.Model
- close() - Method in class ai.djl.ndarray.BaseNDManager
- close() - Method in interface ai.djl.ndarray.NDArray
- close() - Method in class ai.djl.ndarray.NDArrayAdapter
- close() - Method in class ai.djl.ndarray.NDList
- close() - Method in interface ai.djl.ndarray.NDManager
- close() - Method in interface ai.djl.ndarray.NDResource
- close() - Method in class ai.djl.nn.Parameter
- close() - Method in class ai.djl.repository.zoo.ZooModel
- close() - Method in class ai.djl.training.dataset.Batch
- close() - Method in interface ai.djl.training.GradientCollector
- close() - Method in class ai.djl.training.LocalParameterServer
- close() - Method in interface ai.djl.training.ParameterServer
- close() - Method in class ai.djl.training.Trainer
- close() - Method in class ai.djl.training.util.MinMaxScaler
- close() - Method in interface ai.djl.translate.TranslatorContext
- closed - Variable in class ai.djl.ndarray.BaseNDManager
- collectMemoryInfo(Metrics) - Static method in class ai.djl.training.listener.MemoryTrainingListener
-
Collects memory information.
- COLOR - ai.djl.modality.cv.Image.Flag
- compare(Artifact, Artifact) - Method in class ai.djl.repository.Artifact.VersionComparator
- compareTo(Version) - Method in class ai.djl.repository.Version
- components - Variable in class ai.djl.training.loss.AbstractCompositeLoss
- concat(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Joins a
NDArray
along the first axis. - concat(NDArray, int) - Method in interface ai.djl.ndarray.NDArray
-
Joins a
NDArray
along an existing axis. - concat(NDList) - Static method in class ai.djl.ndarray.NDArrays
-
Joins a
NDList
along the first axis. - concat(NDList, int) - Static method in class ai.djl.ndarray.NDArrays
-
Joins a
NDList
along an existing axis. - configPostProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
- configPostProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.ClassificationBuilder
- configPostProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslator.Builder
- configPostProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator.Builder
- configPostProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
- configPostProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.SimplePoseTranslator.Builder
- configPostProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.YoloV5Translator.Builder
- configPreProcess(Map<String, ?>) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
- configure(Map<String, ?>) - Method in class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
-
Configures the builder with the model arguments.
- CONSTANT - ai.djl.training.tracker.WarmUpTracker.Mode
- ConstantEmbedding - Class in ai.djl.nn.core
-
An
AbstractIndexedEmbedding
that always returns a constant value. - ConstantEmbedding(NDArray) - Constructor for class ai.djl.nn.core.ConstantEmbedding
-
Constructs a constant embedding with the given constant.
- ConstantInitializer - Class in ai.djl.training.initializer
-
Initializer that generates tensors with constant values.
- ConstantInitializer(float) - Constructor for class ai.djl.training.initializer.ConstantInitializer
-
Creates a Constant Initializer.
- contains(Artifact) - Method in class ai.djl.repository.VersionRange
-
Returns true if the artifact's version falls within this range.
- contains(Version) - Method in class ai.djl.repository.VersionRange
-
Returns true if a version falls within this range.
- contains(String) - Method in class ai.djl.modality.nlp.DefaultVocabulary
-
Check if the vocabulary contains a token.
- contains(String) - Method in interface ai.djl.modality.nlp.Vocabulary
-
Check if the vocabulary contains a token.
- contains(String) - Method in class ai.djl.ndarray.NDList
-
Returns
true
if this NDList contains an NDArray with the specified name. - contentEquals(NDArray) - Method in interface ai.djl.ndarray.NDArray
- contentEquals(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
- contentEquals(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- contentEquals(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
- contentEquals(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns
true
if all elements in thisNDArray
are equal to theNumber
. - contentEquals(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns
true
if all elements in thisNDArray
are equal to theNumber
. - conv1d(NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv1d
-
Applies 1D convolution over an input signal composed of several input planes.
- conv1d(NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv1d
-
Applies 1D convolution over an input signal composed of several input planes.
- conv1d(NDArray, NDArray, NDArray, Shape) - Static method in class ai.djl.nn.convolutional.Conv1d
-
Applies 1D convolution over an input signal composed of several input planes.
- conv1d(NDArray, NDArray, NDArray, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv1d
-
Applies 1D convolution over an input signal composed of several input planes.
- conv1d(NDArray, NDArray, NDArray, Shape, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv1d
-
Applies 1D convolution over an input signal composed of several input planes.
- conv1d(NDArray, NDArray, NDArray, Shape, Shape, Shape, int) - Static method in class ai.djl.nn.convolutional.Conv1d
-
Applies 1D convolution over an input signal composed of several input planes.
- Conv1d - Class in ai.djl.nn.convolutional
-
A
Conv1d
layer works similar toConvolution
layer with the exception of the number of dimension it operates on being only one, which isLayoutType.WIDTH
. - Conv1d.Builder - Class in ai.djl.nn.convolutional
- conv1dTranspose(NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Applies 1D deconvolution over an input signal composed of several input planes.
- conv1dTranspose(NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Applies 1D deconvolution over an input signal composed of several input planes.
- conv1dTranspose(NDArray, NDArray, NDArray, Shape) - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Applies 1D deconvolution over an input signal composed of several input planes.
- conv1dTranspose(NDArray, NDArray, NDArray, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Applies 1D deconvolution over an input signal composed of several input planes.
- conv1dTranspose(NDArray, NDArray, NDArray, Shape, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Applies 1D deconvolution over an input signal composed of several input planes.
- conv1dTranspose(NDArray, NDArray, NDArray, Shape, Shape, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Applies 1D deconvolution over an input signal composed of several input planes.
- conv1dTranspose(NDArray, NDArray, NDArray, Shape, Shape, Shape, Shape, int) - Static method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Applies 1D convolution over an input signal composed of several input planes.
- Conv1dTranspose - Class in ai.djl.nn.convolutional
-
A
Conv1dTranspose
layer works similar toDeconvolution
layer with the exception of the number of dimension it operates on being only one, which isLayoutType.WIDTH
. - Conv1dTranspose.Builder - Class in ai.djl.nn.convolutional
-
The Builder to construct a
Conv1dTranspose
type ofBlock
. - conv2d(NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv2d
-
Applies 2D convolution over an input signal composed of several input planes.
- conv2d(NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv2d
-
Applies 2D convolution over an input signal composed of several input planes.
- conv2d(NDArray, NDArray, NDArray, Shape) - Static method in class ai.djl.nn.convolutional.Conv2d
-
Applies 2D convolution over an input signal composed of several input planes.
- conv2d(NDArray, NDArray, NDArray, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv2d
-
Applies 2D convolution over an input signal composed of several input planes.
- conv2d(NDArray, NDArray, NDArray, Shape, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv2d
-
Applies 2D convolution over an input signal composed of several input planes.
- conv2d(NDArray, NDArray, NDArray, Shape, Shape, Shape, int) - Static method in class ai.djl.nn.convolutional.Conv2d
-
Applies 2D convolution over an input signal composed of several input planes.
- Conv2d - Class in ai.djl.nn.convolutional
-
Being the pioneer of convolution layers,
Conv2d
layer works on two dimensions of input,LayoutType.WIDTH
andLayoutType.HEIGHT
as usually aConv2d
layer is used to process data with two spatial dimensions, namely image. - Conv2d.Builder - Class in ai.djl.nn.convolutional
- conv2dTranspose(NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Applies 2D deconvolution over an input signal composed of several input planes.
- conv2dTranspose(NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Applies 2D deconvolution over an input signal composed of several input planes.
- conv2dTranspose(NDArray, NDArray, NDArray, Shape) - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Applies 2D deconvolution over an input signal composed of several input planes.
- conv2dTranspose(NDArray, NDArray, NDArray, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Applies 2D deconvolution over an input signal composed of several input planes.
- conv2dTranspose(NDArray, NDArray, NDArray, Shape, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Applies 2D deconvolution over an input signal composed of several input planes.
- conv2dTranspose(NDArray, NDArray, NDArray, Shape, Shape, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Applies 2D deconvolution over an input signal composed of several input planes.
- conv2dTranspose(NDArray, NDArray, NDArray, Shape, Shape, Shape, Shape, int) - Static method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Applies 2D deconvolution over an input signal composed of several input planes.
- Conv2dTranspose - Class in ai.djl.nn.convolutional
- Conv2dTranspose.Builder - Class in ai.djl.nn.convolutional
-
The Builder to construct a
Conv2dTranspose
type ofBlock
. - conv3d(NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv3d
-
Applies 3D convolution over an input signal composed of several input planes.
- conv3d(NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.convolutional.Conv3d
-
Applies 3D convolution over an input signal composed of several input planes.
- conv3d(NDArray, NDArray, NDArray, Shape) - Static method in class ai.djl.nn.convolutional.Conv3d
-
Applies 3D convolution over an input signal composed of several input planes.
- conv3d(NDArray, NDArray, NDArray, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv3d
-
Applies 3D convolution over an input signal composed of several input planes.
- conv3d(NDArray, NDArray, NDArray, Shape, Shape, Shape) - Static method in class ai.djl.nn.convolutional.Conv3d
-
Applies 3D convolution over an input signal composed of several input planes.
- conv3d(NDArray, NDArray, NDArray, Shape, Shape, Shape, int) - Static method in class ai.djl.nn.convolutional.Conv3d
-
Applies 3D convolution over an input signal composed of several input planes.
- Conv3d - Class in ai.djl.nn.convolutional
-
Conv3d
layer behaves just asConvolution
does, with the distinction being it operates of 3-dimensional data such as medical images or video data. - Conv3d.Builder - Class in ai.djl.nn.convolutional
- Convolution - Class in ai.djl.nn.convolutional
-
A convolution layer does a dot product calculation on each channel of \(k\)-channel input data by specified number of filters, each containing \(k\) kernels for calculating each channel in the input data and then summed per filter, hence the number of filters denote the number of output channels of a convolution layer.
- Convolution(Convolution.ConvolutionBuilder<?>) - Constructor for class ai.djl.nn.convolutional.Convolution
-
Creates a
Convolution
object. - Convolution.ConvolutionBuilder<T extends Convolution.ConvolutionBuilder> - Class in ai.djl.nn.convolutional
-
A builder that can build any
Convolution
block. - ConvolutionBuilder() - Constructor for class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
- COO - ai.djl.ndarray.types.SparseFormat
- copyBuffer(Buffer, ByteBuffer) - Static method in class ai.djl.ndarray.BaseNDManager
-
Copies data from the source
Buffer
to the targetByteBuffer
. - copyTo(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Deep-copies the current
NDArray
to the one passed in. - copyTo(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Deep-copies the current
NDArray
to the one passed in. - correctInstances - Variable in class ai.djl.training.evaluator.AbstractAccuracy
- cos() - Method in interface ai.djl.ndarray.NDArray
-
Returns the trigonometric cosine of this
NDArray
element-wise. - cos() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the trigonometric cosine of this
NDArray
element-wise. - cosh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the hyperbolic cosine of this
NDArray
element-wise. - cosh() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the hyperbolic cosine of this
NDArray
element-wise. - cosine() - Static method in interface ai.djl.training.tracker.Tracker
-
Returns a new instance of
CosineTracker.Builder
that can build anCosineTracker
. - CosineTracker - Class in ai.djl.training.tracker
-
CosineTracker
is an implementation ofTracker
which is updated by taking sections of a cosine curve to smoothly reduce learning rate until a specified step and base learning rate. - CosineTracker(CosineTracker.Builder) - Constructor for class ai.djl.training.tracker.CosineTracker
-
Creates a new instance of
CosineTracker
. - CosineTracker.Builder - Class in ai.djl.training.tracker
-
The Builder to construct an
CosineTracker
object. - COUNT - ai.djl.metric.Unit
- COUNT_PER_SECOND - ai.djl.metric.Unit
- countNonzero() - Method in interface ai.djl.ndarray.NDArray
-
Counts the number of non-zero values in this
NDArray
. - countNonzero(int) - Method in interface ai.djl.ndarray.NDArray
-
Counts the number of non-zero values in this
NDArray
along a given axis. - cpu() - Static method in class ai.djl.Device
-
Returns the default CPU Device.
- CPU - Static variable in interface ai.djl.Device.Type
- create(boolean) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
. - create(boolean[]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 1D
NDArray
. - create(boolean[][]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 2-D
NDArray
. - create(boolean[], Shape) - Method in interface ai.djl.ndarray.NDManager
- create(byte) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
. - create(byte[]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 1D
NDArray
. - create(byte[][]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 2-D
NDArray
. - create(byte[], Shape) - Method in interface ai.djl.ndarray.NDManager
- create(double) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
. - create(double[]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 1D
NDArray
. - create(double[][]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 2D
NDArray
. - create(double[], Shape) - Method in interface ai.djl.ndarray.NDManager
- create(float) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
. - create(float[]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 1D
NDArray
. - create(float[][]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 2D
NDArray
. - create(float[], Shape) - Method in interface ai.djl.ndarray.NDManager
- create(int) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
. - create(int[]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 1D
NDArray
. - create(int[][]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 2D
NDArray
. - create(int[], Shape) - Method in interface ai.djl.ndarray.NDManager
- create(long) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
. - create(long[]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 1D
NDArray
. - create(long[][]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a 2-D
NDArray
. - create(long[], Shape) - Method in interface ai.djl.ndarray.NDManager
- create(Shape) - Method in interface ai.djl.ndarray.NDManager
- create(Shape, DataType) - Method in class ai.djl.ndarray.BaseNDManager
- create(Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
- create(Shape, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
- create(Number) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
. - create(String) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes a scalar
NDArray
. - create(String[]) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes 1D
NDArray
. - create(String[], Shape) - Method in interface ai.djl.ndarray.NDManager
-
Creates a String
NDArray
based on the provided shape. - create(String[], Charset) - Method in interface ai.djl.ndarray.NDManager
-
Creates and initializes 1D
NDArray
. - create(String[], Charset, Shape) - Method in class ai.djl.ndarray.BaseNDManager
-
Creates a String
NDArray
based on the provided shape. - create(String[], Charset, Shape) - Method in interface ai.djl.ndarray.NDManager
-
Creates a String
NDArray
based on the provided shape. - create(Buffer, Shape) - Method in interface ai.djl.ndarray.NDManager
- create(Buffer, Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
- createAttentionMaskFromInputMask(NDArray, NDArray) - Static method in class ai.djl.nn.transformer.BertBlock
-
Creates a 3D attention mask from a 2D tensor mask.
- createCoo(Buffer, long[][], Shape) - Method in class ai.djl.ndarray.BaseNDManager
-
Creates a Coordinate Format (COO) Matrix.
- createCoo(Buffer, long[][], Shape) - Method in interface ai.djl.ndarray.NDManager
-
Creates a Coordinate Format (COO) Matrix.
- createCSR(float[], long[], long[], Shape, Device) - Method in interface ai.djl.ndarray.NDManager
-
Creates a Compressed Sparse Row Storage (CSR) Format Matrix.
- createCSR(Buffer, long[], long[], Shape) - Method in class ai.djl.ndarray.BaseNDManager
-
Creates a Compressed Sparse Row Storage (CSR) Format Matrix.
- createCSR(Buffer, long[], long[], Shape) - Method in interface ai.djl.ndarray.NDManager
-
Creates a Compressed Sparse Row Storage (CSR) Format Matrix.
- createCSR(Buffer, long[], long[], Shape, Device) - Method in interface ai.djl.ndarray.NDManager
-
Creates a Compressed Sparse Row Storage (CSR) Format Matrix.
- createModel(Path, String, Device, Block, Map<String, Object>, String) - Method in class ai.djl.repository.zoo.BaseModelLoader
- createRowSparse(Buffer, Shape, long[], Shape) - Method in class ai.djl.ndarray.BaseNDManager
-
Stores the matrix in row sparse format.
- createRowSparse(Buffer, Shape, long[], Shape) - Method in interface ai.djl.ndarray.NDManager
-
Stores the matrix in row sparse format.
- createRowSparse(Buffer, Shape, long[], Shape, Device) - Method in interface ai.djl.ndarray.NDManager
-
Stores the matrix in row sparse format.
- Criteria<I,O> - Class in ai.djl.repository.zoo
-
The
Criteria
class contains search criteria to look up aZooModel
. - Criteria.Builder<I,O> - Class in ai.djl.repository.zoo
-
A Builder to construct a
Criteria
. - crop(NDArray, int, int, int, int) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Crops an image with a given location and size.
- Crop - Class in ai.djl.modality.cv.transform
-
A
Transform
that crops the image to a given location and size. - Crop(int, int, int, int) - Constructor for class ai.djl.modality.cv.transform.Crop
-
Creates a
CenterCrop
Transform
. - CSR - ai.djl.ndarray.types.SparseFormat
- CUDA - Static variable in class ai.djl.engine.StandardCapabilities
- CUDNN - Static variable in class ai.djl.engine.StandardCapabilities
- cumSum() - Method in interface ai.djl.ndarray.NDArray
-
Returns the cumulative sum of the elements in the flattened
NDArray
. - cumSum() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the cumulative sum of the elements in the flattened
NDArray
. - cumSum(int) - Method in interface ai.djl.ndarray.NDArray
-
Return the cumulative sum of the elements along a given axis.
- cumSum(int) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Return the cumulative sum of the elements along a given axis.
D
- data - Variable in class ai.djl.training.dataset.ArrayDataset
- dataBatchifier - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
- dataBatchifier - Variable in class ai.djl.training.dataset.RandomAccessDataset
- DataDesc - Class in ai.djl.ndarray.types
-
A data descriptor class that encapsulates information of a
NDArray
. - DataDesc(Shape) - Constructor for class ai.djl.ndarray.types.DataDesc
-
Constructs and initializes a
DataDesc
with specifiedShape
. - DataDesc(Shape, DataType) - Constructor for class ai.djl.ndarray.types.DataDesc
- DataDesc(Shape, DataType, String) - Constructor for class ai.djl.ndarray.types.DataDesc
-
Constructs and initializes a
DataDesc
with specifiedShape
,DataType
, name,Device
andSparseFormat
. - DataDesc(Shape, String) - Constructor for class ai.djl.ndarray.types.DataDesc
-
Constructs and initializes a
DataDesc
with specifiedShape
and name. - DataIterable - Class in ai.djl.training.dataset
-
DataIterable is a data loader that combines
Dataset
,Batchifier
,Pipeline
, andSampler
to provide an iterable over the givenRandomAccessDataset
. - DataIterable(RandomAccessDataset, NDManager, Sampler, Batchifier, Batchifier, Pipeline, Pipeline, ExecutorService, int, Device) - Constructor for class ai.djl.training.dataset.DataIterable
-
Creates a new instance of
DataIterable
with the given parameters. - dataset(Application, String, String) - Method in interface ai.djl.repository.Repository
-
Creates a dataset
MRL
with specified application. - dataset(Application, String, String, String) - Method in interface ai.djl.repository.Repository
-
Creates a dataset
MRL
with specified application. - dataset(Repository, Application, String, String, String) - Static method in class ai.djl.repository.MRL
-
Creates a dataset
MRL
with specified application. - Dataset - Interface in ai.djl.training.dataset
-
An interface to represent a set of sample data/label pairs to train a model.
- Dataset.Usage - Enum in ai.djl.training.dataset
-
An enum that indicates the mode - training, test or validation.
- dataType - Variable in class ai.djl.BaseModel
- dataType - Variable in class ai.djl.ndarray.NDArrayAdapter
- DataType - Enum in ai.djl.ndarray.types
-
An enum representing the underlying
NDArray
's data type. - DataType.Format - Enum in ai.djl.ndarray.types
-
The general data type format categories.
- debugDump(int) - Method in class ai.djl.ndarray.BaseNDManager
-
Prints information about this
NDManager
and all sub-managers to the console. - debugEnvironment() - Static method in class ai.djl.engine.Engine
-
Prints debug information about the environment for debugging environment issues.
- decode(byte[]) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Decodes the given byte array into an object of input parameter type.
- decode(byte[]) - Method in interface ai.djl.ndarray.NDManager
-
Decodes
NDArray
through byte array. - decode(byte[]) - Method in interface ai.djl.nn.core.AbstractIndexedEmbedding
-
Decodes the given byte array into an object of input parameter type.
- decode(byte[]) - Method in class ai.djl.nn.core.ConstantEmbedding
-
Decodes the given byte array into an object of input parameter type.
- decode(byte[]) - Method in class ai.djl.nn.core.Embedding.DefaultEmbedding
-
Decodes the given byte array into an object of input parameter type.
- decode(byte[]) - Method in class ai.djl.nn.core.Embedding.DefaultItem
-
Decodes the given byte array into an object of input parameter type.
- decode(NDManager, byte[]) - Static method in interface ai.djl.ndarray.NDArray
-
Decodes
NDArray
from bytes. - decode(NDManager, byte[]) - Static method in class ai.djl.ndarray.NDList
-
Decodes NDList from byte array.
- decode(NDManager, InputStream) - Static method in class ai.djl.ndarray.NDList
-
Decodes NDList from
InputStream
. - decode(DataInputStream) - Static method in class ai.djl.ndarray.types.Shape
-
Decodes the data in the given
DataInputStream
and converts it into the correspondingShape
object. - decode(InputStream) - Method in interface ai.djl.ndarray.NDManager
-
Decodes
NDArray
throughDataInputStream
. - decoder - Variable in class ai.djl.modality.nlp.EncoderDecoder
- Decoder - Class in ai.djl.modality.nlp
-
Decoder
is an abstract block that be can used as decoder in encoder-decoder architecture. - Decoder(byte, Block) - Constructor for class ai.djl.modality.nlp.Decoder
-
Constructs a new instance of
Decoder
with the given block. - Deconvolution - Class in ai.djl.nn.convolutional
-
Transposed convolution, also named fractionally-strided convolution Dumoulin & Visin or deconvolution Long et al., 2015, serves this purpose.
- Deconvolution(Deconvolution.DeconvolutionBuilder<?>) - Constructor for class ai.djl.nn.convolutional.Deconvolution
-
Creates a
Deconvolution
object. - Deconvolution.DeconvolutionBuilder<T extends Deconvolution.DeconvolutionBuilder> - Class in ai.djl.nn.convolutional
-
A builder that can build any
Deconvolution
block. - DeconvolutionBuilder() - Constructor for class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
- DEFAULT_FORM - Static variable in class ai.djl.modality.nlp.preprocess.UnicodeNormalizer
- defaultDevice() - Method in class ai.djl.engine.Engine
-
Returns the engine's default
Device
. - defaultDevice() - Method in class ai.djl.ndarray.BaseNDManager
-
Returns the default context used in Engine.
- defaultDevice() - Method in interface ai.djl.ndarray.NDManager
-
Returns the default context used in Engine.
- DefaultEmbedding() - Constructor for class ai.djl.nn.core.Embedding.DefaultEmbedding
- defaultFactory - Variable in class ai.djl.repository.zoo.BaseModelLoader
- defaultItem - Variable in class ai.djl.nn.core.Embedding.BaseBuilder
- DefaultItem(T) - Constructor for class ai.djl.nn.core.Embedding.DefaultItem
- DefaultModelZoo - Class in ai.djl.repository.zoo
-
A
ModelZoo
that contains models in specified locations. - DefaultModelZoo() - Constructor for class ai.djl.repository.zoo.DefaultModelZoo
-
Constructs a new
LocalModelZoo
instance. - DefaultModelZoo(String) - Constructor for class ai.djl.repository.zoo.DefaultModelZoo
-
Constructs a new
LocalModelZoo
instance from the given search locations. - DefaultTrainingConfig - Class in ai.djl.training
-
DefaultTrainingConfig
is an implementation of theTrainingConfig
interface. - DefaultTrainingConfig(Loss) - Constructor for class ai.djl.training.DefaultTrainingConfig
-
Creates an instance of
DefaultTrainingConfig
with the givenLoss
. - DefaultTranslatorFactory - Class in ai.djl.translate
-
A default implementation of
TranslatorFactory
. - DefaultTranslatorFactory() - Constructor for class ai.djl.translate.DefaultTranslatorFactory
- DefaultVocabulary - Class in ai.djl.modality.nlp
-
The default implementation of Vocabulary.
- DefaultVocabulary(DefaultVocabulary.Builder) - Constructor for class ai.djl.modality.nlp.DefaultVocabulary
-
Creates a
DefaultVocabulary
object with aDefaultVocabulary.Builder
. - DefaultVocabulary(List<String>) - Constructor for class ai.djl.modality.nlp.DefaultVocabulary
-
Creates a
DefaultVocabulary
object with the given list of tokens. - DefaultVocabulary.Builder - Class in ai.djl.modality.nlp
-
Builder class that is used to build the
DefaultVocabulary
. - DefaultZooProvider - Class in ai.djl.repository.zoo
-
An
ZooProvider
implementation can load models from specified locations. - DefaultZooProvider() - Constructor for class ai.djl.repository.zoo.DefaultZooProvider
- DENSE - ai.djl.ndarray.types.SparseFormat
- DEPTH - ai.djl.ndarray.types.LayoutType
- describeInput() - Method in class ai.djl.BaseModel
-
Returns the input descriptor of the model.
- describeInput() - Method in class ai.djl.modality.nlp.EncoderDecoder
-
Returns a
PairList
of input names, and shapes. - describeInput() - Method in interface ai.djl.Model
-
Returns the input descriptor of the model.
- describeInput() - Method in class ai.djl.nn.AbstractBaseBlock
-
Returns a
PairList
of input names, and shapes. - describeInput() - Method in interface ai.djl.nn.Block
-
Returns a
PairList
of input names, and shapes. - describeInput() - Method in class ai.djl.nn.core.Linear
-
Returns a
PairList
of input names, and shapes. - describeInput() - Method in class ai.djl.repository.zoo.ZooModel
-
Returns the input descriptor of the model.
- describeOutput() - Method in class ai.djl.BaseModel
-
Returns the output descriptor of the model.
- describeOutput() - Method in interface ai.djl.Model
-
Returns the output descriptor of the model.
- describeOutput() - Method in interface ai.djl.nn.SymbolBlock
-
Returns a
PairList
of output names and shapes stored in model file. - describeOutput() - Method in class ai.djl.repository.zoo.ZooModel
-
Returns the output descriptor of the model.
- detach() - Method in class ai.djl.ndarray.NDList
-
Detaches the
NDResource
from currentNDManager
's lifecycle. - detach() - Method in interface ai.djl.ndarray.NDResource
-
Detaches the
NDResource
from currentNDManager
's lifecycle. - detach() - Method in class ai.djl.training.util.MinMaxScaler
-
Detaches this MinMaxScaler fitted value from current NDManager's lifecycle.
- detachInternal(String) - Method in class ai.djl.ndarray.BaseNDManager
-
Detaches a
NDArray
from thisNDManager
's lifecycle. - detachInternal(String) - Method in interface ai.djl.ndarray.NDManager
-
Detaches a
NDArray
from thisNDManager
's lifecycle. - DETECT - ai.djl.modality.cv.translator.YoloV5Translator.YoloOutputType
- DetectedObject(String, double, BoundingBox) - Constructor for class ai.djl.modality.cv.output.DetectedObjects.DetectedObject
-
Constructs a bounding box with the given data.
- DetectedObjects - Class in ai.djl.modality.cv.output
-
A class representing the detected objects results for a single image in an
Application.CV.OBJECT_DETECTION
case. - DetectedObjects(List<String>, List<Double>, List<BoundingBox>) - Constructor for class ai.djl.modality.cv.output.DetectedObjects
-
Constructs a DetectedObjects, usually during post-processing.
- DetectedObjects.DetectedObject - Class in ai.djl.modality.cv.output
-
A
DetectedObject
represents a single potential detected Object for an image. - detection(NDList) - Method in class ai.djl.modality.cv.MultiBoxDetection
-
Converts multi-box detection predictions.
- device - Variable in class ai.djl.ndarray.BaseNDManager
- device - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
- device - Variable in class ai.djl.training.dataset.RandomAccessDataset
- Device - Class in ai.djl
-
The
Device
class provides the specified assignment for CPU/GPU processing on theNDArray
. - Device.Type - Interface in ai.djl
-
Contains device type string constants.
- DeviceType - Interface in ai.djl
-
DeviceType
is a class used to map the Device name to their corresponding type number. - dilation - Variable in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
- dilation - Variable in class ai.djl.nn.convolutional.Convolution
- dilation - Variable in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
- dilation - Variable in class ai.djl.nn.convolutional.Deconvolution
- dimension() - Method in class ai.djl.ndarray.types.Shape
-
Returns the number of dimensions of this
Shape
. - Dimension - Class in ai.djl.metric
-
A class represents a metric dimension.
- Dimension() - Constructor for class ai.djl.metric.Dimension
-
Constructs a new
Dimension
instance. - Dimension(String, String) - Constructor for class ai.djl.metric.Dimension
-
Constructs a new
Dimension
instance. - div(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Divides this
NDArray
by the otherNDArray
element-wise. - div(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Divides this
NDArray
by the otherNDArray
element-wise. - div(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- div(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Divides the
NDArray
by a number element-wise. - div(Number) - Method in interface ai.djl.ndarray.NDArray
-
Divides this
NDArray
by a number element-wise. - div(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Divides this
NDArray
by a number element-wise. - div(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Divides a number by a
NDArray
element-wise. - DivergenceCheckTrainingListener - Class in ai.djl.training.listener
-
TrainingListener
that gives early warning if your training has failed by divergence. - DivergenceCheckTrainingListener() - Constructor for class ai.djl.training.listener.DivergenceCheckTrainingListener
- divi(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Divides this
NDArray
by the otherNDArray
element-wise in place. - divi(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Divides this
NDArray
by the otherNDArray
element-wise in place. - divi(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- divi(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Divides a number by a
NDArray
element-wise in place. - divi(Number) - Method in interface ai.djl.ndarray.NDArray
-
Divides this
NDArray
by a number element-wise in place. - divi(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Divides this
NDArray
by a number element-wise in place. - divi(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Divides a number by a
NDArray
element-wise. - dot(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Dot product of this
NDArray
and the otherNDArray
. - dot(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Dot product of this
NDArray
and the otherNDArray
. - dot(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- download(String, String) - Static method in class ai.djl.training.util.DownloadUtils
-
Downloads a file from specified url.
- download(String, String, Progress) - Static method in class ai.djl.training.util.DownloadUtils
-
Downloads a file from specified url.
- download(URL, Path, Progress) - Static method in class ai.djl.training.util.DownloadUtils
-
Downloads a file from specified url.
- download(Path, URI, Artifact.Item, Progress) - Method in class ai.djl.repository.AbstractRepository
- download(Path, URI, Artifact.Item, Progress) - Method in class ai.djl.repository.JarRepository
- download(Path, URI, Artifact.Item, Progress) - Method in class ai.djl.repository.SimpleRepository
- download(Path, URI, Artifact.Item, Progress) - Method in class ai.djl.repository.SimpleUrlRepository
- DownloadUtils - Class in ai.djl.training.util
-
A utility class downloads the file from specified url.
- drawBoundingBoxes(DetectedObjects) - Method in interface ai.djl.modality.cv.Image
-
Draws the bounding boxes on the image.
- drawJoints(Joints) - Method in interface ai.djl.modality.cv.Image
-
Draws all joints of a body on an image.
- dropout(NDArray) - Static method in class ai.djl.nn.norm.Dropout
-
Applies Dropout to the input.
- dropout(NDArray, float) - Static method in class ai.djl.nn.norm.Dropout
-
Applies Dropout to the input.
- dropout(NDArray, float, boolean) - Static method in class ai.djl.nn.norm.Dropout
-
Applies Dropout to the input.
- Dropout - Class in ai.djl.nn.norm
-
A dropout layer benefits a network by allowing some units (neurons), and hence their respective connections, of a network to be randomly and temporarily removed by setting its value to 0 only during training by specified probability \(p\), usually set to 0.5.
- Dropout.Builder - Class in ai.djl.nn.norm
- dropRate - Variable in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
- dropRate - Variable in class ai.djl.nn.recurrent.RecurrentBlock
- dumpMemoryInfo(Metrics, String) - Static method in class ai.djl.training.listener.MemoryTrainingListener
-
Dump memory metrics into log directory.
- duplicate() - Method in interface ai.djl.modality.cv.Image
-
Gets a deep copy of the original image.
- duplicate() - Method in interface ai.djl.ndarray.NDArray
-
Returns a copy of this
NDArray
.
E
- EasyHpo - Class in ai.djl.training.hyperparameter
-
Helper for easy training with hyperparameters.
- EasyHpo() - Constructor for class ai.djl.training.hyperparameter.EasyHpo
- EasyTrain - Class in ai.djl.training
-
Helper for easy training of a whole model, a trainining batch, or a validation batch.
- ElasticNetWeightDecay - Class in ai.djl.training.loss
-
ElasticWeightDecay
calculates L1+L2 penalty of a set of parameters. - ElasticNetWeightDecay(NDList) - Constructor for class ai.djl.training.loss.ElasticNetWeightDecay
-
Calculates Elastic Net weight decay for regularization.
- ElasticNetWeightDecay(String, NDList) - Constructor for class ai.djl.training.loss.ElasticNetWeightDecay
-
Calculates Elastic Net weight decay for regularization.
- ElasticNetWeightDecay(String, NDList, float) - Constructor for class ai.djl.training.loss.ElasticNetWeightDecay
-
Calculates Elastic Net weight decay for regularization.
- ElasticNetWeightDecay(String, NDList, float, float) - Constructor for class ai.djl.training.loss.ElasticNetWeightDecay
-
Calculates Elastic Net weight decay for regularization.
- elasticNetWeightedDecay(NDList) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
ElasticNetWeightDecay
with default weight and name. - elasticNetWeightedDecay(String, float, float, NDList) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
ElasticNetWeightDecay
. - elasticNetWeightedDecay(String, float, NDList) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
ElasticNetWeightDecay
. - elasticNetWeightedDecay(String, NDList) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
ElasticNetWeightDecay
with default weight. - elu(NDArray, float) - Static method in class ai.djl.nn.Activation
-
Applies ELU activation on the input
NDArray
. - elu(NDList, float) - Static method in class ai.djl.nn.Activation
-
Applies ELU(Exponential Linear Unit) activation on the input singleton
NDList
. - eluBlock(float) - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies theELU
activation function in its forward function. - embed(NDManager, Object[]) - Method in class ai.djl.nn.core.ConstantEmbedding
-
Embeds an array of items.
- embed(NDManager, T[]) - Method in interface ai.djl.nn.core.AbstractEmbedding
-
Embeds an array of items.
- embed(NDManager, T[]) - Method in class ai.djl.nn.core.Embedding.DefaultEmbedding
-
Embeds an array of items.
- embed(NDManager, T[]) - Method in class ai.djl.nn.core.Embedding.DefaultItem
-
Embeds an array of items.
- embed(NDManager, T[]) - Method in class ai.djl.nn.core.Embedding
-
Embeds an array of items.
- embed(Object) - Method in class ai.djl.nn.core.ConstantEmbedding
-
Embeds an item.
- embed(String) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Embeds an item.
- embed(T) - Method in interface ai.djl.nn.core.AbstractIndexedEmbedding
-
Embeds an item.
- embed(T) - Method in class ai.djl.nn.core.Embedding.DefaultEmbedding
-
Embeds an item.
- embed(T) - Method in class ai.djl.nn.core.Embedding.DefaultItem
-
Embeds an item.
- embedding - Variable in class ai.djl.nn.core.ConstantEmbedding
- embedding - Variable in class ai.djl.nn.core.Embedding
- embedding(NDArray, NDArray, SparseFormat) - Static method in class ai.djl.nn.core.Embedding
-
A simple lookup table that looks up embeddings in a fixed dictionary and size.
- Embedding<T> - Class in ai.djl.nn.core
-
An Embedding block map a collection of items to 1-Dimensional representative
NDArray
s. - Embedding(NDArray) - Constructor for class ai.djl.nn.core.Embedding
-
Constructs a pretrained embedding.
- Embedding(NDArray, SparseFormat) - Constructor for class ai.djl.nn.core.Embedding
-
Constructs a pretrained embedding.
- Embedding(Embedding.BaseBuilder<T, ?>) - Constructor for class ai.djl.nn.core.Embedding
- Embedding.BaseBuilder<T,B extends Embedding.BaseBuilder<T,B>> - Class in ai.djl.nn.core
- Embedding.DefaultEmbedding - Class in ai.djl.nn.core
- Embedding.DefaultItem - Class in ai.djl.nn.core
- EmbeddingException - Exception in ai.djl.modality.nlp.embedding
-
Thrown to indicate that there was some error while loading embeddings.
- EmbeddingException(String) - Constructor for exception ai.djl.modality.nlp.embedding.EmbeddingException
-
Constructs a new exception with the specified detail message.
- EmbeddingException(String, Throwable) - Constructor for exception ai.djl.modality.nlp.embedding.EmbeddingException
-
Constructs a new exception with the specified detail message and cause.
- EmbeddingException(Throwable) - Constructor for exception ai.djl.modality.nlp.embedding.EmbeddingException
-
Constructs a new exception with the specified cause and a detail message of
(cause==null ? null : cause.toString())
which typically contains the class and detail message ofcause
. - embeddingSize - Variable in class ai.djl.nn.core.Embedding.BaseBuilder
- embeddingSize - Variable in class ai.djl.nn.core.Embedding
- embeddingType - Variable in class ai.djl.nn.core.Embedding.BaseBuilder
- embedText(NDArray) - Method in class ai.djl.modality.nlp.embedding.ModelZooTextEmbedding
-
Embeds the text after preprocessed using
TextEmbedding.preprocessTextToEmbed(List)
. - embedText(NDArray) - Method in class ai.djl.modality.nlp.embedding.SimpleTextEmbedding
-
Embeds the text after preprocessed using
TextEmbedding.preprocessTextToEmbed(List)
. - embedText(NDArray) - Method in interface ai.djl.modality.nlp.embedding.TextEmbedding
-
Embeds the text after preprocessed using
TextEmbedding.preprocessTextToEmbed(List)
. - embedText(NDArray) - Method in class ai.djl.modality.nlp.embedding.TrainableTextEmbedding
-
Embeds the text after preprocessed using
TextEmbedding.preprocessTextToEmbed(List)
. - embedText(NDManager, long[]) - Method in interface ai.djl.modality.nlp.embedding.TextEmbedding
-
Embeds the text after preprocessed using
TextEmbedding.preprocessTextToEmbed(List)
. - embedText(NDManager, List<String>) - Method in interface ai.djl.modality.nlp.embedding.TextEmbedding
-
Embeds a text.
- embedWord(NDArray) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Embeds the word after preprocessed using
WordEmbedding.preprocessWordToEmbed(String)
. - embedWord(NDArray) - Method in interface ai.djl.modality.nlp.embedding.WordEmbedding
-
Embeds the word after preprocessed using
WordEmbedding.preprocessWordToEmbed(String)
. - embedWord(NDManager, long) - Method in interface ai.djl.modality.nlp.embedding.WordEmbedding
-
Embeds the word after preprocessed using
WordEmbedding.preprocessWordToEmbed(String)
. - embedWord(NDManager, String) - Method in interface ai.djl.modality.nlp.embedding.WordEmbedding
-
Embeds a word.
- encode() - Method in interface ai.djl.ndarray.NDArray
-
Encodes
NDArray
to byte array. - encode() - Method in class ai.djl.ndarray.NDList
-
Encodes the NDList to byte array.
- encode(OutputStream) - Method in class ai.djl.ndarray.NDList
-
Writes the encoded NDList to
OutputStream
. - encode(OutputStream, boolean) - Method in class ai.djl.ndarray.NDList
-
Writes the encoded NDList to
OutputStream
. - encode(Object) - Method in class ai.djl.nn.core.ConstantEmbedding
-
Encodes an object of input type into a byte array.
- encode(String) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Encodes an object of input type into a byte array.
- encode(String, String) - Method in class ai.djl.modality.nlp.bert.BertTokenizer
-
Encodes questions and paragraph sentences.
- encode(String, String, int) - Method in class ai.djl.modality.nlp.bert.BertTokenizer
-
Encodes questions and paragraph sentences with max length.
- encode(T) - Method in interface ai.djl.nn.core.AbstractIndexedEmbedding
-
Encodes an object of input type into a byte array.
- encode(T) - Method in class ai.djl.nn.core.Embedding.DefaultEmbedding
-
Encodes an object of input type into a byte array.
- encode(T) - Method in class ai.djl.nn.core.Embedding.DefaultItem
-
Encodes an object of input type into a byte array.
- encoder - Variable in class ai.djl.modality.nlp.EncoderDecoder
- Encoder - Class in ai.djl.modality.nlp
-
Encoder
is an abstract block that be can used as encoder in encoder-decoder architecture. - Encoder(byte, Block) - Constructor for class ai.djl.modality.nlp.Encoder
-
Constructs a new instance of
Encoder
with the given block. - EncoderDecoder - Class in ai.djl.modality.nlp
-
EncoderDecoder
is a general implementation of the very popular encoder-decoder architecture. - EncoderDecoder(Encoder, Decoder) - Constructor for class ai.djl.modality.nlp.EncoderDecoder
- end() - Method in class ai.djl.training.util.ProgressBar
- Engine - Class in ai.djl.engine
-
The
Engine
interface is the base of the provided implementation for DJL. - Engine() - Constructor for class ai.djl.engine.Engine
- EngineException - Exception in ai.djl.engine
-
Thrown to indicate that a native error is raised from the underlying
Engine
. - EngineException(String) - Constructor for exception ai.djl.engine.EngineException
-
Constructs a new exception with the specified detail message.
- EngineException(String, Throwable) - Constructor for exception ai.djl.engine.EngineException
-
Constructs a new exception with the specified detail message and cause.
- EngineException(Throwable) - Constructor for exception ai.djl.engine.EngineException
-
Constructs a new exception with the specified cause and a detail message of
(cause==null ? null : cause.toString())
(which typically contains the class and detail message ofcause
). - EngineProvider - Interface in ai.djl.engine
-
The
EngineProvider
instance manufactures anEngine
instance, which is available in the system. - EpochTrainingListener - Class in ai.djl.training.listener
-
EpochTrainingListener
that tracks epochs. - EpochTrainingListener() - Constructor for class ai.djl.training.listener.EpochTrainingListener
- EpsilonGreedy - Class in ai.djl.modality.rl.agent
-
The
EpsilonGreedy
is a simple exploration/excitation agent. - EpsilonGreedy(RlAgent, Tracker) - Constructor for class ai.djl.modality.rl.agent.EpsilonGreedy
-
Constructs an
EpsilonGreedy
. - eq(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean
NDArray
for element-wise "Equals" comparison. - eq(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean
NDArray
for element-wise "Equals" comparison. - eq(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Equals" comparison. - eq(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Equals" comparison. - eq(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean
NDArray
for element-wise "Equals" comparison. - eq(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean
NDArray
for element-wise "Equals" comparison. - eq(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Equals" comparison. - equals(Object) - Method in class ai.djl.Application
- equals(Object) - Method in class ai.djl.Device
- equals(Object) - Method in class ai.djl.ndarray.types.Shape
- equals(Object) - Method in class ai.djl.repository.Version
- erfinv() - Method in interface ai.djl.ndarray.NDArray
-
Returns element-wise inverse gauss error function of the
NDArray
. - erfinv() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns element-wise inverse gauss error function of the
NDArray
. - erfinv(NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise inverse gauss error function of the input
NDArray
. - evaluate(NDList) - Method in class ai.djl.training.Trainer
-
Evaluates function of the model once on the given input
NDList
. - evaluate(NDList, NDList) - Method in class ai.djl.nn.transformer.BertMaskedLanguageModelLoss
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.nn.transformer.BertNextSentenceLoss
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.evaluator.AbstractAccuracy
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.evaluator.BoundingBoxError
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.evaluator.Evaluator
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.evaluator.IndexEvaluator
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.loss.AbstractCompositeLoss
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.loss.ElasticNetWeightDecay
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.loss.HingeLoss
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.loss.IndexLoss
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.loss.L1Loss
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.loss.L1WeightDecay
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.loss.L2Loss
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.loss.L2WeightDecay
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.loss.MaskedSoftmaxCrossEntropyLoss
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.loss.SigmoidBinaryCrossEntropyLoss
-
Calculates the evaluation between the labels and the predictions.
- evaluate(NDList, NDList) - Method in class ai.djl.training.loss.SoftmaxCrossEntropyLoss
-
Calculates the evaluation between the labels and the predictions.
- evaluateDataset(Trainer, Dataset) - Static method in class ai.djl.training.EasyTrain
-
Evaluates the test dataset.
- Evaluator - Class in ai.djl.training.evaluator
-
Base class for all
Evaluator
s that can be used to evaluate the performance of a model. - Evaluator(String) - Constructor for class ai.djl.training.evaluator.Evaluator
-
Creates an evaluator with abstract update methods.
- EvaluatorTrainingListener - Class in ai.djl.training.listener
-
TrainingListener
that records evaluator results. - EvaluatorTrainingListener() - Constructor for class ai.djl.training.listener.EvaluatorTrainingListener
-
Constructs an
EvaluatorTrainingListener
that updates the training progress the default frequency. - EvaluatorTrainingListener(int) - Constructor for class ai.djl.training.listener.EvaluatorTrainingListener
-
Constructs an
EvaluatorTrainingListener
that updates the training progress the given frequency. - exp() - Method in interface ai.djl.ndarray.NDArray
-
Returns the exponential value of this
NDArray
element-wise. - exp() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the exponential value of this
NDArray
element-wise. - expandDims(int) - Method in interface ai.djl.ndarray.NDArray
-
Expands the
Shape
of aNDArray
. - expandDims(int) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Expands the
Shape
of aNDArray
. - eye(int) - Method in interface ai.djl.ndarray.NDManager
-
Returns a 2-D array with ones on the diagonal and zeros elsewhere.
- eye(int, int) - Method in interface ai.djl.ndarray.NDManager
-
Returns a 2-D array with ones on the diagonal and zeros elsewhere.
- eye(int, int, int) - Method in interface ai.djl.ndarray.NDManager
-
Returns a 2-D array with ones on the diagonal and zeros elsewhere.
- eye(int, int, int, DataType) - Method in class ai.djl.ndarray.BaseNDManager
-
Returns a 2-D array with ones on the diagonal and zeros elsewhere.
- eye(int, int, int, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Returns a 2-D array with ones on the diagonal and zeros elsewhere.
- eye(int, int, int, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
-
Returns a 2-D array with ones on the diagonal and zeros elsewhere.
F
- factor() - Static method in interface ai.djl.training.tracker.Tracker
-
Returns a new instance of
FactorTracker.Builder
that can build anFactorTracker
. - FactorTracker - Class in ai.djl.training.tracker
-
FactorTracker
is an implementation ofTracker
which is updated by a multiplicative factor. - FactorTracker(FactorTracker.Builder) - Constructor for class ai.djl.training.tracker.FactorTracker
-
Creates a new instance of
FactorTracker
. - FactorTracker.Builder - Class in ai.djl.training.tracker
-
The Builder to construct an
FactorTracker
object. - fallthrough - Variable in class ai.djl.nn.core.Embedding.BaseBuilder
- fallthroughEmbedding - Variable in class ai.djl.nn.core.Embedding
- FilenameUtils - Class in ai.djl.repository
-
A class containing utility methods.
- FileTranslator<T> - Class in ai.djl.modality.cv.translator.wrapper
-
Built-in
Translator
that provides image pre-processing from file path. - FileTranslator(Translator<Image, T>) - Constructor for class ai.djl.modality.cv.translator.wrapper.FileTranslator
-
Creates a
FileTranslator
instance. - filterByLayoutType(Predicate<LayoutType>) - Method in class ai.djl.ndarray.types.Shape
-
Returns only the axes of the Shape whose layout types match the predicate.
- filters - Variable in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
- filters - Variable in class ai.djl.nn.convolutional.Convolution
- filters - Variable in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
- filters - Variable in class ai.djl.nn.convolutional.Deconvolution
- finalize() - Method in class ai.djl.BaseModel
- finalize() - Method in class ai.djl.inference.Predictor
- finalize() - Method in class ai.djl.training.Trainer
- fit() - Method in class ai.djl.training.hyperparameter.EasyHpo
-
Fits the model given the implemented abstract methods.
- fit(NDArray) - Method in class ai.djl.training.util.MinMaxScaler
-
Computes the minimum and maximum to be used for later scaling.
- fit(NDArray, int[]) - Method in class ai.djl.training.util.MinMaxScaler
-
Computes the minimum and maximum to be used for later scaling.
- fit(Trainer, int, Dataset, Dataset) - Static method in class ai.djl.training.EasyTrain
-
Runs a basic epoch training experience with a given trainer.
- fixed(float) - Static method in interface ai.djl.training.tracker.Tracker
-
Returns a new instance of
Tracker
with a fixed value. - flag - Variable in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
- flatten() - Method in interface ai.djl.ndarray.NDArray
-
Flattens this
NDArray
into a 1-DNDArray
in row-major order. - flatten() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Flattens this
NDArray
into a 1-DNDArray
in row-major order. - flip(int...) - Method in interface ai.djl.ndarray.NDArray
-
Returns the reverse order of elements in an array along the given axis.
- flip(int...) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the reverse order of elements in an array along the given axis.
- FLOAT16 - ai.djl.ndarray.types.DataType
- FLOAT32 - ai.djl.ndarray.types.DataType
- FLOAT64 - ai.djl.ndarray.types.DataType
- FLOATING - ai.djl.ndarray.types.DataType.Format
- floatValue(Map<String, ?>, String) - Static method in class ai.djl.translate.ArgumentsUtil
-
Returns the float value from the arguments.
- floatValue(Map<String, ?>, String, float) - Static method in class ai.djl.translate.ArgumentsUtil
-
Returns the float value from the arguments.
- floor() - Method in interface ai.djl.ndarray.NDArray
-
Returns the floor of this
NDArray
element-wise. - floor() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the floor of this
NDArray
element-wise. - forward(NDList) - Method in class ai.djl.training.Trainer
-
Applies the forward function of the model once on the given input
NDList
. - forward(NDList, NDList) - Method in class ai.djl.training.Trainer
-
Applies the forward function of the model once with both data and labels.
- forward(ParameterStore, NDList, boolean) - Method in interface ai.djl.nn.Block
-
Applies the operating function of the block once.
- forward(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.AbstractBaseBlock
-
Applies the operating function of the block once.
- forward(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in interface ai.djl.nn.Block
-
Applies the operating function of the block once.
- forward(ParameterStore, NDList, NDList, PairList<String, Object>) - Method in class ai.djl.modality.nlp.EncoderDecoder
-
A forward call using both training data and labels.
- forward(ParameterStore, NDList, NDList, PairList<String, Object>) - Method in class ai.djl.nn.AbstractBaseBlock
-
A forward call using both training data and labels.
- forward(ParameterStore, NDList, NDList, PairList<String, Object>) - Method in interface ai.djl.nn.Block
-
A forward call using both training data and labels.
- forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.modality.nlp.Decoder
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.modality.nlp.embedding.TrainableTextEmbedding
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.modality.nlp.Encoder
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.modality.nlp.EncoderDecoder
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.AbstractBaseBlock
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.convolutional.Convolution
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.convolutional.Deconvolution
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.core.ConstantEmbedding
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.core.Embedding
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.core.Linear
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.core.Prelu
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.LambdaBlock
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.norm.BatchNorm
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.norm.Dropout
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.norm.LayerNorm
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.ParallelBlock
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.recurrent.GRU
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.recurrent.LSTM
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.recurrent.RNN
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.SequentialBlock
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.transformer.BertBlock
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.transformer.BertMaskedLanguageModelBlock
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.transformer.BertNextSentenceBlock
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.transformer.BertPretrainingBlock
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.transformer.IdEmbedding
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, boolean, PairList<String, Object>) - Method in class ai.djl.nn.transformer.TransformerEncoderBlock
-
A helper for
Block.forward(ParameterStore, NDList, boolean, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, NDList, PairList<String, Object>) - Method in class ai.djl.modality.nlp.Encoder
- forwardInternal(ParameterStore, NDList, NDList, PairList<String, Object>) - Method in class ai.djl.nn.AbstractBaseBlock
-
A helper for
Block.forward(ParameterStore, NDList, NDList, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, NDList, PairList<String, Object>) - Method in class ai.djl.nn.ParallelBlock
-
A helper for
Block.forward(ParameterStore, NDList, NDList, PairList)
after initialization. - forwardInternal(ParameterStore, NDList, NDList, PairList<String, Object>) - Method in class ai.djl.nn.SequentialBlock
-
A helper for
Block.forward(ParameterStore, NDList, NDList, PairList)
after initialization. - freeze(boolean) - Method in class ai.djl.nn.Parameter
-
Freezes or unfreezes the parameter for training.
- freezeParameters(boolean) - Method in interface ai.djl.nn.Block
-
Freezes or unfreezes all parameters inside the block for training.
- from(NDArray) - Method in interface ai.djl.ndarray.NDManager
-
Creates a new
NDArray
if the inputNDArray
is from external engine. - fromBuffer(Buffer) - Static method in enum ai.djl.ndarray.types.DataType
-
Returns the data type to use for a data buffer.
- fromDeviceType(int) - Static method in interface ai.djl.DeviceType
-
Map device to its type number.
- fromFile(Path) - Method in class ai.djl.modality.cv.BufferedImageFactory
-
Gets
Image
from file. - fromFile(Path) - Method in class ai.djl.modality.cv.ImageFactory
-
Gets
Image
from file. - fromImage(Object) - Method in class ai.djl.modality.cv.BufferedImageFactory
-
Gets
Image
from varies Java image types. - fromImage(Object) - Method in class ai.djl.modality.cv.ImageFactory
-
Gets
Image
from varies Java image types. - fromIndex(NDIndex, Shape) - Static method in class ai.djl.ndarray.index.full.NDIndexFullPick
-
Returns (if possible) the
NDIndexFullPick
representation of anNDIndex
. - fromIndex(NDIndex, Shape) - Static method in class ai.djl.ndarray.index.full.NDIndexFullSlice
-
Returns (if possible) the
NDIndexFullSlice
representation of anNDIndex
. - fromInputStream(InputStream) - Method in class ai.djl.modality.cv.BufferedImageFactory
-
Gets
Image
fromInputStream
. - fromInputStream(InputStream) - Method in class ai.djl.modality.cv.ImageFactory
-
Gets
Image
fromInputStream
. - fromName(String) - Static method in class ai.djl.Device
-
Parses a deviceName string into a device for the default engine.
- fromName(String, Engine) - Static method in class ai.djl.Device
-
Parses a deviceName string into a device.
- fromNDArray(NDArray) - Method in class ai.djl.modality.cv.BufferedImageFactory
- fromNDArray(NDArray) - Method in class ai.djl.modality.cv.ImageFactory
- fromNumpy(String) - Static method in enum ai.djl.ndarray.types.DataType
-
Returns the data type from numpy value.
- fromString(String) - Static method in interface ai.djl.translate.Batchifier
-
Returns a batchifier from a batchifier name.
- fromUrl(String) - Method in class ai.djl.modality.cv.ImageFactory
-
Gets
Image
from URL. - fromUrl(URL) - Method in class ai.djl.modality.cv.ImageFactory
-
Gets
Image
from URL. - fromValue(char) - Static method in enum ai.djl.ndarray.types.LayoutType
-
Converts the character to the matching layout type.
- fromValue(int) - Static method in enum ai.djl.ndarray.types.SparseFormat
-
Gets the
SparseFormat
from it's integer value. - fromValue(String) - Static method in enum ai.djl.metric.Unit
-
Returns
Unit
instance from an string value. - fromValue(String) - Static method in enum ai.djl.ndarray.types.LayoutType
-
Converts each character to the matching layout type.
- full(Shape, float) - Method in interface ai.djl.ndarray.NDManager
-
Return a new
NDArray
of given shape, filled with value. - full(Shape, float, DataType) - Method in class ai.djl.ndarray.BaseNDManager
-
Return a new
NDArray
of given shape, filled with value. - full(Shape, float, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Return a new
NDArray
of given shape, filled with value. - full(Shape, float, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
-
Return a new
NDArray
of given shape, device, filled with value. - full(Shape, int) - Method in interface ai.djl.ndarray.NDManager
-
Return a new
NDArray
of given shape, filled with value.
G
- GAMMA - ai.djl.nn.Parameter.Type
- gates - Variable in class ai.djl.nn.recurrent.RecurrentBlock
- gather(NDArray, int) - Method in interface ai.djl.ndarray.NDArray
-
Returns a partial
NDArray
pointed by the indexed array. - gather(NDArray, int) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns a partial
NDArray
pointed by the indexed array. - gatherFromIndices(NDArray, NDArray) - Static method in class ai.djl.nn.transformer.BertMaskedLanguageModelBlock
-
Given a 3D array of shape (B, S, E) and a 2D array of shape (B, I) returns the flattened lookup result of shape (B * I * E).
- gatherNd(NDArray, NDArray) - Static method in class ai.djl.nn.transformer.MissingOps
-
Applies the mxnet gather_nd operator.
- GAUSSIAN - ai.djl.training.initializer.XavierInitializer.RandomType
- gelu(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies GELU(Gaussian Error Linear Unit) activation on the input
NDArray
. - gelu(NDList) - Static method in class ai.djl.nn.Activation
-
Applies GELU(Gaussian Error Linear Unit) activation on the input singleton
NDList
. - geluBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies theGELU
activation function in its forward function. - generateAnchorBoxes(NDArray) - Method in class ai.djl.modality.cv.MultiBoxPrior
-
Generates the anchorBoxes array in the input's manager and device.
- get(int) - Method in class ai.djl.modality.Input
-
Returns the element at the specified position in the
Input
. - get(int) - Method in class ai.djl.ndarray.index.NDIndex
-
Returns the index affecting the given dimension.
- get(int) - Method in class ai.djl.ndarray.types.Shape
-
Returns the shape in the given dimension.
- get(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a partial
NDArray
. - get(NDIndex) - Method in interface ai.djl.ndarray.NDArray
-
Returns a partial
NDArray
. - get(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns a partial
NDArray
. - get(NDArray, NDIndexFullPick) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Returns a subarray by picking the elements.
- get(NDArray, NDIndexFullSlice) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Returns a subarray at the slice.
- get(NDArray, NDIndex) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Returns a subarray at the given index.
- get(NDManager) - Method in interface ai.djl.translate.NDArraySupplier
- get(NDManager, long) - Method in class ai.djl.training.dataset.ArrayDataset
-
Gets the
Record
for the given index from the dataset. - get(NDManager, long) - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Gets the
Record
for the given index from the dataset. - get(String) - Method in class ai.djl.modality.Classifications
-
Returns the result for a particular class name.
- get(String) - Method in class ai.djl.modality.Input
-
Returns the element for the first key found in the
Input
. - get(String) - Method in class ai.djl.ndarray.NDList
-
Returns the first occurrence of the specified element from this NDList if it is present.
- get(String, Object...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a partial
NDArray
. - getAccumulator(String) - Method in class ai.djl.training.evaluator.AbstractAccuracy
-
Returns the accumulated evaluator value.
- getAccumulator(String) - Method in class ai.djl.training.evaluator.BoundingBoxError
-
Returns the accumulated evaluator value.
- getAccumulator(String) - Method in class ai.djl.training.evaluator.Evaluator
-
Returns the accumulated evaluator value.
- getAccumulator(String) - Method in class ai.djl.training.evaluator.IndexEvaluator
-
Returns the accumulated evaluator value.
- getAccumulator(String) - Method in class ai.djl.training.loss.AbstractCompositeLoss
-
Returns the accumulated evaluator value.
- getAccumulator(String) - Method in class ai.djl.training.loss.Loss
-
Returns the accumulated evaluator value.
- getAction() - Method in interface ai.djl.modality.rl.env.RlEnv.Step
-
Returns the action taken.
- getActionSpace() - Method in interface ai.djl.modality.rl.env.RlEnv
-
Returns the current actions that can be taken in the environment.
- getAllEngines() - Static method in class ai.djl.engine.Engine
-
Returns a set of engine names that are loaded.
- getAlternativeEngine() - Method in class ai.djl.engine.Engine
-
Returns the alternative
engine
if available. - getApplication() - Method in class ai.djl.repository.Metadata
-
Returns the
Application
. - getApplication() - Method in class ai.djl.repository.MRL
-
Returns the application.
- getApplication() - Method in class ai.djl.repository.zoo.BaseModelLoader
-
Returns the application of the
ModelLoader
. - getApplication() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the application of the model.
- getApplication() - Method in interface ai.djl.repository.zoo.ModelLoader
-
Returns the application of the
ModelLoader
. - getArguments() - Method in class ai.djl.repository.Artifact
-
Returns the artifact arguments.
- getArguments() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the override configurations of the model loading arguments.
- getArguments(Map<String, Object>) - Method in class ai.djl.repository.Artifact
-
Returns the artifact arguments.
- getArray() - Method in class ai.djl.nn.Parameter
-
Gets the values of this
Parameter
as anNDArray
. - getArtifact() - Method in class ai.djl.repository.Artifact.Item
-
Returns the artifact associated with this item.
- getArtifact(String) - Method in class ai.djl.BaseModel
-
Finds an artifact resource with a given name in the model.
- getArtifact(String) - Method in interface ai.djl.Model
-
Finds an artifact resource with a given name in the model.
- getArtifact(String) - Method in class ai.djl.repository.zoo.ZooModel
-
Finds an artifact resource with a given name in the model.
- getArtifact(String, Function<InputStream, T>) - Method in class ai.djl.BaseModel
-
Attempts to load the artifact using the given function and cache it if the specified artifact is not already cached.
- getArtifact(String, Function<InputStream, T>) - Method in interface ai.djl.Model
-
Attempts to load the artifact using the given function and cache it if the specified artifact is not already cached.
- getArtifact(String, Function<InputStream, T>) - Method in class ai.djl.repository.zoo.ZooModel
-
Attempts to load the artifact using the given function and cache it if the specified artifact is not already cached.
- getArtifactAsStream(String) - Method in class ai.djl.BaseModel
-
Finds an artifact resource with a given name in the model.
- getArtifactAsStream(String) - Method in interface ai.djl.Model
-
Finds an artifact resource with a given name in the model.
- getArtifactAsStream(String) - Method in class ai.djl.repository.zoo.ZooModel
-
Finds an artifact resource with a given name in the model.
- getArtifactId() - Method in class ai.djl.repository.Metadata
-
Returns the artifactId.
- getArtifactId() - Method in class ai.djl.repository.MRL
-
Returns the artifactId.
- getArtifactId() - Method in class ai.djl.repository.zoo.BaseModelLoader
-
Returns the artifact ID of the
ModelLoader
. - getArtifactId() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the artifactId of the
ModelLoader
to be searched. - getArtifactId() - Method in interface ai.djl.repository.zoo.ModelLoader
-
Returns the artifact ID of the
ModelLoader
. - getArtifactNames() - Method in class ai.djl.BaseModel
-
Returns the artifact names associated with the model.
- getArtifactNames() - Method in interface ai.djl.Model
-
Returns the artifact names associated with the model.
- getArtifactNames() - Method in class ai.djl.repository.zoo.ZooModel
-
Returns the artifact names associated with the model.
- getArtifacts() - Method in class ai.djl.repository.Metadata
-
Returns all the artifacts in the metadata.
- getAsBytes() - Method in interface ai.djl.ndarray.BytesSupplier
-
Returns the
byte[]
presentation of the object. - getAsBytes() - Method in class ai.djl.ndarray.NDList
-
Returns the
byte[]
presentation of the object. - getAsBytes(int) - Method in class ai.djl.modality.Input
-
Returns the value as
byte[]
at the specified position in theInput
. - getAsBytes(String) - Method in class ai.djl.modality.Input
-
Returns the value as
byte[]
for the first key found in theInput
. - getAsNDArray(NDManager, int) - Method in class ai.djl.modality.Input
-
Returns the value as
NDArray
at the specified position in theInput
. - getAsNDArray(NDManager, String) - Method in class ai.djl.modality.Input
-
Returns the value as
NDArray
for the first key found in theInput
. - getAsNDList(NDManager, int) - Method in class ai.djl.modality.Input
-
Returns the value as
NDList
at the specified position in theInput
. - getAsNDList(NDManager, String) - Method in class ai.djl.modality.Input
-
Returns the value as
NDList
for the first key found in theInput
. - getAsObject() - Method in interface ai.djl.ndarray.BytesSupplier
-
Returns the object that backs this
BytesSupplier
. - getAsString() - Method in class ai.djl.modality.Classifications
-
Returns the
String
presentation of the object. - getAsString() - Method in interface ai.djl.ndarray.BytesSupplier
-
Returns the
String
presentation of the object. - getAsString(int) - Method in class ai.djl.modality.Input
-
Returns the value as
byte[]
at the specified position in theInput
. - getAsString(String) - Method in class ai.djl.modality.Input
-
Returns the value as
byte[]
for the first key found in theInput
. - getAttachment(String) - Method in interface ai.djl.translate.TranslatorContext
-
Returns value of attached key-value pair to context.
- getAttentionMask() - Method in class ai.djl.modality.nlp.bert.BertToken
-
Gets the mask to avoid performing attention on padding token indices.
- getAxis() - Method in class ai.djl.ndarray.index.full.NDIndexFullPick
-
Returns the axis to pick.
- getBaseUri() - Method in class ai.djl.repository.AbstractRepository
-
Returns the URI to the base of the repository.
- getBaseUri() - Method in interface ai.djl.repository.Repository
-
Returns the URI to the base of the repository.
- getBaseUri() - Method in class ai.djl.repository.SimpleRepository
-
Returns the URI to the base of the repository.
- getBatch() - Method in interface ai.djl.modality.rl.env.RlEnv
-
Returns a batch of steps from the environment
ReplayBuffer
. - getBatch() - Method in class ai.djl.modality.rl.LruReplayBuffer
-
Returns a batch of steps from this buffer.
- getBatch() - Method in interface ai.djl.modality.rl.ReplayBuffer
-
Returns a batch of steps from this buffer.
- getBatch() - Method in class ai.djl.training.listener.TrainingListener.BatchData
-
Returns the original batch.
- getBatchifier() - Method in class ai.djl.modality.cv.translator.BaseImageTranslator
-
Gets the
Batchifier
. - getBatchifier() - Method in class ai.djl.modality.cv.translator.ImageServingTranslator
-
Gets the
Batchifier
. - getBatchifier() - Method in class ai.djl.modality.cv.translator.wrapper.FileTranslator
-
Gets the
Batchifier
. - getBatchifier() - Method in class ai.djl.modality.cv.translator.wrapper.InputStreamTranslator
-
Gets the
Batchifier
. - getBatchifier() - Method in class ai.djl.modality.cv.translator.wrapper.UrlTranslator
-
Gets the
Batchifier
. - getBatchifier() - Method in class ai.djl.modality.nlp.translator.QaServingTranslator
-
Gets the
Batchifier
. - getBatchifier() - Method in class ai.djl.modality.nlp.translator.QATranslator
-
Gets the
Batchifier
. - getBatchifier() - Method in class ai.djl.modality.nlp.translator.SimpleText2TextTranslator
-
Gets the
Batchifier
. - getBatchifier() - Method in class ai.djl.modality.nlp.translator.TextClassificationServingTranslator
-
Gets the
Batchifier
. - getBatchifier() - Method in interface ai.djl.translate.NoBatchifyTranslator
-
Gets the
Batchifier
. - getBatchifier() - Method in class ai.djl.translate.NoopTranslator
-
Gets the
Batchifier
. - getBatchifier() - Method in interface ai.djl.translate.Translator
-
Gets the
Batchifier
. - getBatchSize() - Method in class ai.djl.training.dataset.BatchSampler
-
Returns the batch size of the
Sampler
. - getBatchSize() - Method in interface ai.djl.training.dataset.Sampler
-
Returns the batch size of the
Sampler
. - getBertMaskedLanguageModelLoss() - Method in class ai.djl.nn.transformer.BertPretrainingLoss
-
gets BertMaskedLanguageModelLoss.
- getBertNextSentenceLoss() - Method in class ai.djl.nn.transformer.BertPretrainingLoss
-
gets BertNextSentenceLoss.
- getBest() - Method in class ai.djl.training.hyperparameter.optimizer.BaseHpOptimizer
-
Returns the best hyperparameters and loss.
- getBest() - Method in interface ai.djl.training.hyperparameter.optimizer.HpOptimizer
-
Returns the best hyperparameters and loss.
- getBlock() - Method in class ai.djl.BaseModel
-
Gets the block from the Model.
- getBlock() - Method in interface ai.djl.Model
-
Gets the block from the Model.
- getBlock() - Method in class ai.djl.repository.zoo.Criteria
- getBlock() - Method in class ai.djl.repository.zoo.ZooModel
-
Gets the block from the Model.
- getBlock() - Method in interface ai.djl.translate.TranslatorContext
-
Returns the block from the
TranslatorContext
. - getBoolean(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a boolean element from this
NDArray
. - getBoundingBox() - Method in class ai.djl.modality.cv.output.DetectedObjects.DetectedObject
-
Returns the
BoundingBox
of the detected object. - getBounds() - Method in interface ai.djl.modality.cv.output.BoundingBox
-
Returns the bounding
Rectangle
of thisBoundingBox
. - getBounds() - Method in class ai.djl.modality.cv.output.Rectangle
-
Returns the bounding
Rectangle
of thisBoundingBox
. - getByte(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns an byte element from this
NDArray
. - getCacheDirectory() - Method in class ai.djl.repository.AbstractRepository
-
Returns the cache directory for the repository.
- getCacheDirectory() - Method in interface ai.djl.repository.Repository
-
Returns the cache directory for the repository.
- getCacheDirectory() - Method in class ai.djl.repository.SimpleRepository
-
Returns the cache directory for the repository.
- getCheckpoint() - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
Returns the checkpoint frequency (or -1 for no checkpointing) in
SaveModelTrainingListener
. - getChildren() - Method in class ai.djl.nn.AbstractBlock
-
Returns a list of all the children of the block.
- getChildren() - Method in class ai.djl.nn.AbstractSymbolBlock
-
Returns a list of all the children of the block.
- getChildren() - Method in interface ai.djl.nn.Block
-
Returns a list of all the children of the block.
- getClassName() - Method in class ai.djl.modality.Classifications.Classification
-
Returns the class name.
- getCode() - Method in class ai.djl.modality.Output
-
Returns the status code of the output.
- getComponents() - Method in class ai.djl.training.loss.AbstractCompositeLoss
-
Returns the component losses that make up the composite loss.
- getConfidence() - Method in class ai.djl.modality.cv.output.Joints.Joint
-
Returns the confidence probability for the joint.
- getContent() - Method in class ai.djl.modality.Input
-
Returns the content of the input.
- getData() - Method in class ai.djl.modality.Input
-
Returns the default data item.
- getData() - Method in class ai.djl.training.dataset.Batch
-
Gets the data of this
Batch
. - getData() - Method in class ai.djl.training.dataset.Record
-
Gets the data of this
Record
. - getData(NDManager) - Method in interface ai.djl.training.dataset.Dataset
-
Fetches an iterator that can iterate through the
Dataset
. - getData(NDManager) - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Fetches an iterator that can iterate through the
Dataset
. - getData(NDManager, Sampler) - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Fetches an iterator that can iterate through the
Dataset
with a custom sampler. - getData(NDManager, Sampler, ExecutorService) - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Fetches an iterator that can iterate through the
Dataset
with a custom sampler multi-threaded. - getData(NDManager, ExecutorService) - Method in interface ai.djl.training.dataset.Dataset
-
Fetches an iterator that can iterate through the
Dataset
with multiple threads. - getData(NDManager, ExecutorService) - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Fetches an iterator that can iterate through the
Dataset
with multiple threads. - getDataAsNDList(NDManager) - Method in class ai.djl.modality.Input
-
Returns the default data as
NDList
. - getDataset(Dataset.Usage) - Method in class ai.djl.training.hyperparameter.EasyHpo
-
Returns the dataset to train with.
- getDataType() - Method in class ai.djl.BaseModel
-
Returns the standard data type used within the model.
- getDataType() - Method in interface ai.djl.Model
-
Returns the standard data type used within the model.
- getDataType() - Method in interface ai.djl.ndarray.NDArray
-
Returns the
DataType
of thisNDArray
. - getDataType() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the
DataType
of thisNDArray
. - getDataType() - Method in class ai.djl.ndarray.types.DataDesc
- getDataType() - Method in class ai.djl.repository.zoo.ZooModel
-
Returns the standard data type used within the model.
- getDefaultArtifact() - Method in class ai.djl.repository.MRL
-
Returns the default artifact.
- getDefaultEngineName() - Static method in class ai.djl.engine.Engine
-
Returns the default Engine name.
- getDescription() - Method in class ai.djl.repository.Metadata
-
Returns the description.
- getDevice() - Method in class ai.djl.ndarray.BaseNDManager
-
Returns the default
Device
of thisNDManager
. - getDevice() - Method in interface ai.djl.ndarray.NDArray
-
Returns the
Device
of thisNDArray
. - getDevice() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the
Device
of thisNDArray
. - getDevice() - Method in interface ai.djl.ndarray.NDManager
-
Returns the default
Device
of thisNDManager
. - getDevice() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the
Device
of the model to be loaded on. - getDeviceId() - Method in class ai.djl.Device
-
Returns the
deviceId
of the Device. - getDevices() - Method in class ai.djl.engine.Engine
-
Returns an array of devices.
- getDevices() - Method in class ai.djl.training.DefaultTrainingConfig
-
Gets the
Device
that are available for computation. - getDevices() - Method in class ai.djl.training.Trainer
-
Returns the devices used for training.
- getDevices() - Method in interface ai.djl.training.TrainingConfig
-
Gets the
Device
that are available for computation. - getDevices(int) - Method in class ai.djl.engine.Engine
-
Returns an array of devices given the maximum number of GPUs to use.
- getDeviceType() - Method in class ai.djl.Device
-
Returns the device type of the Device.
- getDimensions() - Method in class ai.djl.metric.Metric
-
Returns the metric dimensions.
- getDirectParameters() - Method in class ai.djl.nn.AbstractBlock
-
Returns a list of all the direct parameters of the block.
- getDirectParameters() - Method in interface ai.djl.nn.Block
-
Returns a list of all the direct parameters of the block.
- getDouble(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a double element from this
NDArray
. - getEllipsisIndex() - Method in class ai.djl.ndarray.index.NDIndex
-
Returns the index of the ellipsis.
- getEmbeddingSize() - Method in class ai.djl.nn.transformer.BertBlock
-
Returns the embedding size used for tokens.
- getEmbeddingType() - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Returns the embedded type.
- getEncoded() - Method in class ai.djl.ndarray.types.Shape
-
Gets the byte array representation of this
Shape
for serialization. - getEngine() - Method in interface ai.djl.engine.EngineProvider
-
Returns the instance of the
Engine
class EngineProvider should bind to. - getEngine() - Method in interface ai.djl.ndarray.NDManager
-
Returns the
Engine
associated with this manager. - getEngine() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the engine name.
- getEngine(String) - Static method in class ai.djl.engine.Engine
-
Returns the
Engine
with the given name. - getEngineName() - Method in class ai.djl.engine.Engine
-
Returns the name of the Engine.
- getEngineName() - Method in interface ai.djl.engine.EngineProvider
-
Returns the name of the
Engine
. - getEngineRank() - Method in interface ai.djl.engine.EngineProvider
-
Returns the rank of the
Engine
. - getEpoch() - Method in class ai.djl.training.TrainingResult
-
Returns the actual number of epoch.
- getEvaluations() - Method in class ai.djl.training.TrainingResult
-
Returns the raw evaluation metrics.
- getEvaluators() - Method in class ai.djl.training.DefaultTrainingConfig
-
Returns the list of
Evaluator
s that should be computed during training. - getEvaluators() - Method in class ai.djl.training.Trainer
-
Gets all
Evaluator
s. - getEvaluators() - Method in interface ai.djl.training.TrainingConfig
-
Returns the list of
Evaluator
s that should be computed during training. - getExecutorService() - Method in class ai.djl.training.DefaultTrainingConfig
-
Gets the
ExecutorService
for parallelization. - getExecutorService() - Method in class ai.djl.training.Trainer
-
Returns the
ExecutorService
. - getExecutorService() - Method in interface ai.djl.training.TrainingConfig
-
Gets the
ExecutorService
for parallelization. - getExpectedLayout() - Method in class ai.djl.nn.convolutional.Conv1d
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Conv2d
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Conv3d
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Convolution
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Deconvolution
-
Returns the expected layout of the input.
- getExtension() - Method in class ai.djl.repository.Artifact.Item
-
Returns the type of file extension.
- getFile(Artifact.Item, String) - Method in class ai.djl.repository.AbstractRepository
-
Returns the path to a file for the item.
- getFile(Artifact.Item, String) - Method in interface ai.djl.repository.Repository
-
Returns the path to a file for the item.
- getFileExtension(String) - Static method in class ai.djl.repository.FilenameUtils
-
Returns the file name extension of the file.
- getFiles() - Method in class ai.djl.repository.Artifact
-
Returns all the file items in the artifact.
- getFileType(String) - Static method in class ai.djl.repository.FilenameUtils
-
Returns the type of the file.
- getFilters() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the search filters that must match the properties of the model.
- getFloat(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a float element from this
NDArray
. - getFormat() - Method in enum ai.djl.ndarray.types.DataType
-
Returns the format of the data type.
- getGpuCount() - Method in class ai.djl.engine.Engine
-
Returns the number of GPUs available in the system.
- getGradient() - Method in interface ai.djl.ndarray.NDArray
-
Returns the gradient
NDArray
attached to thisNDArray
. - getGradient() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the gradient
NDArray
attached to thisNDArray
. - getGroupId() - Method in class ai.djl.repository.Metadata
-
Returns the groupId.
- getGroupId() - Method in class ai.djl.repository.MRL
-
Returns the groupId.
- getGroupId() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the groupId of the
ModelZoo
to be searched. - getGroupId() - Method in class ai.djl.repository.zoo.DefaultModelZoo
-
Returns the global unique identifier of the
ModelZoo
. - getGroupId() - Method in class ai.djl.repository.zoo.ModelZoo
-
Returns the global unique identifier of the
ModelZoo
. - getHeight() - Method in interface ai.djl.modality.cv.Image
-
Gets the height of the image.
- getHeight() - Method in class ai.djl.modality.cv.output.Rectangle
-
Returns the height of the Rectangle.
- getHParam(String) - Method in class ai.djl.training.hyperparameter.param.HpSet
-
Returns the hyperparameter in the set with the given name.
- getId() - Method in class ai.djl.nn.Parameter
-
Gets the ID of this
Parameter
. - getId() - Method in class ai.djl.repository.License
-
Returns the identifier of the license.
- getImageHeight() - Method in class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
-
Get resized image height.
- getImageWidth() - Method in class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
-
Get resized image width.
- getIncrementalVersion() - Method in class ai.djl.repository.Version
-
Returns the incremental version (assuming major.minor.incremental...) of the version.
- getIndex() - Method in class ai.djl.ndarray.index.dim.NDIndexBooleans
-
Returns the mask binary
NDArray
. - getIndex() - Method in class ai.djl.ndarray.index.dim.NDIndexFixed
-
Returns the dimension of the index.
- getIndex(String) - Method in class ai.djl.modality.nlp.DefaultVocabulary
-
Returns the index of the given token.
- getIndex(String) - Method in interface ai.djl.modality.nlp.Vocabulary
-
Returns the index of the given token.
- getIndices() - Method in class ai.djl.ndarray.index.dim.NDIndexPick
-
Returns the indices to pick.
- getIndices() - Method in class ai.djl.ndarray.index.full.NDIndexFullPick
-
Returns the indices to pick.
- getIndices() - Method in class ai.djl.ndarray.index.NDIndex
-
Returns the indices.
- getInitializer() - Method in enum ai.djl.nn.Parameter.Type
-
Gets the
Initializer
of thisParameterType
. - getInitializers() - Method in class ai.djl.training.DefaultTrainingConfig
-
Gets a list of
Initializer
and Predicate to initialize the parameters of the model. - getInitializers() - Method in interface ai.djl.training.TrainingConfig
-
Gets a list of
Initializer
and Predicate to initialize the parameters of the model. - getInputClass() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the input data type.
- getInstance() - Static method in class ai.djl.engine.Engine
-
Returns the default Engine.
- getInstance() - Static method in class ai.djl.modality.cv.ImageFactory
-
Gets new instance of Image factory from the provided factory implementation.
- getInt(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns an int element from this
NDArray
. - getIoU(BoundingBox) - Method in interface ai.djl.modality.cv.output.BoundingBox
-
Gets the Intersection over Union (IoU) value between bounding boxes.
- getIoU(BoundingBox) - Method in class ai.djl.modality.cv.output.Rectangle
-
Gets the Intersection over Union (IoU) value between bounding boxes.
- getJoints() - Method in class ai.djl.modality.cv.output.Joints
-
Gets the joints for the image.
- getKeyProjection() - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock
-
Pointwise Linear projection of the keys.
- getLabels() - Method in class ai.djl.training.dataset.Batch
-
Gets the labels corresponding to the data of this
Batch
. - getLabels() - Method in class ai.djl.training.dataset.Record
-
Gets the labels that correspond to the data of this
Record
. - getLabels() - Method in class ai.djl.training.listener.TrainingListener.BatchData
-
Returns the labels for each device.
- getLastUpdated() - Method in class ai.djl.repository.Metadata
-
Returns the last update date for the metadata.
- getLatestEvaluations() - Method in class ai.djl.training.listener.EvaluatorTrainingListener
-
Returns the latest evaluations.
- getLayout() - Method in class ai.djl.ndarray.types.Shape
-
Returns the layout type for each axis in this shape.
- getLayoutType(int) - Method in class ai.djl.ndarray.types.Shape
-
Returns the layout type in the given dimension.
- getLeadingOnes() - Method in class ai.djl.ndarray.types.Shape
-
Returns the number of leading ones in the array shape.
- getLicenses() - Method in class ai.djl.repository.Metadata
-
Returns the
License
. - getLong(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a long element from this
NDArray
. - getLoss() - Method in class ai.djl.training.Trainer
-
Gets the training
Loss
function of the trainer. - getLoss(HpSet) - Method in class ai.djl.training.hyperparameter.optimizer.BaseHpOptimizer
-
Returns the recorded loss.
- getLoss(HpSet) - Method in interface ai.djl.training.hyperparameter.optimizer.HpOptimizer
-
Returns the recorded loss.
- getLossFunction() - Method in class ai.djl.training.DefaultTrainingConfig
-
Gets the
Loss
function to compute the loss against. - getLossFunction() - Method in interface ai.djl.training.TrainingConfig
-
Gets the
Loss
function to compute the loss against. - getMajorVersion() - Method in class ai.djl.repository.Version
-
Returns the major version (assuming major.minor.incremental...) of the version.
- getManager() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the
NDManager
that manages this. - getManager() - Method in class ai.djl.ndarray.NDList
-
Returns the
NDManager
that manages this. - getManager() - Method in interface ai.djl.ndarray.NDResource
-
Returns the
NDManager
that manages this. - getManager() - Method in class ai.djl.training.dataset.Batch
-
Gets the
NDManager
that is attached to thisBatch
. - getManager() - Method in class ai.djl.training.ParameterStore
-
Get the
NDManager
associated withParameterStore
. - getManager() - Method in class ai.djl.training.Trainer
-
Gets the
NDManager
from the model. - getMax() - Method in class ai.djl.ndarray.index.dim.NDIndexSlice
-
Returns the end of the range.
- getMax() - Method in class ai.djl.ndarray.index.full.NDIndexFullSlice
-
Returns the slice max for each axis.
- getMax() - Method in class ai.djl.training.util.MinMaxScaler
-
Returns the value of fittedMax.
- getMessage() - Method in class ai.djl.modality.Output
-
Returns the status code of the output.
- getMetadata() - Method in class ai.djl.repository.Artifact
-
Returns the metadata containing this artifact.
- getMetadataVersion() - Method in class ai.djl.repository.Artifact
-
Returns the metadata format version.
- getMetadataVersion() - Method in class ai.djl.repository.Metadata
-
Returns the metadata format version.
- getMetric(String) - Method in class ai.djl.metric.Metrics
-
Returns all
Metric
s with the specified metric name. - getMetricName() - Method in class ai.djl.metric.Metric
-
Returns the name of the
Metric
. - getMetricNames() - Method in class ai.djl.metric.Metrics
-
Returns a set of
String
metric names. - getMetrics() - Method in class ai.djl.training.Trainer
-
Returns the Metrics param used for benchmarking.
- getMetrics() - Method in interface ai.djl.translate.TranslatorContext
-
Returns the Metric tool to do benchmark.
- getMin() - Method in class ai.djl.ndarray.index.dim.NDIndexSlice
-
Returns the start of the range.
- getMin() - Method in class ai.djl.ndarray.index.full.NDIndexFullSlice
-
Returns the slice min for each axis.
- getMin() - Method in class ai.djl.training.util.MinMaxScaler
-
Returns the value of fittedMin.
- getMinorVersion() - Method in class ai.djl.repository.Version
-
Returns the minor version (assuming major.minor.incremental...) of the version.
- getModel() - Method in class ai.djl.training.Trainer
-
Returns the model used to create this trainer.
- getModel() - Method in interface ai.djl.translate.TranslatorContext
-
Returns the
Model
object to understand the input/output. - getModelLoader(String) - Method in class ai.djl.repository.zoo.ModelZoo
-
Returns the
ModelLoader
based on the model name. - getModelLoaders() - Method in class ai.djl.repository.zoo.DefaultModelZoo
-
Lists the available model families in the ModelZoo.
- getModelLoaders() - Method in class ai.djl.repository.zoo.ModelZoo
-
Lists the available model families in the ModelZoo.
- getModelName() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the optional model name to be used for
ZooModel
. - getModelPath() - Method in class ai.djl.BaseModel
-
Returns the directory from where the model is loaded.
- getModelPath() - Method in interface ai.djl.Model
-
Returns the directory from where the model is loaded.
- getModelPath() - Method in class ai.djl.repository.zoo.ZooModel
-
Returns the directory from where the model is loaded.
- getModelZoo() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the
ModelZoo
to be searched. - getModelZoo() - Method in class ai.djl.repository.zoo.DefaultZooProvider
-
Returns the instance of the
ModelZoo
. - getModelZoo() - Method in interface ai.djl.repository.zoo.ZooProvider
-
Returns the instance of the
ModelZoo
. - getModelZoo(String) - Static method in class ai.djl.repository.zoo.ModelZoo
-
Returns the
ModelZoo
with thegroupId
. - getName() - Method in class ai.djl.BaseModel
-
Gets the model name.
- getName() - Method in class ai.djl.metric.Dimension
-
Returns the dimension name.
- getName() - Method in interface ai.djl.Model
-
Gets the model name.
- getName() - Method in class ai.djl.ndarray.BaseNDManager
-
Gets the name of the NDManager.
- getName() - Method in interface ai.djl.ndarray.NDArray
-
Returns the name of this
NDArray
. - getName() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the name of this
NDArray
. - getName() - Method in interface ai.djl.ndarray.NDManager
-
Gets the name of the NDManager.
- getName() - Method in class ai.djl.ndarray.types.DataDesc
-
Returns the name of the
NDArray
. - getName() - Method in class ai.djl.nn.Parameter
-
Gets the name of this
Parameter
. - getName() - Method in class ai.djl.repository.AbstractRepository
-
Returns the repository name.
- getName() - Method in class ai.djl.repository.Artifact
-
Returns the artifact name.
- getName() - Method in class ai.djl.repository.Artifact.Item
-
Returns the item name.
- getName() - Method in class ai.djl.repository.License
-
Returns the name of the license.
- getName() - Method in class ai.djl.repository.Metadata
-
Returns the metadata-level name.
- getName() - Method in interface ai.djl.repository.Repository
-
Returns the repository name.
- getName() - Method in class ai.djl.repository.zoo.ZooModel
-
Gets the model name.
- getName() - Method in interface ai.djl.repository.zoo.ZooProvider
-
Gets the name of the
ModelZoo
. - getName() - Method in class ai.djl.training.evaluator.Evaluator
-
Returns the name of this
Evaluator
. - getName() - Method in class ai.djl.training.hyperparameter.param.Hyperparameter
-
Returns the name of the hyperparameter.
- getNamePart(String) - Static method in class ai.djl.repository.FilenameUtils
-
Returns the name of the file without file extension.
- getNDArrayInternal() - Method in interface ai.djl.ndarray.NDArray
-
Returns an internal representative of Native
NDArray
. - getNDArrayInternal() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns an internal representative of Native
NDArray
. - getNDManager() - Method in class ai.djl.BaseModel
-
Gets the
NDManager
from the model. - getNDManager() - Method in interface ai.djl.Model
-
Gets the
NDManager
from the model. - getNDManager() - Method in class ai.djl.repository.zoo.ZooModel
-
Gets the
NDManager
from the model. - getNDManager() - Method in interface ai.djl.translate.TranslatorContext
- getNewValue(int) - Method in class ai.djl.training.tracker.CosineTracker
-
Fetches the value after the given number of steps/updates.
- getNewValue(int) - Method in class ai.djl.training.tracker.FactorTracker
-
Fetches the value after the given number of steps/updates.
- getNewValue(int) - Method in class ai.djl.training.tracker.LinearTracker
-
Fetches the value after the given number of steps/updates.
- getNewValue(int) - Method in class ai.djl.training.tracker.MultiFactorTracker
-
Fetches the value after the given number of steps/updates.
- getNewValue(int) - Method in class ai.djl.training.tracker.PolynomialDecayTracker
-
Fetches the value after the given number of steps/updates.
- getNewValue(int) - Method in interface ai.djl.training.tracker.Tracker
-
Fetches the value after the given number of steps/updates.
- getNewValue(int) - Method in class ai.djl.training.tracker.WarmUpTracker
-
Fetches the value after the given number of steps/updates.
- getNumberOfObjects() - Method in class ai.djl.modality.cv.output.DetectedObjects
-
Returns the number of objects found in an image.
- getNumDirections() - Method in class ai.djl.nn.recurrent.RecurrentBlock
- getNumEpochs() - Method in class ai.djl.training.listener.EpochTrainingListener
-
Returns the number of epochs.
- getNumOfBytes() - Method in enum ai.djl.ndarray.types.DataType
-
Returns the number of bytes for each element.
- getObservation() - Method in interface ai.djl.modality.rl.env.RlEnv
-
Returns the observation detailing the current state of the environment.
- getOptimizer() - Method in class ai.djl.training.DefaultTrainingConfig
-
Gets the
Optimizer
to use during training. - getOptimizer() - Method in interface ai.djl.training.TrainingConfig
-
Gets the
Optimizer
to use during training. - getOptions() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the model loading options.
- getOptions(Map<String, String>) - Method in class ai.djl.repository.Artifact
-
Returns the artifact options.
- getOutputClass() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the output data type.
- getOutputShapes(Shape[]) - Method in class ai.djl.modality.nlp.Decoder
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.modality.nlp.embedding.TrainableTextEmbedding
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.modality.nlp.Encoder
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.modality.nlp.EncoderDecoder
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.AbstractSymbolBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in interface ai.djl.nn.Block
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.convolutional.Convolution
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.convolutional.Deconvolution
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.core.ConstantEmbedding
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.core.Embedding
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.core.Linear
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.core.Prelu
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.LambdaBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.norm.BatchNorm
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.norm.Dropout
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.norm.LayerNorm
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.ParallelBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.recurrent.RecurrentBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.SequentialBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.transformer.BertBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.transformer.BertMaskedLanguageModelBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.transformer.BertNextSentenceBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.transformer.BertPretrainingBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.transformer.IdEmbedding
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(Shape[]) - Method in class ai.djl.nn.transformer.TransformerEncoderBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOverrideModelName() - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
Returns the override model name to save checkpoints with.
- getParagraph() - Method in class ai.djl.modality.nlp.qa.QAInput
-
Gets the resource document that contains the answer.
- getParameters() - Method in class ai.djl.nn.AbstractBaseBlock
-
Returns a list of all the parameters of the block, including the parameters of its children fetched recursively.
- getParameters() - Method in interface ai.djl.nn.Block
-
Returns a list of all the parameters of the block, including the parameters of its children fetched recursively.
- getParentManager() - Method in class ai.djl.ndarray.BaseNDManager
-
Returns the parent
NDManager
. - getParentManager() - Method in interface ai.djl.ndarray.NDManager
-
Returns the parent
NDManager
. - getParsedVersion() - Method in class ai.djl.repository.Artifact
-
Returns the artifact version as a
Version
. - getPath() - Method in class ai.djl.Application
-
Returns the repository path of the application.
- getPath() - Method in interface ai.djl.modality.cv.output.BoundingBox
-
Returns an iterator object that iterates along the
BoundingBox
boundary and provides access to the geometry of theBoundingBox
outline. - getPath() - Method in class ai.djl.modality.cv.output.Landmark
-
Returns an iterator object that iterates along the
BoundingBox
boundary and provides access to the geometry of theBoundingBox
outline. - getPath() - Method in class ai.djl.modality.cv.output.Rectangle
-
Returns an iterator object that iterates along the
BoundingBox
boundary and provides access to the geometry of theBoundingBox
outline. - getPoint() - Method in interface ai.djl.modality.cv.output.BoundingBox
-
Returns the top left point of the bounding box.
- getPoint() - Method in class ai.djl.modality.cv.output.Rectangle
-
Returns the top left point of the bounding box.
- getPostActionSpace() - Method in interface ai.djl.modality.rl.env.RlEnv.Step
-
Returns the available actions after the step.
- getPostObservation() - Method in interface ai.djl.modality.rl.env.RlEnv.Step
-
Returns the observation detailing the state after the action.
- getPredictions() - Method in class ai.djl.training.listener.TrainingListener.BatchData
-
Returns the predictions for each device.
- getPredictorManager() - Method in interface ai.djl.translate.TranslatorContext
-
Returns the Predictor's
NDManager
. - getPreObservation() - Method in interface ai.djl.modality.rl.env.RlEnv.Step
-
Returns the observation detailing the state before the action.
- getPreprocessors(boolean) - Static method in class ai.djl.modality.nlp.bert.BertFullTokenizer
-
Get a list of
TextProcessor
s to process input text for Bert models. - getProbability() - Method in class ai.djl.modality.Classifications.Classification
-
Returns the probability.
- getProbDist() - Method in class ai.djl.modality.cv.output.Mask
-
Returns the probability for each pixel.
- getProgress() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the optional
Progress
for the model loading. - getProgress() - Method in class ai.djl.training.dataset.Batch
-
Returns the progress of the batch if it is part of some kind of iteration like a dataset iteration.
- getProgressTotal() - Method in class ai.djl.training.dataset.Batch
-
Returns the total or end value for the progress of the batch if it is part of some kind of iteration like a dataset iteration.
- getProperties() - Method in class ai.djl.modality.Input
-
Returns the properties of the input.
- getProperties() - Method in class ai.djl.repository.Artifact
-
Returns the artifact properties.
- getProperty(String) - Method in class ai.djl.BaseModel
-
Gets the property of the model based on property name.
- getProperty(String) - Method in interface ai.djl.Model
-
Gets the property of the model based on property name.
- getProperty(String) - Method in class ai.djl.repository.zoo.ZooModel
-
Gets the property of the model based on property name.
- getProperty(String, String) - Method in class ai.djl.modality.Input
-
Returns the value to which the specified key is mapped.
- getQueryProjection() - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock
-
Pointwise Linear projection of the queries.
- getQuestion() - Method in class ai.djl.modality.nlp.qa.QAInput
-
Gets the question for the model.
- getRank() - Method in class ai.djl.engine.Engine
-
Return the rank of the
Engine
. - getRank() - Method in class ai.djl.ndarray.index.dim.NDIndexAll
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in class ai.djl.ndarray.index.dim.NDIndexBooleans
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in interface ai.djl.ndarray.index.dim.NDIndexElement
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in class ai.djl.ndarray.index.dim.NDIndexFixed
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in class ai.djl.ndarray.index.dim.NDIndexPick
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in class ai.djl.ndarray.index.dim.NDIndexSlice
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in class ai.djl.ndarray.index.NDIndex
-
Returns the number of dimensions specified in the Index.
- getRecommendedVersion() - Method in class ai.djl.repository.VersionRange
-
Returns the recommended version in the range.
- getRepository() - Method in class ai.djl.repository.MRL
-
Returns the repository.
- getRepositoryUri() - Method in class ai.djl.repository.Metadata
-
Returns the URI to the repository storing the metadata.
- getResourceDirectory(Artifact) - Method in interface ai.djl.repository.Repository
-
Returns the resource directory for the an artifact.
- getResourceDirectory(Artifact) - Method in class ai.djl.repository.SimpleRepository
-
Returns the resource directory for the an artifact.
- getResources() - Method in class ai.djl.repository.JarRepository
-
Returns a list of
MRL
s in the repository. - getResources() - Method in class ai.djl.repository.LocalRepository
-
Returns a list of
MRL
s in the repository. - getResources() - Method in class ai.djl.repository.RemoteRepository
-
Returns a list of
MRL
s in the repository. - getResources() - Method in interface ai.djl.repository.Repository
-
Returns a list of
MRL
s in the repository. - getResources() - Method in class ai.djl.repository.SimpleRepository
-
Returns a list of
MRL
s in the repository. - getResources() - Method in class ai.djl.repository.SimpleUrlRepository
-
Returns a list of
MRL
s in the repository. - getResourceType() - Method in class ai.djl.repository.Metadata
-
Returns the resource type.
- getResourceUri() - Method in class ai.djl.repository.Artifact
-
Returns the location of the resource directory.
- getRestrictions() - Method in class ai.djl.repository.VersionRange
-
Returns the restrictions that compose the range.
- getResultProjection() - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock
-
Pointwise Linear projection of the results.
- getReward() - Method in interface ai.djl.modality.rl.env.RlEnv.Step
-
Returns the reward given for the action.
- getSampler() - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Gets the
Sampler
for the dataset. - getScalar(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a scalar
NDArray
corresponding to a single element. - getSeed() - Method in class ai.djl.engine.Engine
-
Returns the random seed in DJL Engine.
- getSha1Hash() - Method in class ai.djl.repository.Artifact.Item
-
Returns the hash of the item.
- getShape() - Method in class ai.djl.ndarray.index.full.NDIndexFullSlice
-
Returns the slice shape without squeezing.
- getShape() - Method in interface ai.djl.ndarray.NDArray
-
Returns the
Shape
of thisNDArray
. - getShape() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the
Shape
of thisNDArray
. - getShape() - Method in class ai.djl.ndarray.types.DataDesc
- getShape() - Method in class ai.djl.ndarray.types.Shape
-
Returns the dimensions of the
Shape
. - getShapeFromEmptyNDArrayForReductionOp(Shape, int) - Static method in class ai.djl.ndarray.NDUtils
- getShapes() - Method in class ai.djl.ndarray.NDList
-
Gets all of shapes in the
NDList
. - getSize() - Method in class ai.djl.repository.Artifact.Item
-
Returns the file size.
- getSize() - Method in class ai.djl.training.dataset.Batch
-
Returns the batchSize.
- getSparseFormat() - Method in interface ai.djl.ndarray.NDArray
-
Returns the
SparseFormat
of thisNDArray
. - getSparseFormat() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the
SparseFormat
of thisNDArray
. - getSqueezedShape() - Method in class ai.djl.ndarray.index.full.NDIndexFullSlice
-
Returns the slice shape with squeezing.
- getStates(NDList) - Method in class ai.djl.modality.nlp.Encoder
-
Gets the state of the encoder from the given encoder output.
- getStep() - Method in class ai.djl.ndarray.index.dim.NDIndexSlice
-
Returns the step between each slice.
- getStep() - Method in class ai.djl.ndarray.index.full.NDIndexFullSlice
-
Returns the slice step for each axis.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Conv1d
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Conv2d
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Conv3d
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Convolution
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Deconvolution
-
Returns the string representing the layout of the input.
- getSubImage(int, int, int, int) - Method in interface ai.djl.modality.cv.Image
-
Gets the subimage defined by a specified rectangular region.
- getSupportedEngines() - Method in class ai.djl.repository.zoo.DefaultModelZoo
-
Returns all supported engine names.
- getSupportedEngines() - Method in class ai.djl.repository.zoo.ModelZoo
-
Returns all supported engine names.
- getSupportedScheme() - Method in interface ai.djl.repository.RepositoryFactory
-
Returns a set of URI scheme that the
RepositoryFactory
supports. - getSupportedTypes() - Method in class ai.djl.modality.cv.translator.BigGANTranslatorFactory
-
Returns supported input/output classes.
- getSupportedTypes() - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslatorFactory
-
Returns supported input/output classes.
- getSupportedTypes() - Method in class ai.djl.modality.cv.translator.ObjectDetectionTranslatorFactory
-
Returns supported input/output classes.
- getSupportedTypes() - Method in class ai.djl.modality.cv.translator.SimplePoseTranslatorFactory
-
Returns supported input/output classes.
- getSupportedTypes() - Method in class ai.djl.modality.cv.translator.StyleTransferTranslatorFactory
-
Returns supported input/output classes.
- getSupportedTypes() - Method in class ai.djl.translate.DefaultTranslatorFactory
-
Returns supported input/output classes.
- getSupportedTypes() - Method in class ai.djl.translate.ServingTranslatorFactory
-
Returns supported input/output classes.
- getSupportedTypes() - Method in interface ai.djl.translate.TranslatorFactory
-
Returns supported input/output classes.
- getTimestamp() - Method in class ai.djl.metric.Metric
-
Returns the timestamp of the
Metric
. - getToken(long) - Method in class ai.djl.modality.nlp.DefaultVocabulary
-
Returns the token corresponding to the given index.
- getToken(long) - Method in interface ai.djl.modality.nlp.Vocabulary
-
Returns the token corresponding to the given index.
- getTokenDictionarySize() - Method in class ai.djl.nn.transformer.BertBlock
-
Returns the size of the token dictionary.
- getTokenEmbedding() - Method in class ai.djl.nn.transformer.BertBlock
-
Returns the token embedding used by this Bert model.
- getTokens() - Method in class ai.djl.modality.nlp.bert.BertToken
-
Gets the indices of input sequence tokens in the vocabulary.
- getTokenTypes() - Method in class ai.djl.modality.nlp.bert.BertToken
-
Gets segment token indices to indicate first and second portions of the inputs.
- getToSqueeze() - Method in class ai.djl.ndarray.index.full.NDIndexFullSlice
-
Returns the squeeze array of axis.
- getTrailingOnes() - Method in class ai.djl.ndarray.types.Shape
-
Returns the number of trailing ones in the array shape.
- getTrainEvaluation(String) - Method in class ai.djl.training.TrainingResult
-
Returns the evaluation to which the specified key is mapped.
- getTrainingListeners() - Method in class ai.djl.training.DefaultTrainingConfig
-
Returns the list of
TrainingListener
s that should be used during training. - getTrainingListeners() - Method in interface ai.djl.training.TrainingConfig
-
Returns the list of
TrainingListener
s that should be used during training. - getTrainingResult() - Method in class ai.djl.training.Trainer
-
Returns the
TrainingResult
. - getTrainLoss() - Method in class ai.djl.training.TrainingResult
-
Returns the train loss.
- getTranslator() - Method in class ai.djl.repository.zoo.ZooModel
-
Returns the default translator.
- getTranslatorFactory() - Method in class ai.djl.repository.zoo.Criteria
-
Returns the optional
TranslatorFactory
to be used forZooModel
. - getTranslatorFactory(Criteria<?, ?>, Map<String, Object>) - Method in class ai.djl.repository.zoo.BaseModelLoader
- getType() - Method in enum ai.djl.ndarray.types.SparseFormat
-
Returns the
SparseFormat
name. - getType() - Method in class ai.djl.nn.Parameter
-
Gets the type of this
Parameter
. - getType() - Method in class ai.djl.repository.Artifact.Item
-
Sets the type of the item.
- getTypeDictionarySize() - Method in class ai.djl.nn.transformer.BertBlock
-
Returns the size of the type dictionary.
- getUid() - Method in interface ai.djl.ndarray.NDArray
-
Returns unique identifier of this
NDArray
. - getUid() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns unique identifier of this
NDArray
. - getUint8(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns an integer element from this
NDArray
that represent unsigned integer with 8 bits. - getUnit() - Method in class ai.djl.metric.Metric
-
Returns the unit of the
Metric
. - getUnknownValueCount() - Method in class ai.djl.ndarray.types.Shape
-
Return the count of unknown value in this
Shape
. - getUri() - Method in class ai.djl.repository.Artifact.Item
-
Returns the URI of the item.
- getUrl() - Method in class ai.djl.repository.License
-
Returns the url of the license.
- getValidateEvaluation(String) - Method in class ai.djl.training.TrainingResult
-
Returns the evaluation to which the specified key is mapped.
- getValidateLoss() - Method in class ai.djl.training.TrainingResult
-
Returns the validate loss.
- getValidLength() - Method in class ai.djl.modality.nlp.bert.BertToken
-
Gets the length of the original sentence which has question and paragraph.
- getValue() - Method in class ai.djl.metric.Dimension
-
Returns the dimension value.
- getValue() - Method in class ai.djl.metric.Metric
-
Returns the int value of the
Metric
. - getValue() - Method in enum ai.djl.metric.Unit
-
Returns the string value of the
Unit
. - getValue() - Method in enum ai.djl.ndarray.types.LayoutType
-
Returns the character representation of the layout type.
- getValue() - Method in enum ai.djl.ndarray.types.SparseFormat
-
Returns the integer value of this
SparseFormat
. - getValue(Parameter, Device, boolean) - Method in class ai.djl.training.ParameterStore
-
Returns the value of a mirrored parameter on a device.
- getValue(ParameterStore, Device, boolean) - Method in class ai.djl.nn.transformer.IdEmbedding
-
Quick hack for bert model to acces embedding table, replace by a proper function to calculate raw logits from embeddings.
- getValueProjection() - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock
-
Pointwise Linear projection of the values.
- getVersion() - Method in class ai.djl.engine.Engine
-
Returns the version of the deep learning engine.
- getVersion() - Method in class ai.djl.repository.Artifact
-
Returns the artifact version.
- getVersion() - Method in class ai.djl.repository.MRL
-
Returns the version.
- getVocabulary() - Method in class ai.djl.modality.nlp.bert.BertFullTokenizer
-
Returns the
Vocabulary
used for tokenization. - getWebsite() - Method in class ai.djl.repository.Metadata
-
Returns the website.
- getWeightDecay() - Method in class ai.djl.training.optimizer.Optimizer
-
Gets the value of weight decay.
- getWidth() - Method in interface ai.djl.modality.cv.Image
-
Gets the width of the image.
- getWidth() - Method in class ai.djl.modality.cv.output.Rectangle
-
Returns the width of the Rectangle.
- getWrappedImage() - Method in interface ai.djl.modality.cv.Image
-
Gets the wrapped image.
- getWrappedModel() - Method in class ai.djl.repository.zoo.ZooModel
-
Returns the wrapped model.
- getX() - Method in class ai.djl.modality.cv.output.Point
-
Returns the X coordinate of this
Point
indouble
precision. - getX() - Method in class ai.djl.modality.cv.output.Rectangle
-
Returns the left x-coordinate of the Rectangle.
- getY() - Method in class ai.djl.modality.cv.output.Point
-
Returns the Y coordinate of this
Point
indouble
precision. - getY() - Method in class ai.djl.modality.cv.output.Rectangle
-
Returns the top y-coordinate of the Rectangle.
- GIGABITS - ai.djl.metric.Unit
- GIGABITS_PER_SECOND - ai.djl.metric.Unit
- GIGABYTES - ai.djl.metric.Unit
- GIGABYTES_PER_SECOND - ai.djl.metric.Unit
- globalAvgPool1d(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 1-D Global Avg Pooling on the input.
- globalAvgPool1dBlock() - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theglobalAvgPool1d
pooling function. - globalAvgPool2d(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 2-D Global Avg Pooling on the input.
- globalAvgPool2dBlock() - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theglobalAvgPool2d
pooling function. - globalAvgPool3d(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 3-D Global Avg Pooling on the input.
- globalAvgPool3dBlock() - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theglobalAvgPool3d
pooling function. - globalLpPool1d(NDArray, float) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 1-D Global LP Pooling on the input.
- globalLpPool1dBlock(float) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theglobalLpPool1d
pooling function. - globalLpPool2d(NDArray, float) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 2-D Global LP Pooling on the input.
- globalLpPool2dBlock(float) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theglobalLpPool2d
pooling function. - globalLpPool3d(NDArray, float) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 3-D Global LP Pooling on the input.
- globalLpPool3dBlock(float) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theglobalLpPool3d
pooling function. - globalMaxPool1d(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 1-D Global Max Pooling on the input.
- globalMaxPool1dBlock() - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theglobalmaxPool1dBlock
pooling function. - globalMaxPool2d(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 2-D Global Max Pooling on the input.
- globalMaxPool2dBlock() - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theglobalmaxPool2dBlock
pooling function. - globalMaxPool3d(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 3-D Global Max Pooling on the input.
- globalMaxPool3dBlock() - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theglobalmaxPool3dBlock
pooling function. - gpu() - Static method in class ai.djl.Device
-
Returns the default GPU Device.
- gpu(int) - Static method in class ai.djl.Device
-
Returns a new instance of GPU
Device
with the specifieddeviceId
. - GPU - Static variable in interface ai.djl.Device.Type
- GradientCollector - Interface in ai.djl.training
-
An interface that provides a mechanism to collect gradients during training.
- GRAYSCALE - ai.djl.modality.cv.Image.Flag
- GROUP_ID - Static variable in class ai.djl.repository.zoo.DefaultModelZoo
- groupId - Variable in class ai.djl.repository.Metadata
- groups - Variable in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
- groups - Variable in class ai.djl.nn.convolutional.Convolution
- groups - Variable in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
- groups - Variable in class ai.djl.nn.convolutional.Deconvolution
- GRU - Class in ai.djl.nn.recurrent
-
GRU
is an abstract implementation of recurrent neural networks which applies GRU (Gated Recurrent Unit) recurrent layer to input. - GRU.Builder - Class in ai.djl.nn.recurrent
- gt(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean
NDArray
for element-wise "Greater Than" comparison. - gt(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean
NDArray
for element-wise "Greater Than" comparison. - gt(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater Than" comparison. - gt(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater Than" comparison. - gt(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean
NDArray
for element-wise "Greater" comparison. - gt(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean
NDArray
for element-wise "Greater" comparison. - gt(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater Than" comparison. - gte(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean
NDArray
for element-wise "Greater or equals" comparison. - gte(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean
NDArray
for element-wise "Greater or equals" comparison. - gte(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater or equals" comparison. - gte(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater or equals" comparison. - gte(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean
NDArray
for element-wise "Greater or equals" comparison. - gte(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean
NDArray
for element-wise "Greater or equals" comparison. - gte(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater or equals" comparison.
H
- hasBiases - Variable in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
- hasBiases - Variable in class ai.djl.nn.recurrent.RecurrentBlock
- hasCapability(String) - Method in class ai.djl.engine.Engine
-
Returns whether the engine has the specified capability.
- hasEngine(String) - Static method in class ai.djl.engine.Engine
-
Returns if the specified engine is available.
- hasGradient() - Method in interface ai.djl.ndarray.NDArray
-
Returns true if the gradient calculation is required for this
NDArray
. - hasGradient() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns true if the gradient calculation is required for this
NDArray
. - hashCode() - Method in class ai.djl.Application
- hashCode() - Method in class ai.djl.Device
- hashCode() - Method in class ai.djl.ndarray.types.Shape
- hashCode() - Method in class ai.djl.repository.Version
- hasItem(Object) - Method in class ai.djl.nn.core.ConstantEmbedding
-
Returns whether an item is in the embedding.
- hasItem(String) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Returns whether an item is in the embedding.
- hasItem(T) - Method in interface ai.djl.nn.core.AbstractEmbedding
-
Returns whether an item is in the embedding.
- hasItem(T) - Method in class ai.djl.nn.core.Embedding.DefaultEmbedding
-
Returns whether an item is in the embedding.
- hasItem(T) - Method in class ai.djl.nn.core.Embedding.DefaultItem
-
Returns whether an item is in the embedding.
- hasMetric(String) - Method in class ai.djl.metric.Metrics
-
Returns
true
if the metrics object has a metric with the given name. - hasModelZoo(String) - Static method in class ai.djl.repository.zoo.ModelZoo
-
Returns whether a model zoo with the group id is available.
- hasNext() - Method in class ai.djl.training.dataset.DataIterable
- hasProperties(Map<String, String>) - Method in class ai.djl.repository.Artifact
-
Returns true if every filter matches the corresponding property.
- hasZeroDimension() - Method in class ai.djl.ndarray.types.Shape
-
Returns
true
if the NDArray contains zero dimensions. - head() - Method in class ai.djl.ndarray.NDList
-
Returns the head index of the NDList.
- head() - Method in class ai.djl.ndarray.types.Shape
-
Returns the head index of the shape.
- height - Variable in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
- HEIGHT - ai.djl.ndarray.types.LayoutType
- hingeLoss() - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
HingeLoss
with default arguments. - hingeLoss(String) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
HingeLoss
with default arguments. - hingeLoss(String, int, float) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
HingeLoss
with the given arguments. - HingeLoss - Class in ai.djl.training.loss
-
HingeLoss
is a type ofLoss
. - HingeLoss() - Constructor for class ai.djl.training.loss.HingeLoss
-
Calculates Hinge loss.
- HingeLoss(String) - Constructor for class ai.djl.training.loss.HingeLoss
-
Calculates Hinge loss.
- HingeLoss(String, int, float) - Constructor for class ai.djl.training.loss.HingeLoss
-
Calculates Hinge loss.
- HpBool - Class in ai.djl.training.hyperparameter.param
-
A
Hyperparameter
for a boolean option. - HpBool(String) - Constructor for class ai.djl.training.hyperparameter.param.HpBool
-
Constructs a
HpBool
. - HpCategorical<T> - Class in ai.djl.training.hyperparameter.param
-
A
Hyperparameter
which is one of a fixed number of options (similar to an enum). - HpCategorical(String, List<T>) - Constructor for class ai.djl.training.hyperparameter.param.HpCategorical
-
Constructs a
HpCategorical
. - HpFloat - Class in ai.djl.training.hyperparameter.param
-
A
Hyperparameter
for a float. - HpFloat(String, float, float, boolean) - Constructor for class ai.djl.training.hyperparameter.param.HpFloat
-
Constructs a
HpFloat
. - HpInt - Class in ai.djl.training.hyperparameter.param
-
A
Hyperparameter
for an integer. - HpInt(String, int, int) - Constructor for class ai.djl.training.hyperparameter.param.HpInt
-
Constructs a
HpInt
. - HpOptimizer - Interface in ai.djl.training.hyperparameter.optimizer
-
An optimizer for
Hyperparameter
s. - HpORandom - Class in ai.djl.training.hyperparameter.optimizer
-
A simple
HpOptimizer
that tries random hyperparameter choices within the range. - HpORandom(HpSet) - Constructor for class ai.djl.training.hyperparameter.optimizer.HpORandom
-
Constructs a new
HpORandom
. - HpSet - Class in ai.djl.training.hyperparameter.param
-
A nestable set of
Hyperparameter
s. - HpSet(String) - Constructor for class ai.djl.training.hyperparameter.param.HpSet
-
Cosntructs a new empty
HpSet
. - HpSet(String, List<Hyperparameter<?>>) - Constructor for class ai.djl.training.hyperparameter.param.HpSet
-
Cosntructs a new
HpSet
. - HpVal<T> - Class in ai.djl.training.hyperparameter.param
-
A
Hyperparameter
with a known value instead of a range of possible values. - HpVal(String, T) - Constructor for class ai.djl.training.hyperparameter.param.HpVal
-
Cosntructs a new
HpVal
. - Hyperparameter<T> - Class in ai.djl.training.hyperparameter.param
-
A class representing an input to the network that can't be differentiated.
- Hyperparameter(String) - Constructor for class ai.djl.training.hyperparameter.param.Hyperparameter
-
Constructs a hyperparameter with the given name.
- hyperParams - Variable in class ai.djl.training.hyperparameter.optimizer.BaseHpOptimizer
- HyphenNormalizer - Class in ai.djl.modality.nlp.preprocess
-
Unicode normalization does not take care of "exotic" hyphens that we normally do not want in NLP input.
- HyphenNormalizer() - Constructor for class ai.djl.modality.nlp.preprocess.HyphenNormalizer
I
- IdEmbedding - Class in ai.djl.nn.transformer
-
An Embedding from integer ids to float vectors.
- IdEmbedding.Builder - Class in ai.djl.nn.transformer
-
The Builder to construct an
IdEmbedding
type ofBlock
. - identityBlock() - Static method in class ai.djl.nn.Blocks
-
Creates a
LambdaBlock
that performs the identity function. - Image - Interface in ai.djl.modality.cv
-
Image
is a container of an image in DJL. - IMAGE_CLASSIFICATION - Static variable in interface ai.djl.Application.CV
-
An application where images are assigned a single class name.
- IMAGE_ENHANCEMENT - Static variable in interface ai.djl.Application.CV
-
An application that accepts an image and returns enhanced images.
- IMAGE_GENERATION - Static variable in interface ai.djl.Application.CV
-
An application that accepts a seed and returns generated images.
- Image.Flag - Enum in ai.djl.modality.cv
-
Flag indicates the color channel options for images.
- Image.Interpolation - Enum in ai.djl.modality.cv
-
Interpolation indicates the Interpolation options for resizinig an image.
- ImageClassificationTranslator - Class in ai.djl.modality.cv.translator
-
A generic
Translator
for Image Classification tasks. - ImageClassificationTranslator(ImageClassificationTranslator.Builder) - Constructor for class ai.djl.modality.cv.translator.ImageClassificationTranslator
-
Constructs an Image Classification using
ImageClassificationTranslator.Builder
. - ImageClassificationTranslator.Builder - Class in ai.djl.modality.cv.translator
-
A Builder to construct a
ImageClassificationTranslator
. - ImageClassificationTranslatorFactory - Class in ai.djl.modality.cv.translator
-
A
TranslatorFactory
that creates anImageClassificationTranslator
. - ImageClassificationTranslatorFactory() - Constructor for class ai.djl.modality.cv.translator.ImageClassificationTranslatorFactory
- ImageFactory - Class in ai.djl.modality.cv
-
ImageFactory
contains image creation mechanism on top of different platforms like PC and Android. - ImageFactory() - Constructor for class ai.djl.modality.cv.ImageFactory
- imageHeight - Variable in class ai.djl.modality.cv.translator.ObjectDetectionTranslator
- imageHeight - Variable in class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
- ImageServingTranslator - Class in ai.djl.modality.cv.translator
- ImageServingTranslator(Translator<Image, ?>) - Constructor for class ai.djl.modality.cv.translator.ImageServingTranslator
-
Constructs a new
ImageServingTranslator
instance. - imageWidth - Variable in class ai.djl.modality.cv.translator.ObjectDetectionTranslator
- imageWidth - Variable in class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
- IN - ai.djl.training.initializer.XavierInitializer.FactorType
- includeBias - Variable in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
- includeBias - Variable in class ai.djl.nn.convolutional.Convolution
- includeBias - Variable in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
- includeBias - Variable in class ai.djl.nn.convolutional.Deconvolution
- includeTokenTypes - Variable in class ai.djl.modality.nlp.translator.QATranslator
- increment(long) - Method in class ai.djl.training.util.ProgressBar
- IndexEvaluator - Class in ai.djl.training.evaluator
- IndexEvaluator(Evaluator, int) - Constructor for class ai.djl.training.evaluator.IndexEvaluator
-
Constructs an
IndexEvaluator
with the same index for both predictions and labels. - IndexEvaluator(Evaluator, Integer, Integer) - Constructor for class ai.djl.training.evaluator.IndexEvaluator
-
Constructs an
IndexEvaluator
. - IndexLoss - Class in ai.djl.training.loss
- IndexLoss(Loss, int) - Constructor for class ai.djl.training.loss.IndexLoss
-
Constructs an
IndexLoss
with the same index for both predictions and labels. - IndexLoss(Loss, Integer, Integer) - Constructor for class ai.djl.training.loss.IndexLoss
-
Constructs an
IndexLoss
. - init(String, NDArray[]) - Method in class ai.djl.training.LocalParameterServer
-
Initializes the
ParameterStore
for the given parameter. - init(String, NDArray[]) - Method in interface ai.djl.training.ParameterServer
-
Initializes the
ParameterStore
for the given parameter. - init(Map<String, String>) - Method in class ai.djl.repository.Metadata
-
Restores artifacts state.
- initialize(NDManager, DataType) - Method in class ai.djl.nn.Parameter
- initialize(NDManager, DataType, Shape...) - Method in class ai.djl.modality.nlp.EncoderDecoder
-
Initializes the parameters of the block.
- initialize(NDManager, DataType, Shape...) - Method in class ai.djl.nn.AbstractBaseBlock
-
Initializes the parameters of the block.
- initialize(NDManager, DataType, Shape...) - Method in interface ai.djl.nn.Block
-
Initializes the parameters of the block.
- initialize(NDManager, Shape, DataType) - Method in class ai.djl.training.initializer.ConstantInitializer
-
Initializes a single
NDArray
. - initialize(NDManager, Shape, DataType) - Method in interface ai.djl.training.initializer.Initializer
-
Initializes a single
NDArray
. - initialize(NDManager, Shape, DataType) - Method in class ai.djl.training.initializer.NormalInitializer
-
Initializes a single
NDArray
. - initialize(NDManager, Shape, DataType) - Method in class ai.djl.training.initializer.TruncatedNormalInitializer
-
Initializes a single
NDArray
. - initialize(NDManager, Shape, DataType) - Method in class ai.djl.training.initializer.UniformInitializer
-
Initializes a single
NDArray
. - initialize(NDManager, Shape, DataType) - Method in class ai.djl.training.initializer.XavierInitializer
-
Initializes a single
NDArray
. - initialize(Shape...) - Method in class ai.djl.training.Trainer
-
Initializes the
Model
that theTrainer
is going to train. - initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.modality.nlp.Decoder
-
Initializes the Child blocks of this block.
- initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.modality.nlp.embedding.TrainableTextEmbedding
-
Initializes the Child blocks of this block.
- initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.modality.nlp.Encoder
-
Initializes the Child blocks of this block.
- initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.nn.AbstractBaseBlock
-
Initializes the Child blocks of this block.
- initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.nn.ParallelBlock
-
Initializes the Child blocks of this block.
- initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.nn.SequentialBlock
-
Initializes the Child blocks of this block.
- initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.nn.transformer.BertBlock
-
Initializes the Child blocks of this block.
- initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.nn.transformer.BertMaskedLanguageModelBlock
-
Initializes the Child blocks of this block.
- initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.nn.transformer.BertNextSentenceBlock
-
Initializes the Child blocks of this block.
- initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.nn.transformer.BertPretrainingBlock
-
Initializes the Child blocks of this block.
- initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.nn.transformer.IdEmbedding
-
Initializes the Child blocks of this block.
- initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock
-
Initializes the Child blocks of this block.
- initializeChildBlocks(NDManager, DataType, Shape...) - Method in class ai.djl.nn.transformer.TransformerEncoderBlock
-
Initializes the Child blocks of this block.
- Initializer - Interface in ai.djl.training.initializer
-
An interface representing an initialization method.
- Input - Class in ai.djl.modality
-
A class stores the generic input data for inference.
- Input() - Constructor for class ai.djl.modality.Input
-
Constructs a new
Input
instance. - inputData - Variable in class ai.djl.BaseModel
- inputForComponent(int, NDList, NDList) - Method in class ai.djl.nn.transformer.BertPretrainingLoss
- inputForComponent(int, NDList, NDList) - Method in class ai.djl.training.loss.AbstractCompositeLoss
-
Returns the inputs to computing the loss for a component loss.
- inputForComponent(int, NDList, NDList) - Method in class ai.djl.training.loss.SimpleCompositeLoss
-
Returns the inputs to computing the loss for a component loss.
- inputForComponent(int, NDList, NDList) - Method in class ai.djl.training.loss.SingleShotDetectionLoss
-
Calculate loss between label and prediction.
- inputNames - Variable in class ai.djl.nn.AbstractBaseBlock
-
List of names for the input, named inputs should be manually set in sub class.
- inputShape(HpSet) - Method in class ai.djl.training.hyperparameter.EasyHpo
-
Returns the input shape for the model.
- inputShapes - Variable in class ai.djl.nn.AbstractBaseBlock
-
The shape of the input for this block, set by the initialization process.
- InputStreamTranslator<T> - Class in ai.djl.modality.cv.translator.wrapper
-
Built-in
Translator
that provides image pre-processing fromInputStream
. - InputStreamTranslator(Translator<Image, T>) - Constructor for class ai.djl.modality.cv.translator.wrapper.InputStreamTranslator
-
Creates a
UrlTranslator
instance. - insert(int, int, Transform) - Method in class ai.djl.translate.Pipeline
- insert(int, Transform) - Method in class ai.djl.translate.Pipeline
-
Inserts the given
Transform
to the list of transforms at the given position. - insert(int, String, Transform) - Method in class ai.djl.translate.Pipeline
- INSTANCE_SEGMENTATION - Static variable in interface ai.djl.Application.CV
-
An application that finds zero or more objects in an image, the object class (see image classification), and their location as a pixel map.
- InstanceSegmentationTranslator - Class in ai.djl.modality.cv.translator
-
A
BaseImageTranslator
that post-process theNDArray
intoDetectedObjects
with boundaries at the detailed pixel level. - InstanceSegmentationTranslator(InstanceSegmentationTranslator.Builder) - Constructor for class ai.djl.modality.cv.translator.InstanceSegmentationTranslator
-
Creates the Instance Segmentation translator from the given builder.
- InstanceSegmentationTranslator.Builder - Class in ai.djl.modality.cv.translator
-
The builder for Instance Segmentation translator.
- InstanceSegmentationTranslatorFactory - Class in ai.djl.modality.cv.translator
-
A
TranslatorFactory
that creates aInstanceSegmentationTranslator
instance. - InstanceSegmentationTranslatorFactory() - Constructor for class ai.djl.modality.cv.translator.InstanceSegmentationTranslatorFactory
- INT - ai.djl.ndarray.types.DataType.Format
- INT32 - ai.djl.ndarray.types.DataType
- INT64 - ai.djl.ndarray.types.DataType
- INT8 - ai.djl.ndarray.types.DataType
- intern(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Replace the handle of the NDArray with the other.
- intValue(Map<String, ?>, String) - Static method in class ai.djl.translate.ArgumentsUtil
-
Returns the integer value from the arguments.
- intValue(Map<String, ?>, String, int) - Static method in class ai.djl.translate.ArgumentsUtil
-
Returns the integer value from the arguments.
- inverseTransform(NDArray) - Method in class ai.djl.training.util.MinMaxScaler
-
Undoes the transformation of X according to feature_range.
- inverseTransformi(NDArray) - Method in class ai.djl.training.util.MinMaxScaler
-
Undoes the transformation of X according to feature_range as an in-place operation.
- invoke(String, NDArray[], NDArray[], PairList<String, ?>) - Method in class ai.djl.ndarray.BaseNDManager
-
An engine specific generic invocation to native operation.
- invoke(String, NDArray[], NDArray[], PairList<String, ?>) - Method in interface ai.djl.ndarray.NDManager
-
An engine specific generic invocation to native operation.
- invoke(String, NDList, PairList<String, ?>) - Method in class ai.djl.ndarray.BaseNDManager
-
An engine specific generic invocation to native operation.
- invoke(String, NDList, PairList<String, ?>) - Method in interface ai.djl.ndarray.NDManager
-
An engine specific generic invocation to native operation.
- isArchiveFile(String) - Static method in class ai.djl.repository.FilenameUtils
-
Returns if the the file is an archive file.
- isCHW(Shape) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Check if the shape of the image follows CHW/NCHW.
- isClosed - Variable in class ai.djl.ndarray.NDArrayAdapter
- isControl(char) - Static method in class ai.djl.modality.nlp.NlpUtils
-
Check whether a character is is considered as a control character.
- isDone() - Method in interface ai.djl.modality.rl.env.RlEnv.Step
-
Returns whether the environment is finished or can accept further actions.
- isEmpty() - Method in interface ai.djl.ndarray.NDArray
-
Returns
true
if thisNDArray
is special case: no-valueNDArray
. - isFloating() - Method in enum ai.djl.ndarray.types.DataType
-
Checks whether it is a floating data type.
- isGpu() - Method in class ai.djl.Device
-
Returns if the
Device
is GPU. - isHyphenLike(Integer) - Static method in class ai.djl.modality.nlp.preprocess.HyphenNormalizer
-
Returns whether the given code point is a hyphen-like codepoint.
- isInfinite() - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean
NDArray
with valuetrue
where thisNDArray
's entries are infinite, orfalse
where they are not infinite. - isInfinite() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean
NDArray
with valuetrue
where thisNDArray
's entries are infinite, orfalse
where they are not infinite. - isInitialized() - Method in class ai.djl.nn.AbstractBaseBlock
-
Returns a boolean whether the block is initialized.
- isInitialized() - Method in interface ai.djl.nn.Block
-
Returns a boolean whether the block is initialized.
- isInitialized() - Method in class ai.djl.nn.Parameter
-
Checks if this
Parameter
is initialized. - isInteger() - Method in enum ai.djl.ndarray.types.DataType
-
Checks whether it is an integer data type.
- isLayoutKnown() - Method in class ai.djl.ndarray.types.Shape
-
Returns
true
if a layout is set. - isNaN() - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean
NDArray
with valuetrue
where thisNDArray
's entries are NaN, orfalse
where they are not NaN. - isNaN() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean
NDArray
with valuetrue
where thisNDArray
's entries are NaN, orfalse
where they are not NaN. - isOpen() - Method in class ai.djl.ndarray.BaseNDManager
-
Check if the manager is still valid.
- isOpen() - Method in interface ai.djl.ndarray.NDManager
-
Check if the manager is still valid.
- isPunctuation(char) - Static method in class ai.djl.modality.nlp.NlpUtils
-
Check whether a character is considered as a punctuation.
- isRemote() - Method in class ai.djl.repository.JarRepository
-
Returns whether the repository is remote repository.
- isRemote() - Method in class ai.djl.repository.LocalRepository
-
Returns whether the repository is remote repository.
- isRemote() - Method in class ai.djl.repository.RemoteRepository
-
Returns whether the repository is remote repository.
- isRemote() - Method in interface ai.djl.repository.Repository
-
Returns whether the repository is remote repository.
- isRemote() - Method in class ai.djl.repository.SimpleRepository
-
Returns whether the repository is remote repository.
- isRemote() - Method in class ai.djl.repository.SimpleUrlRepository
-
Returns whether the repository is remote repository.
- isScalar() - Method in interface ai.djl.ndarray.NDArray
- isScalar() - Method in class ai.djl.ndarray.types.Shape
-
Returns
true
if the NDArray is a scalar. - isSnapshot() - Method in class ai.djl.repository.Artifact
-
Returns true if the artifact is a snapshot.
- isSnapshot() - Method in class ai.djl.repository.Version
-
Returns true if this is a snapshot version.
- isSparse() - Method in interface ai.djl.ndarray.NDArray
- isSupported(Class<?>, Class<?>) - Method in class ai.djl.translate.DefaultTranslatorFactory
-
Returns if the input/output is supported by the
TranslatorFactory
. - isSupported(Class<?>, Class<?>) - Method in interface ai.djl.translate.TranslatorFactory
-
Returns if the input/output is supported by the
TranslatorFactory
. - isWhiteSpace(char) - Static method in class ai.djl.modality.nlp.NlpUtils
-
Check whether a character is is considered as a whitespace.
- item(int) - Method in class ai.djl.modality.Classifications
-
Returns the item at a given index based on the order used to construct the
Classifications
. - item(int) - Method in class ai.djl.modality.cv.output.DetectedObjects
-
Returns the item at a given index based on the order used to construct the
Classifications
. - Item() - Constructor for class ai.djl.repository.Artifact.Item
- items() - Method in class ai.djl.modality.Classifications
-
Returns a classification item for each potential class for the input.
- iterateDataset(Dataset) - Method in class ai.djl.training.Trainer
-
Fetches an iterator that can iterate through the given
Dataset
. - iterator() - Method in class ai.djl.training.dataset.DataIterable
J
- JarRepository - Class in ai.djl.repository
-
A
JarRepository
is aRepository
contains an archive file from classpath. - Joint(double, double, double) - Constructor for class ai.djl.modality.cv.output.Joints.Joint
-
Constructs a Joint with given data.
- Joints - Class in ai.djl.modality.cv.output
-
A result of all joints found during Human Pose Estimation on a single image.
- Joints(List<Joints.Joint>) - Constructor for class ai.djl.modality.cv.output.Joints
-
Constructs the
Joints
with the provided joints. - Joints.Joint - Class in ai.djl.modality.cv.output
-
A joint that was detected using Human Pose Estimation on an image.
K
- kernelShape - Variable in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
- kernelShape - Variable in class ai.djl.nn.convolutional.Convolution
- kernelShape - Variable in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
- kernelShape - Variable in class ai.djl.nn.convolutional.Deconvolution
- KILOBITS - ai.djl.metric.Unit
- KILOBITS_PER_SECOND - ai.djl.metric.Unit
- KILOBYTES - ai.djl.metric.Unit
- KILOBYTES_PER_SECOND - ai.djl.metric.Unit
L
- l1Loss() - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L1Loss
with default weight and batch axis. - l1Loss(String) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L1Loss
with default weight and batch axis. - l1Loss(String, float) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L1Loss
with given weight and batch axis. - L1Loss - Class in ai.djl.training.loss
-
L1Loss
calculates L1 loss between label and prediction. - L1Loss() - Constructor for class ai.djl.training.loss.L1Loss
-
Calculates L1 Loss between the label and prediction, a.k.a.
- L1Loss(String) - Constructor for class ai.djl.training.loss.L1Loss
-
Calculates L1 Loss between the label and prediction, a.k.a.
- L1Loss(String, float) - Constructor for class ai.djl.training.loss.L1Loss
-
Calculates L1 Loss between the label and prediction, a.k.a.
- L1WeightDecay - Class in ai.djl.training.loss
-
L1WeightDecay
calculates L1 penalty of a set of parameters. - L1WeightDecay(NDList) - Constructor for class ai.djl.training.loss.L1WeightDecay
-
Calculates L1 weight decay for regularization.
- L1WeightDecay(String, NDList) - Constructor for class ai.djl.training.loss.L1WeightDecay
-
Calculates L1 weight decay for regularization.
- L1WeightDecay(String, NDList, float) - Constructor for class ai.djl.training.loss.L1WeightDecay
-
Calculates L1 weight decay for regularization.
- l1WeightedDecay(NDList) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L1WeightDecay
with default weight and name. - l1WeightedDecay(String, float, NDList) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L1WeightDecay
. - l1WeightedDecay(String, NDList) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L1WeightDecay
with default weight. - l2Loss() - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L2Loss
with default weight and batch axis. - l2Loss(String) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L2Loss
with default weight and batch axis. - l2Loss(String, float) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L2Loss
with given weight and batch axis. - L2Loss - Class in ai.djl.training.loss
-
Calculates L2Loss between label and prediction, a.k.a.
- L2Loss() - Constructor for class ai.djl.training.loss.L2Loss
-
Calculate L2Loss between the label and prediction, a.k.a.
- L2Loss(String) - Constructor for class ai.djl.training.loss.L2Loss
-
Calculate L2Loss between the label and prediction, a.k.a.
- L2Loss(String, float) - Constructor for class ai.djl.training.loss.L2Loss
-
Calculates L2Loss between the label and prediction, a.k.a.
- L2WeightDecay - Class in ai.djl.training.loss
-
L2WeightDecay
calculates L2 penalty of a set of parameters. - L2WeightDecay(NDList) - Constructor for class ai.djl.training.loss.L2WeightDecay
-
Calculates L2 weight decay for regularization.
- L2WeightDecay(String, NDList) - Constructor for class ai.djl.training.loss.L2WeightDecay
-
Calculates L2 weight decay for regularization.
- L2WeightDecay(String, NDList, float) - Constructor for class ai.djl.training.loss.L2WeightDecay
-
Calculates L2 weight decay for regularization.
- l2WeightedDecay(NDList) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L2WeightDecay
with default weight and name. - l2WeightedDecay(String, float, NDList) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L2WeightDecay
. - l2WeightedDecay(String, NDList) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L2WeightDecay
with default weight. - labelBatchifier - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
- labelBatchifier - Variable in class ai.djl.training.dataset.RandomAccessDataset
- labels - Variable in class ai.djl.training.dataset.ArrayDataset
- LambdaBlock - Class in ai.djl.nn
-
LambdaBlock
is aBlock
with no parameters or children. - LambdaBlock(Function<NDList, NDList>) - Constructor for class ai.djl.nn.LambdaBlock
-
Creates a LambdaBlock that can apply the specified function.
- LambdaProcessor - Class in ai.djl.modality.nlp.preprocess
-
TextProcessor
will apply user defined lambda function on input tokens. - LambdaProcessor(Function<String, String>) - Constructor for class ai.djl.modality.nlp.preprocess.LambdaProcessor
-
Creates a
LambdaProcessor
and specify the function to apply. - Landmark - Class in ai.djl.modality.cv.output
-
Landmark
is the container that stores the key points for landmark on a single face. - Landmark(double, double, double, double, List<Point>) - Constructor for class ai.djl.modality.cv.output.Landmark
-
Constructs a
Landmark
using a list of points. - large() - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets this builder's params to the LARGE config of the original BERT paper.
- latestMetric(String) - Method in class ai.djl.metric.Metrics
-
Returns the latest
Metric
with the specified metric name. - layerNorm(NDArray, Shape, NDArray, NDArray, float) - Static method in class ai.djl.nn.norm.LayerNorm
-
Applies Layer Normalization with average and variance for each input sample across the axis dimensions.
- LayerNorm - Class in ai.djl.nn.norm
-
Layer normalization works by normalizing the values of input data for each input sample to have mean of 0 and variance of 1.
- LayerNorm.Builder - Class in ai.djl.nn.norm
-
The Builder to construct a
LayerNorm
. - LayoutType - Enum in ai.djl.ndarray.types
-
An enum to represent the meaning of a particular axis in an
NDArray
. - LazyNDArray - Interface in ai.djl.ndarray
-
An
NDArray
that waits to compute values until they are needed. - leakyRelu(NDArray, float) - Static method in class ai.djl.nn.Activation
-
Applies Leaky ReLU activation on the input
NDArray
. - leakyRelu(NDList, float) - Static method in class ai.djl.nn.Activation
-
Applies Leaky ReLU activation on the input singleton
NDList
. - leakyReluBlock(float) - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies theLeakyReLU
activation function in its forward function. - License - Class in ai.djl.repository
-
A
License
is a container to save the license information. - License() - Constructor for class ai.djl.repository.License
- licenses - Variable in class ai.djl.repository.Metadata
- like() - Method in interface ai.djl.ndarray.NDArray
-
Returns an uninitialized
NDArray
with the sameShape
,DataType
andSparseFormat
as the inputNDArray
. - limit - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
- limit - Variable in class ai.djl.training.dataset.RandomAccessDataset
- linear(NDArray, NDArray) - Static method in class ai.djl.nn.core.Linear
-
Applies a linear transformation to the incoming data.
- linear(NDArray, NDArray, NDArray) - Static method in class ai.djl.nn.core.Linear
-
Applies a linear transformation to the incoming data.
- Linear - Class in ai.djl.nn.core
-
A Linear block applies a linear transformation \(Y = XW^T + b\).
- LINEAR - ai.djl.training.tracker.WarmUpTracker.Mode
- LINEAR_REGRESSION - Static variable in interface ai.djl.Application.Tabular
-
An application that takes a feature vector (table row) and predicts a numerical feature based on it.
- Linear.Builder - Class in ai.djl.nn.core
- LinearTracker - Class in ai.djl.training.tracker
-
FactorTracker
is an implementation ofTracker
which is updated by a constant factor. - LinearTracker(LinearTracker.Builder) - Constructor for class ai.djl.training.tracker.LinearTracker
-
Creates a new instance of
FactorTracker
. - LinearTracker.Builder - Class in ai.djl.training.tracker
-
The Builder to construct an
LinearTracker
object. - linspace(float, float, int) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced numbers over a specified interval.
- linspace(float, float, int, boolean) - Method in class ai.djl.ndarray.BaseNDManager
-
Returns evenly spaced numbers over a specified interval.
- linspace(float, float, int, boolean) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced numbers over a specified interval.
- linspace(float, float, int, boolean, Device) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced numbers over a specified interval.
- linspace(int, int, int) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced numbers over a specified interval.
- linspace(int, int, int, boolean) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced numbers over a specified interval.
- listArtifacts() - Method in class ai.djl.repository.MRL
-
Returns a list of artifacts in this resource.
- listDirectory(Artifact.Item, String) - Method in class ai.djl.repository.AbstractRepository
-
Returns the list of files directly within a specified directory in a zipped directory item.
- listDirectory(Artifact.Item, String) - Method in interface ai.djl.repository.Repository
-
Returns the list of files directly within a specified directory in a zipped directory item.
- listModels() - Method in class ai.djl.repository.zoo.BaseModelLoader
-
Returns a list of the available artifacts that can be loaded.
- listModels() - Method in interface ai.djl.repository.zoo.ModelLoader
-
Returns a list of the available artifacts that can be loaded.
- listModels() - Static method in class ai.djl.repository.zoo.ModelZoo
-
Returns the available
Application
and their model artifact metadata. - listModels(Criteria<?, ?>) - Static method in class ai.djl.repository.zoo.ModelZoo
-
Returns the available
Application
and their model artifact metadata. - listModelZoo() - Static method in class ai.djl.repository.zoo.ModelZoo
-
Returns available model zoos.
- load(Model) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.SynsetLoader
- load(NDManager, DataInputStream) - Method in class ai.djl.nn.Parameter
-
Loads parameter NDArrays from InputStream.
- load(InputStream) - Method in interface ai.djl.Model
-
Loads the model from the
InputStream
. - load(InputStream, Map<String, ?>) - Method in class ai.djl.BaseModel
-
Loads the model from the
InputStream
with the options provided. - load(InputStream, Map<String, ?>) - Method in interface ai.djl.Model
-
Loads the model from the
InputStream
with the options provided. - load(InputStream, Map<String, ?>) - Method in class ai.djl.repository.zoo.ZooModel
-
Loads the model from the
InputStream
with the options provided. - load(Path) - Method in interface ai.djl.Model
-
Loads the model from the
modelPath
. - load(Path) - Method in class ai.djl.ndarray.BaseNDManager
-
Loads the NDArrays saved to a file.
- load(Path) - Method in interface ai.djl.ndarray.NDManager
-
Loads the NDArrays saved to a file.
- load(Path, Device) - Method in interface ai.djl.ndarray.NDManager
-
Loads the NDArrays saved to a file.
- load(Path, String) - Method in interface ai.djl.Model
-
Loads the model from the
modelPath
and the given name. - load(Path, String, Map<String, ?>) - Method in interface ai.djl.Model
-
Loads the model from the
modelPath
with the name and options provided. - load(Path, String, Map<String, ?>) - Method in class ai.djl.repository.zoo.ZooModel
-
Loads the model from the
modelPath
with the name and options provided. - loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.AbstractBaseBlock
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.convolutional.Convolution
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.convolutional.Deconvolution
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.core.Linear
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.core.Prelu
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.norm.BatchNorm
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.norm.Dropout
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.norm.LayerNorm
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.ParallelBlock
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.recurrent.RecurrentBlock
-
Overwrite this to load additional metadata with the parameter values.
- loadMetadata(byte, DataInputStream) - Method in class ai.djl.nn.SequentialBlock
-
Overwrite this to load additional metadata with the parameter values.
- loadModel() - Method in class ai.djl.repository.zoo.Criteria
-
Load the
ZooModel
that matches this criteria. - loadModel(Criteria<I, O>) - Method in class ai.djl.repository.zoo.BaseModelLoader
-
Loads the model with the given criteria.
- loadModel(Criteria<I, O>) - Method in interface ai.djl.repository.zoo.ModelLoader
-
Loads the model with the given criteria.
- loadModel(Criteria<I, O>) - Static method in class ai.djl.repository.zoo.ModelZoo
-
Load the
ZooModel
that matches this criteria. - loadParameters(NDManager, DataInputStream) - Method in class ai.djl.modality.nlp.Decoder
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.modality.nlp.Encoder
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.modality.nlp.EncoderDecoder
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.AbstractBaseBlock
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in interface ai.djl.nn.Block
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.core.ConstantEmbedding
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.core.Embedding
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.LambdaBlock
-
Loads the parameters from the given input stream.
- locale - Variable in class ai.djl.modality.nlp.translator.QATranslator
- LocalParameterServer - Class in ai.djl.training
-
LocalParameterServer
is an implementation of theParameterServer
interface. - LocalParameterServer(Optimizer) - Constructor for class ai.djl.training.LocalParameterServer
-
Create a new instance of
LocalParameterServer
for the given optimizer. - LocalRepository - Class in ai.djl.repository
-
A
LocalRepository
is aRepository
located in a filesystem directory. - LocalRepository(String, URI, Path) - Constructor for class ai.djl.repository.LocalRepository
-
(Internal) Constructs a
LocalRepository
from the path with inferred name. - locate(MRL) - Method in class ai.djl.repository.JarRepository
-
Returns the metadata at a mrl.
- locate(MRL) - Method in class ai.djl.repository.LocalRepository
-
Returns the metadata at a mrl.
- locate(MRL) - Method in class ai.djl.repository.RemoteRepository
-
Returns the metadata at a mrl.
- locate(MRL) - Method in interface ai.djl.repository.Repository
-
Returns the metadata at a mrl.
- locate(MRL) - Method in class ai.djl.repository.SimpleRepository
-
Returns the metadata at a mrl.
- locate(MRL) - Method in class ai.djl.repository.SimpleUrlRepository
-
Returns the metadata at a mrl.
- log() - Method in interface ai.djl.ndarray.NDArray
-
Returns the natural logarithmic value of this
NDArray
element-wise. - log() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the natural logarithmic value of this
NDArray
element-wise. - log10() - Method in interface ai.djl.ndarray.NDArray
-
Returns the base 10 logarithm of this
NDArray
element-wise. - log10() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the base 10 logarithm of this
NDArray
element-wise. - log2() - Method in interface ai.djl.ndarray.NDArray
-
Returns the base 2 logarithm of this
NDArray
element-wise. - log2() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the base 2 logarithm of this
NDArray
element-wise. - logging() - Static method in interface ai.djl.training.listener.TrainingListener.Defaults
-
A default
TrainingListener
set including batch output logging. - logging(int) - Static method in interface ai.djl.training.listener.TrainingListener.Defaults
-
A default
TrainingListener
set including batch output logging. - logging(String) - Static method in interface ai.djl.training.listener.TrainingListener.Defaults
-
A default
TrainingListener
set including batch output logging and output directory. - LoggingTrainingListener - Class in ai.djl.training.listener
-
TrainingListener
that outputs the progress of training each batch and epoch into logs. - LoggingTrainingListener() - Constructor for class ai.djl.training.listener.LoggingTrainingListener
-
Constructs a
LoggingTrainingListener
instance. - LoggingTrainingListener(int) - Constructor for class ai.djl.training.listener.LoggingTrainingListener
-
Constructs a
LoggingTrainingListener
instance with specified steps. - logicalAnd(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the truth value of this
NDArray
AND the otherNDArray
element-wise. - logicalAnd(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the truth value of this
NDArray
AND the otherNDArray
element-wise. - logicalAnd(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- logicalNot() - Method in interface ai.djl.ndarray.NDArray
-
Computes the truth value of NOT this
NDArray
element-wise. - logicalNot() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Computes the truth value of NOT this
NDArray
element-wise. - logicalOr(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Computes the truth value of this
NDArray
OR the otherNDArray
element-wise. - logicalOr(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Computes the truth value of this
NDArray
OR the otherNDArray
element-wise. - logicalOr(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- logicalXor(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Computes the truth value of this
NDArray
XOR the otherNDArray
element-wise. - logicalXor(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Computes the truth value of this
NDArray
XOR the otherNDArray
element-wise. - logicalXor(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- logSoftmax(int) - Method in interface ai.djl.ndarray.NDArray
-
Applies the softmax function followed by a logarithm.
- logSoftmax(int) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Applies the softmax function followed by a logarithm.
- longValue(Map<String, ?>, String) - Static method in class ai.djl.translate.ArgumentsUtil
-
Returns the long value from the arguments.
- longValue(Map<String, ?>, String, long) - Static method in class ai.djl.translate.ArgumentsUtil
-
Returns the long value from the arguments.
- Loss - Class in ai.djl.training.loss
-
Loss functions (or Cost functions) are used to evaluate the model predictions against true labels for optimization.
- Loss(String) - Constructor for class ai.djl.training.loss.Loss
-
Base class for metric with abstract update methods.
- LowerCaseConvertor - Class in ai.djl.modality.nlp.preprocess
-
LowerCaseConvertor
converts every character of the input tokens to it's respective lower case character. - LowerCaseConvertor() - Constructor for class ai.djl.modality.nlp.preprocess.LowerCaseConvertor
-
Creates a
TextProcessor
that converts input text into lower case character with the default englishLocale
. - LowerCaseConvertor(Locale) - Constructor for class ai.djl.modality.nlp.preprocess.LowerCaseConvertor
-
Creates a
TextProcessor
that converts input text into lower case character given theLocale
. - lpPool1d(NDArray, float, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 1-D LP Pooling on the input.
- lpPool1dBlock(float, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies thelpPool1dBlock
pooling function in its forward function. - lpPool1dBlock(float, Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies thelpPool1dBlock
pooling function in its forward function. - lpPool1dBlock(float, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies thelpPool1dBlock
pooling function in its forward function. - lpPool2d(NDArray, float, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 2-D LP Pooling on the input.
- lpPool2dBlock(float, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies thelpPool2dBlock
pooling function in its forward function. - lpPool2dBlock(float, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies thelpPool2dBlock
pooling function in its forward function. - lpPool2dBlock(float, Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies thelpPool2dBlock
pooling function in its forward function. - lpPool2dBlock(float, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies thelpPool2dBlock
pooling function in its forward function. - lpPool3d(NDArray, float, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 3-D LP Pooling on the input.
- lpPool3dBlock(float, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies thelpPool3dBlock
pooling function in its forward function. - lpPool3dBlock(float, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies theLpPoo3D
pooling function in its forward function. - lpPool3dBlock(float, Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies thelpPool3dBlock
pooling function in its forward function. - lpPool3dBlock(float, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies thelpPool3dBlock
pooling function in its forward function. - LruReplayBuffer - Class in ai.djl.modality.rl
-
A simple
ReplayBuffer
that randomly selects across the whole buffer, but always removes the oldest items in the buffer once it is full. - LruReplayBuffer(int, int) - Constructor for class ai.djl.modality.rl.LruReplayBuffer
-
Constructs a
LruReplayBuffer
. - LSTM - Class in ai.djl.nn.recurrent
-
LSTM
is an implementation of recurrent neural networks which applies Long Short-Term Memory recurrent layer to input. - LSTM.Builder - Class in ai.djl.nn.recurrent
- lt(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean
NDArray
for element-wise "Less" comparison. - lt(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean
NDArray
for element-wise "Less" comparison. - lt(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less" comparison. - lt(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less" comparison. - lt(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean
NDArray
for element-wise "Less" comparison. - lt(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean
NDArray
for element-wise "Less" comparison. - lt(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less" comparison. - lte(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean
NDArray
for element-wise "Less or equals" comparison. - lte(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean
NDArray
for element-wise "Less or equals" comparison. - lte(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less or equals" comparison. - lte(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less or equals" comparison. - lte(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean
NDArray
for element-wise "Less or equals" comparison. - lte(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean
NDArray
for element-wise "Less or equals" comparison. - lte(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less or equals" comparison.
M
- MACHINE_TRANSLATION - Static variable in interface ai.djl.Application.NLP
-
An application that translates text from one language to another.
- MalformedModelException - Exception in ai.djl
-
Thrown to indicate Model parameters are not in expected format or are malformed.
- MalformedModelException(String) - Constructor for exception ai.djl.MalformedModelException
-
Constructs a new exception with the specified detail message.
- MalformedModelException(String, Throwable) - Constructor for exception ai.djl.MalformedModelException
-
Constructs a new exception with the specified detail message and cause.
- MalformedModelException(Throwable) - Constructor for exception ai.djl.MalformedModelException
-
Constructs a new exception with the specified cause and a detail message of
(cause==null ? null : cause.toString())
which typically contains the class and detail message ofcause
. - manager - Variable in class ai.djl.BaseModel
- manager - Variable in class ai.djl.inference.Predictor
- manager - Variable in class ai.djl.ndarray.NDArrayAdapter
- map(Function<Pair<Long, LayoutType>, Pair<Long, LayoutType>>) - Method in class ai.djl.ndarray.types.Shape
-
Returns a mapped shape.
- Mask - Class in ai.djl.modality.cv.output
-
A mask with a probability for each pixel within a bounding rectangle.
- Mask(double, double, double, double, float[][]) - Constructor for class ai.djl.modality.cv.output.Mask
-
Constructs a Mask with the given data.
- maskedSoftmaxCrossEntropyLoss() - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
MaskedSoftmaxCrossEntropyLoss
with default arguments. - maskedSoftmaxCrossEntropyLoss(String) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
MaskedSoftmaxCrossEntropyLoss
with default arguments. - maskedSoftmaxCrossEntropyLoss(String, float, int, boolean, boolean) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
MaskedSoftmaxCrossEntropyLoss
with the given arguments. - MaskedSoftmaxCrossEntropyLoss - Class in ai.djl.training.loss
-
MaskedSoftmaxCrossEntropyLoss
is an implementation ofLoss
that only considers a specific number of values for the loss computations, and masks the rest according to the given sequence. - MaskedSoftmaxCrossEntropyLoss() - Constructor for class ai.djl.training.loss.MaskedSoftmaxCrossEntropyLoss
-
Creates a new instance of
SoftmaxCrossEntropyLoss
with default parameters. - MaskedSoftmaxCrossEntropyLoss(String) - Constructor for class ai.djl.training.loss.MaskedSoftmaxCrossEntropyLoss
-
Creates a new instance of
SoftmaxCrossEntropyLoss
with default parameters. - MaskedSoftmaxCrossEntropyLoss(String, float, int, boolean, boolean) - Constructor for class ai.djl.training.loss.MaskedSoftmaxCrossEntropyLoss
-
Creates a new instance of
MaskedSoftmaxCrossEntropyLoss
with the given parameters. - match(Map<String, String>) - Method in class ai.djl.repository.MRL
-
Returns the first artifact that matches a given criteria.
- MatchAllMetadata() - Constructor for class ai.djl.repository.Metadata.MatchAllMetadata
-
Creates a
MatchAllMetadata
instance. - matches(Application) - Method in class ai.djl.Application
-
Returns whether this application matches the test application set.
- matches(List<Artifact>) - Method in class ai.djl.repository.VersionRange
-
Filters the provided artifacts to those that match the version range.
- matMul(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Product matrix of this
NDArray
and the otherNDArray
. - matMul(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Product matrix of this
NDArray
and the otherNDArray
. - matMul(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Product matrix of this
NDArray
and the otherNDArray
. - max() - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this
NDArray
. - max() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the maximum of this
NDArray
. - max(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this
NDArray
along given axes. - max(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this
NDArray
along given axes. - max(int[], boolean) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the maximum of this
NDArray
along given axes. - maximum(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this
NDArray
and the otherNDArray
element-wise. - maximum(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the maximum of this
NDArray
and the otherNDArray
element-wise. - maximum(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- maximum(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the maximum of a
NDArray
and a number element-wise. - maximum(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this
NDArray
and a number element-wise. - maximum(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the maximum of this
NDArray
and a number element-wise. - maximum(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the maximum of a number and a
NDArray
element-wise. - maxLabels - Variable in class ai.djl.modality.nlp.translator.QATranslator
- maxLength - Variable in class ai.djl.modality.nlp.translator.QATranslator
- maxPool1d(NDArray, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 1-D Max Pooling on the input.
- maxPool1dBlock(Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies themaxPool1dBlock
pooling function in its forward function. - maxPool1dBlock(Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies themaxPool1dBlock
pooling function in its forward function. - maxPool1dBlock(Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies themaxPool1dBlock
pooling function in its forward function. - maxPool1dBlock(Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies themaxPool1d
pooling function in its forward function. - maxPool2d(NDArray, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 2-D Max Pooling on the input.
- maxPool2dBlock(Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies themaxPool2dBlock
pooling function in its forward function. - maxPool2dBlock(Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies themaxPool2dBlock
pooling function in its forward function. - maxPool2dBlock(Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies themaxPool2dBlock
pooling function in its forward function. - maxPool2dBlock(Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies themaxPool2dBlock
pooling function in its forward function. - maxPool3d(NDArray, Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs 3-D Max Pooling on the input.
- maxPool3dBlock(Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies themaxPool3dBlock
pooling function in its forward function. - maxPool3dBlock(Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies themaxPool3dBlock
pooling function in its forward function. - maxPool3dBlock(Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies themaxPool3dBlock
pooling function in its forward function. - maxPool3dBlock(Shape, Shape, Shape, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Creates a
LambdaBlock
that applies themaxPool3dBlock
pooling function in its forward function. - md5hash(String) - Static method in class ai.djl.repository.AbstractRepository
- mean() - Method in interface ai.djl.ndarray.NDArray
-
Returns the average of this
NDArray
. - mean() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the average of this
NDArray
. - mean(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the average of this
NDArray
along given axes. - mean(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the average of this
NDArray
along given axes. - mean(int[], boolean) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the average of this
NDArray
along given axes. - mean(String) - Method in class ai.djl.metric.Metrics
-
Returns the average value of the specified metric.
- median() - Method in interface ai.djl.ndarray.NDArray
-
Returns median value for this
NDArray
. - median() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns median value for this
NDArray
. - median(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns median value along given axes.
- median(int[]) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns median value along given axes.
- MEGABITS - ai.djl.metric.Unit
- MEGABITS_PER_SECOND - ai.djl.metric.Unit
- MEGABYTES - ai.djl.metric.Unit
- MEGABYTES_PER_SECOND - ai.djl.metric.Unit
- MemoryTrainingListener - Class in ai.djl.training.listener
-
TrainingListener
that collects the memory usage information. - MemoryTrainingListener() - Constructor for class ai.djl.training.listener.MemoryTrainingListener
-
Constructs a
MemoryTrainingListener
that does not output data to a file. - MemoryTrainingListener(String) - Constructor for class ai.djl.training.listener.MemoryTrainingListener
-
Constructs a
MemoryTrainingListener
that outputs data in the given directory. - Metadata - Class in ai.djl.repository
- Metadata() - Constructor for class ai.djl.repository.Metadata
- Metadata.MatchAllMetadata - Class in ai.djl.repository
-
A
Metadata
class that matches all any search criteria. - Metric - Class in ai.djl.metric
-
A class representing a single recorded
Metric
value. - Metric(String, Number) - Constructor for class ai.djl.metric.Metric
-
Constructs a
Metric
instance with the specifiedmetricName
andvalue
. - Metric(String, Number, Unit) - Constructor for class ai.djl.metric.Metric
-
Constructs a
Metric
instance with the specifiedmetricName
,value
, andunit
. - Metric(String, Number, Unit, Dimension...) - Constructor for class ai.djl.metric.Metric
-
Constructs a
Metric
instance with the specifiedmetricName
,value
, andunit
. - metricName(Evaluator, String) - Static method in class ai.djl.training.listener.EvaluatorTrainingListener
-
Returns the metric created with the evaluator for the given stage.
- metrics - Variable in class ai.djl.inference.Predictor
- Metrics - Class in ai.djl.metric
-
A collection of
Metric
objects organized by metric name. - Metrics() - Constructor for class ai.djl.metric.Metrics
-
Constructs an empty
Metrics
instance. - micro() - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets this builder's params to a minimal configuration that nevertheless performs quite well.
- MICROSECONDS - ai.djl.metric.Unit
- MILLISECONDS - ai.djl.metric.Unit
- min() - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this
NDArray
. - min() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the minimum of this
NDArray
. - min(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this
NDArray
along given axes. - min(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this
NDArray
along given axes. - min(int[], boolean) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the minimum of this
NDArray
along given axes. - minimum(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this
NDArray
and the otherNDArray
element-wise. - minimum(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the minimum of this
NDArray
and the otherNDArray
element-wise. - minimum(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- minimum(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the minimum of a
NDArray
and a number element-wise. - minimum(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this
NDArray
and a number element-wise. - minimum(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the minimum of this
NDArray
and a number element-wise. - minimum(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the minimum of a number and a
NDArray
element-wise. - MinMaxScaler - Class in ai.djl.training.util
-
Transform arrays by scaling each value to a given range.
- MinMaxScaler() - Constructor for class ai.djl.training.util.MinMaxScaler
- mish(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies Mish activation on the input
NDArray
. - mish(NDList) - Static method in class ai.djl.nn.Activation
-
Applies Mish activation on the input singleton
NDList
. - mishBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies theMish
activation function in its forward function. - MissingOps - Class in ai.djl.nn.transformer
-
Operators missing from NDArray that are necessary to implement Bert pretraining.
- MKL - Static variable in class ai.djl.engine.StandardCapabilities
- MKLDNN - Static variable in class ai.djl.engine.StandardCapabilities
- mod(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns element-wise remainder of division.
- mod(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns element-wise remainder of division.
- mod(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division.
- mod(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division.
- mod(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns element-wise remainder of division.
- mod(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns element-wise remainder of division.
- mod(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division.
- model(Application, String, String) - Method in interface ai.djl.repository.Repository
-
Creates a model
MRL
with specified application. - model(Application, String, String, String) - Method in interface ai.djl.repository.Repository
-
Creates a model
MRL
with specified application. - model(Application, String, String, String, String) - Method in interface ai.djl.repository.Repository
-
Creates a model
MRL
with specified application. - model(Repository, Application, String, String, String, String) - Static method in class ai.djl.repository.MRL
-
Creates a model
MRL
with specified application. - Model - Interface in ai.djl
-
A model is a collection of artifacts that is created by the training process.
- modelDir - Variable in class ai.djl.BaseModel
- ModelException - Exception in ai.djl
-
Thrown to indicate Model parameter or load exceptions parent to Model Exceptions.
- ModelException(String) - Constructor for exception ai.djl.ModelException
-
Constructs a new exception with the specified detail message.
- ModelException(String, Throwable) - Constructor for exception ai.djl.ModelException
-
Constructs a new exception with the specified detail message and cause.
- ModelException(Throwable) - Constructor for exception ai.djl.ModelException
-
Constructs a new exception with the specified cause and a detail message of
(cause==null ? null : cause.toString())
which typically contains the class and detail message ofcause
. - ModelLoader - Interface in ai.djl.repository.zoo
-
A ModelLoader loads a particular
ZooModel
from a Repository for a model zoo. - modelName - Variable in class ai.djl.BaseModel
- ModelNotFoundException - Exception in ai.djl.repository.zoo
-
Thrown when an application tries to load a model from repository search path.
- ModelNotFoundException(String) - Constructor for exception ai.djl.repository.zoo.ModelNotFoundException
-
Constructs a new exception with the specified detail message.
- ModelNotFoundException(String, Throwable) - Constructor for exception ai.djl.repository.zoo.ModelNotFoundException
-
Constructs a new exception with the specified detail message and cause.
- ModelNotFoundException(Throwable) - Constructor for exception ai.djl.repository.zoo.ModelNotFoundException
-
Constructs a new exception with the specified cause and a detail message of
(cause==null ? null : cause.toString())
(which typically contains the class and detail message ofcause
). - ModelZoo - Class in ai.djl.repository.zoo
-
An interface represents a collection of models.
- ModelZoo() - Constructor for class ai.djl.repository.zoo.ModelZoo
- ModelZooTextEmbedding - Class in ai.djl.modality.nlp.embedding
-
A
WordEmbedding
using aZooModel
. - ModelZooTextEmbedding(Model) - Constructor for class ai.djl.modality.nlp.embedding.ModelZooTextEmbedding
-
Constructs a
ModelZooTextEmbedding
. - modi(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns in place element-wise remainder of division in place.
- modi(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns in place element-wise remainder of division in place.
- modi(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division.
- modi(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division in place.
- modi(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns element-wise remainder of division in place.
- modi(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns element-wise remainder of division in place.
- modi(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division in place.
- mrl - Variable in class ai.djl.repository.zoo.BaseModelLoader
- MRL - Class in ai.djl.repository
-
The
MRL
(Machine learning Resource Locator) is a pointer to aMetadata
"resource" on a machine learningRepository
. - mul(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Multiplies this
NDArray
by otherNDArray
s element-wise. - mul(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Multiplies this
NDArray
by otherNDArray
s element-wise. - mul(NDArray...) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies all of the
NDArray
s together element-wise. - mul(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies the
NDArray
by a number element-wise. - mul(Number) - Method in interface ai.djl.ndarray.NDArray
-
Multiplies this
NDArray
by a number element-wise. - mul(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Multiplies this
NDArray
by a number element-wise. - mul(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies a number by a
NDArray
element-wise. - muli(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Multiplies this
NDArray
by otherNDArray
element-wise in place. - muli(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Multiplies this
NDArray
by otherNDArray
element-wise in place. - muli(NDArray...) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies all of the
NDArray
s together element-wise in place. - muli(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies the
NDArray
by a number element-wise in place. - muli(Number) - Method in interface ai.djl.ndarray.NDArray
-
Multiplies this
NDArray
by a number element-wise in place. - muli(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Multiplies this
NDArray
by a number element-wise in place. - muli(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies a number by a
NDArray
element-wise. - MultiBoxDetection - Class in ai.djl.modality.cv
-
MultiBoxDetection
is the class that takes the output of a multi-box detection model, and converts it into an NDList that contains the object detections. - MultiBoxDetection(MultiBoxDetection.Builder) - Constructor for class ai.djl.modality.cv.MultiBoxDetection
-
Creates a new instance of
MultiBoxDetection
with the arguments from the givenMultiBoxDetection.Builder
. - MultiBoxDetection.Builder - Class in ai.djl.modality.cv
-
The Builder to construct a
MultiBoxDetection
object. - MultiBoxPrior - Class in ai.djl.modality.cv
-
MultiBoxPrior
is the class that generates anchor boxes that act as priors for object detection. - MultiBoxPrior(MultiBoxPrior.Builder) - Constructor for class ai.djl.modality.cv.MultiBoxPrior
-
Creates a new instance of
MultiBoxPrior
with the arguments from the givenMultiBoxPrior.Builder
. - MultiBoxPrior.Builder - Class in ai.djl.modality.cv
-
The Builder to construct a
MultiBoxPrior
object. - MultiBoxTarget - Class in ai.djl.modality.cv
-
MultiBoxTarget
is the class that computes the training targets for training a Single Shot Detection (SSD) models. - MultiBoxTarget(MultiBoxTarget.Builder) - Constructor for class ai.djl.modality.cv.MultiBoxTarget
-
Creates a new instance of
MultiBoxTarget
with the arguments from the givenMultiBoxTarget.Builder
. - MultiBoxTarget.Builder - Class in ai.djl.modality.cv
-
The Builder to construct a
MultiBoxTarget
object. - multiFactor() - Static method in interface ai.djl.training.tracker.Tracker
-
Returns a new instance of
MultiFactorTracker.Builder
that can build anMultiFactorTracker
. - MultiFactorTracker - Class in ai.djl.training.tracker
-
MultiFactorTracker
is an implementation ofTracker
which returns piecewise constant values for fixed numbers of steps. - MultiFactorTracker(MultiFactorTracker.Builder) - Constructor for class ai.djl.training.tracker.MultiFactorTracker
-
Creates a new instance of
MultiFactorTracker
. - MultiFactorTracker.Builder - Class in ai.djl.training.tracker
-
The Builder to construct an
MultiFactorTracker
object. - MULTIPLE_CHOICE - Static variable in interface ai.djl.Application.NLP
-
An application to represent a multiple choice question.
N
- nag() - Static method in class ai.djl.training.optimizer.Optimizer
-
Returns a new instance of
Nag.Builder
that can build anNag
optimizer. - Nag - Class in ai.djl.training.optimizer
-
Nag
is a Nesterov accelerated gradient optimizer. - Nag(Nag.Builder) - Constructor for class ai.djl.training.optimizer.Nag
-
Creates a new instance of
Nag
optimizer. - Nag.Builder - Class in ai.djl.training.optimizer
-
The Builder to construct an
Nag
object. - name - Variable in class ai.djl.ndarray.BaseNDManager
- name - Variable in class ai.djl.ndarray.NDArrayAdapter
- name - Variable in class ai.djl.repository.AbstractRepository
- name - Variable in class ai.djl.training.hyperparameter.param.Hyperparameter
- nano() - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Tiny config for testing on laptops.
- NDArray - Interface in ai.djl.ndarray
-
An interface representing an n-dimensional array.
- NDArrayAdapter - Class in ai.djl.ndarray
-
A base implementation of the
NDArray
that does nothing. - NDArrayAdapter(NDManager, NDManager, Shape, DataType, String) - Constructor for class ai.djl.ndarray.NDArrayAdapter
- NDArrayIndexer - Class in ai.djl.ndarray.index
- NDArrayIndexer() - Constructor for class ai.djl.ndarray.index.NDArrayIndexer
- NDArrays - Class in ai.djl.ndarray
-
This class contains various methods for manipulating NDArrays.
- NDArraySupplier - Interface in ai.djl.translate
-
Represents a supplier of
NDArray
. - NDImageUtils - Class in ai.djl.modality.cv.util
-
NDImageUtils
is an image processing utility to load, reshape, and convert images usingNDArray
images. - NDIndex - Class in ai.djl.ndarray.index
-
The
NDIndex
allows you to specify a subset of an NDArray that can be used for fetching or updating. - NDIndex() - Constructor for class ai.djl.ndarray.index.NDIndex
-
Creates an empty
NDIndex
to append values to. - NDIndex(long...) - Constructor for class ai.djl.ndarray.index.NDIndex
-
Creates an NDIndex with the given indices as specified values on the NDArray.
- NDIndex(String, Object...) - Constructor for class ai.djl.ndarray.index.NDIndex
-
Creates a
NDIndex
given the index values. - NDIndexAll - Class in ai.djl.ndarray.index.dim
-
An
NDIndexElement
to return all values in a particular dimension. - NDIndexAll() - Constructor for class ai.djl.ndarray.index.dim.NDIndexAll
- NDIndexBooleans - Class in ai.djl.ndarray.index.dim
-
An
NDIndexElement
to return values based on a mask binary NDArray. - NDIndexBooleans(NDArray) - Constructor for class ai.djl.ndarray.index.dim.NDIndexBooleans
-
Constructs a
NDIndexBooleans
instance with specified mask binary NDArray. - NDIndexElement - Interface in ai.djl.ndarray.index.dim
-
An index for particular dimensions created by NDIndex.
- NDIndexFixed - Class in ai.djl.ndarray.index.dim
-
An NDIndexElement that returns only a specific value in the corresponding dimension.
- NDIndexFixed(long) - Constructor for class ai.djl.ndarray.index.dim.NDIndexFixed
-
Constructs a
NDIndexFixed
instance with specified dimension. - NDIndexFullPick - Class in ai.djl.ndarray.index.full
-
A simplified representation of a pick-based
NDIndex
. - NDIndexFullSlice - Class in ai.djl.ndarray.index.full
-
An index as a slice on all dimensions where some dimensions can be squeezed.
- NDIndexPick - Class in ai.djl.ndarray.index.dim
-
An
NDIndexElement
that gets elements by index in the specified axis. - NDIndexPick(NDArray) - Constructor for class ai.djl.ndarray.index.dim.NDIndexPick
-
Constructs a pick.
- NDIndexSlice - Class in ai.djl.ndarray.index.dim
-
An NDIndexElement that returns a range of values in the specified dimension.
- NDIndexSlice(Long, Long, Long) - Constructor for class ai.djl.ndarray.index.dim.NDIndexSlice
-
Constructs a
NDIndexSlice
instance with specified range and step. - NDList - Class in ai.djl.ndarray
-
An
NDList
represents a sequence ofNDArray
s with names. - NDList() - Constructor for class ai.djl.ndarray.NDList
-
Constructs an empty NDList.
- NDList(int) - Constructor for class ai.djl.ndarray.NDList
-
Constructs an empty NDList with the specified initial capacity.
- NDList(NDArray...) - Constructor for class ai.djl.ndarray.NDList
-
Constructs and initiates an NDList with the specified
NDArray
s. - NDList(Collection<NDArray>) - Constructor for class ai.djl.ndarray.NDList
-
Constructs and initiates an NDList with the specified
NDArray
s. - NDManager - Interface in ai.djl.ndarray
-
NDArray managers are used to create NDArrays (n-dimensional array on native engine).
- NDResource - Interface in ai.djl.ndarray
-
An object which is managed by an
NDManager
and tracks the manager it is attached to. - NDUtils - Class in ai.djl.ndarray
-
A class containing utility methods for NDArray operations.
- NEAREST - ai.djl.modality.cv.Image.Interpolation
- neg() - Method in interface ai.djl.ndarray.NDArray
-
Returns the numerical negative
NDArray
element-wise. - neg() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the numerical negative
NDArray
element-wise. - negi() - Method in interface ai.djl.ndarray.NDArray
-
Returns the numerical negative
NDArray
element-wise in place. - negi() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the numerical negative
NDArray
element-wise in place. - neq(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean
NDArray
for element-wise "Not equals" comparison. - neq(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean
NDArray
for element-wise "Not equals" comparison. - neq(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Not equals" comparison. - neq(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Not equals" comparison. - neq(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean
NDArray
for element-wise "Not equals" comparison. - neq(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the boolean
NDArray
for element-wise "Not equals" comparison. - neq(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Not equals" comparison. - newBaseManager() - Method in class ai.djl.engine.Engine
-
Creates a new top-level
NDManager
. - newBaseManager() - Static method in interface ai.djl.ndarray.NDManager
-
Creates a new top-level
NDManager
. - newBaseManager(Device) - Method in class ai.djl.engine.Engine
- newBaseManager(Device) - Static method in interface ai.djl.ndarray.NDManager
-
Creates a new top-level
NDManager
with specifiedDevice
. - newBaseManager(Device, String) - Static method in interface ai.djl.ndarray.NDManager
-
Creates a new top-level
NDManager
with specifiedDevice
and engine. - newBlock(Model, Path, Map<String, ?>) - Method in interface ai.djl.nn.BlockFactory
-
Constructs the uninitialized block.
- newGradientCollector() - Method in class ai.djl.engine.Engine
-
Returns a new instance of
GradientCollector
. - newGradientCollector() - Method in class ai.djl.training.Trainer
-
Returns a new instance of
GradientCollector
. - newInstance(NDManager) - Static method in interface ai.djl.nn.SymbolBlock
-
Creates an empty SymbolBlock instance.
- newInstance(Class<?>, Class<?>, Model, Map<String, ?>) - Method in class ai.djl.modality.cv.translator.BigGANTranslatorFactory
-
Returns a new instance of the
Translator
class. - newInstance(Class<?>, Class<?>, Model, Map<String, ?>) - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslatorFactory
-
Returns a new instance of the
Translator
class. - newInstance(Class<?>, Class<?>, Model, Map<String, ?>) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslatorFactory
-
Returns a new instance of the
Translator
class. - newInstance(Class<?>, Class<?>, Model, Map<String, ?>) - Method in class ai.djl.modality.cv.translator.SimplePoseTranslatorFactory
-
Returns a new instance of the
Translator
class. - newInstance(Class<?>, Class<?>, Model, Map<String, ?>) - Method in class ai.djl.modality.cv.translator.SingleShotDetectionTranslatorFactory
-
Returns a new instance of the
Translator
class. - newInstance(Class<?>, Class<?>, Model, Map<String, ?>) - Method in class ai.djl.modality.cv.translator.StyleTransferTranslatorFactory
-
Returns a new instance of the
Translator
class. - newInstance(Class<?>, Class<?>, Model, Map<String, ?>) - Method in class ai.djl.modality.cv.translator.YoloTranslatorFactory
-
Returns a new instance of the
Translator
class. - newInstance(Class<?>, Class<?>, Model, Map<String, ?>) - Method in class ai.djl.modality.cv.translator.YoloV5TranslatorFactory
-
Returns a new instance of the
Translator
class. - newInstance(Class<?>, Class<?>, Model, Map<String, ?>) - Method in class ai.djl.translate.DefaultTranslatorFactory
-
Returns a new instance of the
Translator
class. - newInstance(Class<?>, Class<?>, Model, Map<String, ?>) - Method in class ai.djl.translate.ServingTranslatorFactory
-
Returns a new instance of the
Translator
class. - newInstance(Class<?>, Class<?>, Model, Map<String, ?>) - Method in interface ai.djl.translate.TranslatorFactory
-
Returns a new instance of the
Translator
class. - newInstance(String) - Static method in interface ai.djl.Model
-
Creates an empty model instance.
- newInstance(String, Device) - Static method in interface ai.djl.Model
-
Creates an empty model instance on the specified
Device
. - newInstance(String, Device, String) - Static method in interface ai.djl.Model
-
Creates an empty model instance on the specified
Device
and engine. - newInstance(String, String) - Static method in interface ai.djl.Model
-
Creates an empty model instance on the specified
Device
and engine. - newInstance(String, String) - Static method in interface ai.djl.repository.Repository
-
Creates a new instance of a repository with a name and url.
- newInstance(String, URI) - Method in interface ai.djl.repository.RepositoryFactory
-
Creates a new instance of a repository with a name and url.
- newInstance(String, Path) - Static method in interface ai.djl.repository.Repository
-
Creates a new instance of a repository with a name and url.
- newModel(String, Device) - Method in class ai.djl.engine.Engine
-
Constructs a new model.
- newParameterServer(Optimizer) - Method in class ai.djl.engine.Engine
-
Returns a new instance of
ParameterServer
. - newPredictor() - Method in class ai.djl.repository.zoo.ZooModel
-
Creates a new Predictor based on the model with the default translator.
- newPredictor(Device) - Method in class ai.djl.repository.zoo.ZooModel
-
Creates a new Predictor based on the model with the default translator and a specified device.
- newPredictor(Translator<I, O>) - Method in interface ai.djl.Model
-
Creates a new Predictor based on the model on the current device.
- newPredictor(Translator<I, O>, Device) - Method in class ai.djl.BaseModel
-
Creates a new Predictor based on the model.
- newPredictor(Translator<I, O>, Device) - Method in interface ai.djl.Model
-
Creates a new Predictor based on the model.
- newPredictor(Translator<P, Q>, Device) - Method in class ai.djl.repository.zoo.ZooModel
-
Creates a new Predictor based on the model.
- newSubManager() - Method in class ai.djl.ndarray.BaseNDManager
-
Creates a child
NDManager
. - newSubManager() - Method in interface ai.djl.ndarray.NDManager
-
Creates a child
NDManager
. - newSubManager(Device) - Method in interface ai.djl.ndarray.NDManager
-
Creates a child
NDManager
with specified defaultDevice
. - newSymbolBlock(NDManager) - Method in class ai.djl.engine.Engine
-
Construct an empty SymbolBlock for loading.
- newTrainer(TrainingConfig) - Method in class ai.djl.BaseModel
-
Creates a new
Trainer
instance for a Model. - newTrainer(TrainingConfig) - Method in interface ai.djl.Model
-
Creates a new
Trainer
instance for a Model. - newTrainer(TrainingConfig) - Method in class ai.djl.repository.zoo.ZooModel
-
Creates a new
Trainer
instance for a Model. - next() - Method in class ai.djl.training.dataset.DataIterable
- nextConfig() - Method in interface ai.djl.training.hyperparameter.optimizer.HpOptimizer
-
Returns the next hyperparameters to test.
- nextConfig() - Method in class ai.djl.training.hyperparameter.optimizer.HpORandom
-
Returns the next hyperparameters to test.
- NlpUtils - Class in ai.djl.modality.nlp
-
Utility functions for processing String and Characters in NLP problems.
- nms(List<YoloV5Translator.IntermediateResult>) - Method in class ai.djl.modality.cv.translator.YoloV5Translator
- NoBatchifyTranslator<I,O> - Interface in ai.djl.translate
-
A
Translator
that does not use aBatchifier
. - none() - Method in interface ai.djl.ndarray.NDArray
-
Returns
true
if none of the elements within thisNDArray
are non-zero ortrue
. - NONE - ai.djl.metric.Unit
- nonzero() - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices of elements that are non-zero.
- nonzero() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the indices of elements that are non-zero.
- NoopTranslator - Class in ai.djl.translate
-
A no operational
Translator
implementation. - NoopTranslator() - Constructor for class ai.djl.translate.NoopTranslator
-
Constructs a
NoopTranslator
. - NoopTranslator(Batchifier) - Constructor for class ai.djl.translate.NoopTranslator
-
Constructs a
NoopTranslator
with the givenBatchifier
. - norm() - Method in interface ai.djl.ndarray.NDArray
-
Returns the norm of this
NDArray
. - norm(boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the norm of this
NDArray
. - norm(boolean) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the norm of this
NDArray
. - norm(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the norm of this
NDArray
. - norm(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the norm of this
NDArray
. - norm(int, int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the norm of this
NDArray
. - norm(int, int[], boolean) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the norm of this
NDArray
. - NormalInitializer - Class in ai.djl.training.initializer
-
NormalInitializer
initializes weights with random values sampled from a normal distribution with a mean of zero and standard deviation ofsigma
. - NormalInitializer() - Constructor for class ai.djl.training.initializer.NormalInitializer
-
Creates an instance of
NormalInitializer
with a default sigma of 0.01. - NormalInitializer(float) - Constructor for class ai.djl.training.initializer.NormalInitializer
-
Creates a Normal initializer.
- normalize(NDArray, float[], float[]) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Normalizes an image NDArray of shape CHW or NCHW with mean and standard deviation.
- normalize(NDArray, float, float) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Normalizes an image NDArray of shape CHW or NCHW with a single mean and standard deviation to apply to all channels.
- Normalize - Class in ai.djl.modality.cv.transform
- Normalize(float[], float[]) - Constructor for class ai.djl.modality.cv.transform.Normalize
-
Creates a
Normalize
Transform
that normalizes. - normalizeDefault(String) - Static method in class ai.djl.modality.nlp.preprocess.UnicodeNormalizer
-
Normalizes a String using a sensible default normal form.
- normalizeHyphens(String) - Static method in class ai.djl.modality.nlp.preprocess.HyphenNormalizer
-
Replaces hyphen like codepoints by ASCII "-", removes soft hyphens.
- notifyListeners(Consumer<TrainingListener>) - Method in class ai.djl.training.Trainer
-
Executes a method on each of the
TrainingListener
s. - numChannels() - Method in enum ai.djl.modality.cv.Image.Flag
-
Returns the number of channels for this flag.
- numDimensions() - Method in class ai.djl.nn.convolutional.Conv1d
-
Returns the number of dimensions of the input.
- numDimensions() - Method in class ai.djl.nn.convolutional.Conv1dTranspose
-
Returns the number of dimensions of the input.
- numDimensions() - Method in class ai.djl.nn.convolutional.Conv2d
-
Returns the number of dimensions of the input.
- numDimensions() - Method in class ai.djl.nn.convolutional.Conv2dTranspose
-
Returns the number of dimensions of the input.
- numDimensions() - Method in class ai.djl.nn.convolutional.Conv3d
-
Returns the number of dimensions of the input.
- numDimensions() - Method in class ai.djl.nn.convolutional.Convolution
-
Returns the number of dimensions of the input.
- numDimensions() - Method in class ai.djl.nn.convolutional.Deconvolution
-
Returns the number of dimensions of the input.
- numEmbeddings - Variable in class ai.djl.nn.core.Embedding.BaseBuilder
- numEmbeddings - Variable in class ai.djl.nn.core.Embedding
- numEpochs(HpSet) - Method in class ai.djl.training.hyperparameter.EasyHpo
-
Returns the number of epochs to train for the current hyperparameter set.
- numHyperParameterTests() - Method in class ai.djl.training.hyperparameter.EasyHpo
-
Returns the number of hyperparameter sets to train with.
- numLayers - Variable in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
- numLayers - Variable in class ai.djl.nn.recurrent.RecurrentBlock
O
- OBJECT_DETECTION - Static variable in interface ai.djl.Application.CV
-
An application that finds zero or more objects in an image, the object class (see image classification), and their locations as a
BoundingBox
. - ObjectDetectionBuilder() - Constructor for class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
- ObjectDetectionTranslator - Class in ai.djl.modality.cv.translator
- ObjectDetectionTranslator(ObjectDetectionTranslator.ObjectDetectionBuilder<?>) - Constructor for class ai.djl.modality.cv.translator.ObjectDetectionTranslator
-
Creates the
ObjectDetectionTranslator
from the given builder. - ObjectDetectionTranslator.ObjectDetectionBuilder<T extends ObjectDetectionTranslator.ObjectDetectionBuilder> - Class in ai.djl.modality.cv.translator
-
The base builder for the object detection translator.
- ObjectDetectionTranslatorFactory - Class in ai.djl.modality.cv.translator
-
An abstract
TranslatorFactory
that creates aObjectDetectionTranslator
instance. - ObjectDetectionTranslatorFactory() - Constructor for class ai.djl.modality.cv.translator.ObjectDetectionTranslatorFactory
- of(String) - Static method in class ai.djl.Application
-
Converts a path string to a
Application
. - of(String, int) - Static method in class ai.djl.Device
-
Returns a
Device
with device type and device id. - oneHot(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns a one-hot
NDArray
. - oneHot(int, float, float, DataType) - Method in interface ai.djl.ndarray.NDArray
-
Returns a one-hot
NDArray
. - oneHot(int, float, float, DataType) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns a one-hot
NDArray
. - oneHot(int, DataType) - Method in interface ai.djl.ndarray.NDArray
-
Returns a one-hot
NDArray
. - onEpoch(Trainer) - Method in class ai.djl.training.listener.EpochTrainingListener
-
Listens to the end of an epoch during training.
- onEpoch(Trainer) - Method in class ai.djl.training.listener.EvaluatorTrainingListener
-
Listens to the end of an epoch during training.
- onEpoch(Trainer) - Method in class ai.djl.training.listener.LoggingTrainingListener
-
Listens to the end of an epoch during training.
- onEpoch(Trainer) - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
Listens to the end of an epoch during training.
- onEpoch(Trainer) - Method in class ai.djl.training.listener.TimeMeasureTrainingListener
-
Listens to the end of an epoch during training.
- onEpoch(Trainer) - Method in interface ai.djl.training.listener.TrainingListener
-
Listens to the end of an epoch during training.
- onEpoch(Trainer) - Method in class ai.djl.training.listener.TrainingListenerAdapter
-
Listens to the end of an epoch during training.
- ones(Shape) - Method in interface ai.djl.ndarray.NDManager
- ones(Shape, DataType) - Method in class ai.djl.ndarray.BaseNDManager
- ones(Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
- ones(Shape, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
- ONES - Static variable in interface ai.djl.training.initializer.Initializer
- onesLike() - Method in interface ai.djl.ndarray.NDArray
- onTrainingBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.DivergenceCheckTrainingListener
-
Listens to the end of training one batch of data during training.
- onTrainingBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.EvaluatorTrainingListener
-
Listens to the end of training one batch of data during training.
- onTrainingBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.LoggingTrainingListener
-
Listens to the end of training one batch of data during training.
- onTrainingBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.MemoryTrainingListener
-
Listens to the end of training one batch of data during training.
- onTrainingBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.TimeMeasureTrainingListener
-
Listens to the end of training one batch of data during training.
- onTrainingBatch(Trainer, TrainingListener.BatchData) - Method in interface ai.djl.training.listener.TrainingListener
-
Listens to the end of training one batch of data during training.
- onTrainingBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.TrainingListenerAdapter
-
Listens to the end of training one batch of data during training.
- onTrainingBegin(Trainer) - Method in class ai.djl.training.listener.EpochTrainingListener
-
Listens to the beginning of training.
- onTrainingBegin(Trainer) - Method in class ai.djl.training.listener.EvaluatorTrainingListener
-
Listens to the beginning of training.
- onTrainingBegin(Trainer) - Method in class ai.djl.training.listener.LoggingTrainingListener
-
Listens to the beginning of training.
- onTrainingBegin(Trainer) - Method in interface ai.djl.training.listener.TrainingListener
-
Listens to the beginning of training.
- onTrainingBegin(Trainer) - Method in class ai.djl.training.listener.TrainingListenerAdapter
-
Listens to the beginning of training.
- onTrainingEnd(Trainer) - Method in class ai.djl.training.listener.EpochTrainingListener
-
Listens to the end of training.
- onTrainingEnd(Trainer) - Method in class ai.djl.training.listener.LoggingTrainingListener
-
Listens to the end of training.
- onTrainingEnd(Trainer) - Method in class ai.djl.training.listener.MemoryTrainingListener
-
Listens to the end of training.
- onTrainingEnd(Trainer) - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
Listens to the end of training.
- onTrainingEnd(Trainer) - Method in class ai.djl.training.listener.TimeMeasureTrainingListener
-
Listens to the end of training.
- onTrainingEnd(Trainer) - Method in interface ai.djl.training.listener.TrainingListener
-
Listens to the end of training.
- onTrainingEnd(Trainer) - Method in class ai.djl.training.listener.TrainingListenerAdapter
-
Listens to the end of training.
- onValidationBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.EvaluatorTrainingListener
-
Listens to the end of validating one batch of data during validation.
- onValidationBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.LoggingTrainingListener
-
Listens to the end of validating one batch of data during validation.
- onValidationBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.MemoryTrainingListener
-
Listens to the end of validating one batch of data during validation.
- onValidationBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.TimeMeasureTrainingListener
-
Listens to the end of validating one batch of data during validation.
- onValidationBatch(Trainer, TrainingListener.BatchData) - Method in interface ai.djl.training.listener.TrainingListener
-
Listens to the end of validating one batch of data during validation.
- onValidationBatch(Trainer, TrainingListener.BatchData) - Method in class ai.djl.training.listener.TrainingListenerAdapter
-
Listens to the end of validating one batch of data during validation.
- OPENMP - Static variable in class ai.djl.engine.StandardCapabilities
- openStream(Artifact.Item, String) - Method in class ai.djl.repository.AbstractRepository
-
Returns an
InputStream
for an item in a repository. - openStream(Artifact.Item, String) - Method in interface ai.djl.repository.Repository
-
Returns an
InputStream
for an item in a repository. - optApplication(Application) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the model application for this criteria.
- optApplySoftmax(boolean) - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslator.Builder
-
Sets whether to apply softmax when processing output.
- optArgument(String, Object) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the optional model loading argument for this criteria.
- optArguments(Map<String, Object>) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets an extra model loading argument for this criteria.
- optArray(NDArray) - Method in class ai.djl.nn.Parameter.Builder
-
Sets the array of the
Parameter
. - optArtifactId(String) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets optional artifactId of the
ModelLoader
for this criteria. - optAttentionHeadCount(int) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the number of attention heads to use in each transformer block.
- optAttentionProbsDropoutProb(float) - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock.Builder
-
Sets the probability of applying dropout to the attention probability distribution.
- optAxis(int) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
Set the axis in which channel is specified.
- optBackgroundId(int) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the class ID for the background.
- optBatchFirst(boolean) - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
Sets the optional batchFirst flag that indicates whether the input is batch major or not.
- optBatchifier(Batchifier) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
-
Sets the
Batchifier
for theTranslator
. - optBatchifier(Batchifier) - Method in class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
-
Sets the
Batchifier
for theTranslator
. - optBeginNumUpdate(int) - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
Sets the initial value of the number of updates.
- optBeta1(float) - Method in class ai.djl.training.optimizer.Adam.Builder
-
Sets the decay rate for the first moment estimates.
- optBeta2(float) - Method in class ai.djl.training.optimizer.Adam.Builder
-
Sets the decay rate for the second moment estimates.
- optBias(boolean) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the optional parameter of whether to include a bias vector.
- optBias(boolean) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the optional parameter of whether to include a bias vector.
- optBias(boolean) - Method in class ai.djl.nn.core.Linear.Builder
-
Sets the optional parameter that indicates whether to include a bias vector with default value of true.
- optBidirectional(boolean) - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
Sets the optional parameter that indicates whether to use bidirectional recurrent layers.
- optBlock(Block) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets an optional model
Block
for this criteria. - optCenter(boolean) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
If True, add offset of `beta` to normalized tensor.
- optCenter(boolean) - Method in class ai.djl.nn.norm.LayerNorm.Builder
-
If True, add offset of `beta` to normalized tensor.
- optCentered(boolean) - Method in class ai.djl.training.optimizer.RmsProp.Builder
-
Sets which version of RMSProp to use.
- optClip(boolean) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the boolean parameter that indicates whether to clip out-of-boundary boxes.
- optClip(boolean) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the boolean parameter that indicates whether to clip out-of-boundary boxes.
- optClipGrad(float) - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
Sets the value of the \(clipGrad\).
- optDataBatchifier(Batchifier) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets the
Batchifier
for the data. - optDefaultItem(T) - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Sets whether to use a default item's embedding for undefined items.
- optDevice(Device) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the
Device
for this criteria. - optDevice(Device) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets the
Device
. - optDevices(Device[]) - Method in class ai.djl.training.DefaultTrainingConfig
-
Sets the array of
Device
available for training. - optDilation(Shape) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the dilation along each dimension.
- optDilation(Shape) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the dilation along each dimension.
- optDropRate(float) - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
Sets the drop rate of the dropout on the outputs of each RNN layer, except the last layer.
- optEmbeddingSize(int) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the embedding size to use for input tokens.
- optEngine(String) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the engine name for this criteria.
- optEpsilon(float) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
Sets the epsilon value to prevent division by 0.
- optEpsilon(float) - Method in class ai.djl.nn.norm.LayerNorm.Builder
-
Sets the epsilon value to prevent division by 0.
- optEpsilon(float) - Method in class ai.djl.training.optimizer.Adadelta.Builder
-
Sets \(epsilon\) - a small quantity for numerical stability.
- optEpsilon(float) - Method in class ai.djl.training.optimizer.Adagrad.Builder
-
Sets \(epsilon\) - a small quantity for numerical stability.
- optEpsilon(float) - Method in class ai.djl.training.optimizer.Adam.Builder
-
Sets \(epsilon\) - a small quantity for numerical stability.
- optEpsilon(float) - Method in class ai.djl.training.optimizer.RmsProp.Builder
-
Sets \(epsilon\) - a small quantity for numerical stability.
- optExecutorService() - Method in class ai.djl.training.DefaultTrainingConfig
-
Sets the
ExecutorService
with the globalForkJoinPool.commonPool()
. - optExecutorService(ExecutorService) - Method in class ai.djl.training.DefaultTrainingConfig
-
Sets the
ExecutorService
to train with multiple threads. - optFactor(float) - Method in class ai.djl.training.tracker.MultiFactorTracker.Builder
-
Set the value of the multiplicative factor.
- optFallthrough(AbstractIndexedEmbedding<T>) - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Sets a custom handler for items not found in the embedding.
- optFilter(String, String) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets an extra search filter for this criteria.
- optFilters(Map<String, String>) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the extra search filters for this criteria.
- optFinalValue(float) - Method in class ai.djl.training.tracker.CosineTracker.Builder
-
Sets the final value that the learning rate will remain constant as after the specified max number of updates.
- optFlag(Image.Flag) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
-
Sets the optional
Image.Flag
(default isImage.Flag.COLOR
). - optForceSuppress(boolean) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the boolean parameter that indicates whether to suppress all detections regardless of class_id.
- optGroupId(String) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets optional groupId of the
ModelZoo
for this criteria. - optGroups(int) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the number of group partitions.
- optGroups(int) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the number of group partitions.
- optHasBiases(boolean) - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
Sets the optional biases flag that indicates whether to use biases or not.
- optHiddenDropoutProbability(float) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the dropout probabilty in the hidden fully connected networks.
- optHiddenSize(int) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the size of the hidden layers in the fully connected networks used.
- optIgnoreLabel(float) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the label for ignored anchors.
- Optimizer - Class in ai.djl.training.optimizer
-
An
Optimizer
updates the weight parameters to minimize the loss function. - Optimizer(Optimizer.OptimizerBuilder<?>) - Constructor for class ai.djl.training.optimizer.Optimizer
-
Creates a new instance of
Optimizer
. - Optimizer.OptimizerBuilder<T extends Optimizer.OptimizerBuilder> - Class in ai.djl.training.optimizer
-
The Builder to construct an
Optimizer
. - OptimizerBuilder() - Constructor for class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
- optIncludeTokenTypes(boolean) - Method in class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
-
Sets the if include token types for the
Translator
. - optIncludeValidLengths(boolean) - Method in class ai.djl.translate.PaddingStackBatchifier.Builder
-
Sets whether to include the valid lengths (length of non-padded data) for each array.
- optInitializer(Initializer) - Method in class ai.djl.nn.Parameter.Builder
-
Sets the Initializer of the
Parameter
. - optInitializer(Initializer, Parameter.Type) - Method in class ai.djl.training.DefaultTrainingConfig
-
Sets the
Initializer
to use for the parameters (default from paper). - optInitializer(Initializer, String) - Method in class ai.djl.training.DefaultTrainingConfig
-
Sets the
Initializer
to use for the parameters (default from paper). - optInitializer(Initializer, Predicate<Parameter>) - Method in class ai.djl.training.DefaultTrainingConfig
-
Sets the
Initializer
to use for the parameters (default from paper). - optIouThreshold(float) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the anchor-GroundTruth overlap threshold to be regarded as a positive match.
- optLabelBatchifier(Batchifier) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets the
Batchifier
for the labels. - optLabels(NDArray...) - Method in class ai.djl.training.dataset.ArrayDataset.Builder
-
Sets the labels for the data in the
ArrayDataset
. - optLearningRateTracker(Tracker) - Method in class ai.djl.training.optimizer.Adagrad.Builder
-
Sets the
Tracker
for this optimizer. - optLearningRateTracker(Tracker) - Method in class ai.djl.training.optimizer.Adam.Builder
-
Sets the
Tracker
for this optimizer. - optLearningRateTracker(Tracker) - Method in class ai.djl.training.optimizer.RmsProp.Builder
-
Sets the
Tracker
for this optimizer. - optLimit(long) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets this dataset's limit.
- optLocale(String) - Method in class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
-
Sets the name of the locale for the
Translator
. - optMaxEdge(int) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator.Builder
-
Sets the maximum edge length of the rescaled image.
- optMaxLabels(int) - Method in class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
-
Sets the max number of labels for the
Translator
. - optMaxLength(int) - Method in class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
-
Sets the max number of tokens for the
Translator
. - optMaxSequenceLength(int) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the maximum sequence length this model can process.
- optMaxTokens(int) - Method in class ai.djl.modality.nlp.DefaultVocabulary.Builder
-
Sets the optional limit on the size of the vocabulary.
- optMaxUpdates(int) - Method in class ai.djl.training.tracker.FactorTracker.Builder
-
Sets the maximum number of updates after which the value should remain constant.
- optMaxUpdates(int) - Method in class ai.djl.training.tracker.LinearTracker.Builder
-
Sets the maximum number of updates after which the value should remain constant.
- optMaxValue(float) - Method in class ai.djl.training.tracker.LinearTracker.Builder
-
Sets the maximum value for a positive slope.
- optMinFrequency(int) - Method in class ai.djl.modality.nlp.DefaultVocabulary.Builder
-
Sets the optional parameter that specifies the minimum frequency to consider a token to be part of the
DefaultVocabulary
. - optMinNegativeSamples(int) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the minimum number of negative samples.
- optMinValue(float) - Method in class ai.djl.training.tracker.FactorTracker.Builder
-
Sets the minimum value.
- optMinValue(float) - Method in class ai.djl.training.tracker.LinearTracker.Builder
-
Sets the minimum value for a negative slope.
- optModelName(String) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets an optional model name for this criteria.
- optModelPath(Path) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the optional model path of the
ModelLoader
for this criteria. - optModelUrls(String) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets optional model urls of the
ModelLoader
for this criteria. - optModelZoo(ModelZoo) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets optional
ModelZoo
of theModelLoader
for this criteria. - optMomentum(float) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
Set the momentum for moving average.
- optMomentum(float) - Method in class ai.djl.training.optimizer.RmsProp.Builder
-
Sets the momentum factor.
- optMomentum(float) - Method in class ai.djl.training.optimizer.Sgd.Builder
-
Sets the momentum for
Sgd
. - optNegativeMinigRatio(float) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the max negative to positive samples ratio.
- optNegativeMiningThreshold(float) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the threshold used for negative mining.
- optNmsThreshold(float) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the non-maximum suppression(NMS) threshold.
- optNmsThreshold(float) - Method in class ai.djl.modality.cv.translator.YoloV5Translator.Builder
-
Sets the NMS threshold.
- optNmsTopK(int) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the boolean parameter that indicates whether to clip out-of-boundary boxes.
- optNumEmbeddings(int) - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Sets the size of the dictionary of embeddings.
- optOffsets(List<Float>) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the value of the center-box offsets across \(x\) and \(y\) dimensions.
- optOptimizer(Optimizer) - Method in class ai.djl.training.DefaultTrainingConfig
- optOption(String, String) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the optional model loading option for this criteria.
- optOptions(Map<String, String>) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the model loading options for this criteria.
- optOutPadding(Shape) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the out_padding along each dimension.
- optOutputType(YoloV5Translator.YoloOutputType) - Method in class ai.djl.modality.cv.translator.YoloV5Translator.Builder
-
Sets the
YoloOutputType
. - optPadding(boolean) - Method in class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
-
Sets the if pad the tokens for the
Translator
. - optPadding(Shape) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the padding along each dimension.
- optPadding(Shape) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the padding along each dimension.
- optPipeline(Pipeline) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
- optPower(float) - Method in class ai.djl.training.tracker.PolynomialDecayTracker.Builder
-
Sets the power of the polynomial to decay by.
- optPrefetchNumber(int) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets the number of batches to prefetch at once.
- optProgress(Progress) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Set the optional
Progress
. - optRange(float, float) - Method in class ai.djl.training.util.MinMaxScaler
-
Sets desired range of transformed data.
- optRate(float) - Method in class ai.djl.nn.norm.Dropout.Builder
-
Sets the probability or the fraction of the input that gets dropped out during training time.
- optRequiresGrad(boolean) - Method in class ai.djl.nn.Parameter.Builder
-
Sets if the
Parameter
requires gradient. - optRescaleSize(double, double) - Method in class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
-
Sets the optional rescale size.
- optReservedTokens(Collection<String>) - Method in class ai.djl.modality.nlp.DefaultVocabulary.Builder
-
Sets the optional parameter that sets the list of reserved tokens.
- optReturnState(boolean) - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
Sets the optional flag that indicates whether to return state or not.
- optRho(float) - Method in class ai.djl.training.optimizer.Adadelta.Builder
-
Sets the rho for
Adadelta
. - optRho(float) - Method in class ai.djl.training.optimizer.RmsProp.Builder
-
Sets the decay factor for the moving average over the past squared gradient.
- optScale(boolean) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
If True, multiply result by `gamma`.
- optScale(boolean) - Method in class ai.djl.nn.norm.LayerNorm.Builder
-
If True, multiply result by `gamma`.
- optShape(Shape) - Method in class ai.djl.nn.Parameter.Builder
-
Sets the shape of the
Parameter
. - optShortEdge(int) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator.Builder
-
Sets the shorter edge length of the rescaled image.
- optSlope(float) - Method in class ai.djl.training.tracker.LinearTracker.Builder
-
Sets the value of the linear slope.
- optSparseFormat(SparseFormat) - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Sets the optional parameter whether to compute row sparse gradient in the backward calculation.
- optSteps(List<Float>) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the step across \(x\) and \(y\) dimensions.
- optStride(Shape) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the stride of the convolution.
- optStride(Shape) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the stride of the deconvolution.
- optSynset(List<String>) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.ClassificationBuilder
-
Sets the potential classes for an image.
- optSynsetArtifactName(String) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.ClassificationBuilder
-
Sets the name of the synset file listing the potential classes for an image.
- optSynsetUrl(String) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.ClassificationBuilder
-
Sets the URL of the synset file.
- optTargetPipeline(Pipeline) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
- optThreshold(float) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the threshold score for a detection to be a positive prediction.
- optThreshold(float) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator.Builder
-
Sets the threshold for prediction accuracy.
- optThreshold(float) - Method in class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
-
Sets the threshold for prediction accuracy.
- optThreshold(float) - Method in class ai.djl.modality.cv.translator.SimplePoseTranslator.Builder
-
Sets the threshold for prediction accuracy.
- optTokenizer(String) - Method in class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
-
Sets the name of the tokenizer for the
Translator
. - optToLowerCase(boolean) - Method in class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
-
Sets the if convert text to lower case for the
Translator
. - optTopK(int) - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslator.Builder
-
Set the topK number of classes to be displayed.
- optTransformerBlockCount(int) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the number of transformer blocks to use.
- optTranslator(Translator<I, O>) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the optional
Translator
to override defaultTranslator
. - optTranslatorFactory(TranslatorFactory) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Sets the optional
TranslatorFactory
to override defaultTranslator
. - optTruncation(boolean) - Method in class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
-
Sets the if truncate the tokens for the
Translator
. - optTypeDictionarySize(int) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the number of possible token types.
- optUnknownToken() - Method in class ai.djl.modality.nlp.DefaultVocabulary.Builder
-
Sets the optional parameter that specifies the unknown token's string value with ">unk<".
- optUnknownToken(String) - Method in class ai.djl.modality.nlp.DefaultVocabulary.Builder
-
Sets the optional parameter that specifies the unknown token's string value.
- optUnknownToken(String) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding.Builder
-
Sets the optional
String
value for the unknown token. - optUseDefault(boolean) - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Sets whether to use a default embedding for undefined items (default true).
- optVocab(String) - Method in class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
-
Sets the name of the vocabulary file for the
Translator
. - optWarmUpBeginValue(float) - Method in class ai.djl.training.tracker.WarmUpTracker.Builder
-
Sets the value at the beginning of warm-up mode.
- optWarmUpMode(WarmUpTracker.Mode) - Method in class ai.djl.training.tracker.WarmUpTracker.Builder
-
Sets the
WarmUpTracker.Mode
for theWarmUpTracker
. - optWarmUpSteps(int) - Method in class ai.djl.training.tracker.WarmUpTracker.Builder
-
Sets the number of steps until the point the value is updated in warm-up mode.
- optWeightDecays(float) - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
Sets the value of weight decay.
- OTHER - ai.djl.nn.Parameter.Type
- OUT - ai.djl.training.initializer.XavierInitializer.FactorType
- outPadding - Variable in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
- outPadding - Variable in class ai.djl.nn.convolutional.Deconvolution
- Output - Class in ai.djl.modality
-
A class stores the generic inference results.
- Output() - Constructor for class ai.djl.modality.Output
-
Constructs a
Output
instance. - Output(int, String) - Constructor for class ai.djl.modality.Output
-
Constructs a
Output
with specifiedrequestId
,code
andmessage
. - overlap(double, double, double, double) - Method in class ai.djl.modality.cv.translator.YoloV5Translator
P
- pad(List<E>, E, int) - Method in class ai.djl.modality.nlp.bert.BertTokenizer
-
Pads the tokens to the required length.
- padding - Variable in class ai.djl.modality.nlp.translator.QATranslator
- padding - Variable in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
- padding - Variable in class ai.djl.nn.convolutional.Convolution
- padding - Variable in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
- padding - Variable in class ai.djl.nn.convolutional.Deconvolution
- PaddingStackBatchifier - Class in ai.djl.translate
-
The padding stack batchifier is a
StackBatchifier
that also pads elements to reach the same length. - PaddingStackBatchifier.Builder - Class in ai.djl.translate
-
Builder to build a
PaddingStackBatchifier
. - ParallelBlock - Class in ai.djl.nn
-
ParallelBlock
is aBlock
whose children form a parallel branch in the network and are combined to produce a single output. - ParallelBlock(Function<List<NDList>, NDList>) - Constructor for class ai.djl.nn.ParallelBlock
-
Creates a parallel block whose branches are combined to form a single output by the given function.
- ParallelBlock(Function<List<NDList>, NDList>, List<Block>) - Constructor for class ai.djl.nn.ParallelBlock
-
Creates a parallel block whose branches are formed by each block in the list of blocks, and are combined to form a single output by the given function.
- Parameter - Class in ai.djl.nn
-
Parameter
is a container class that holds a learnable parameter of a model. - Parameter.Builder - Class in ai.djl.nn
-
A Builder to construct a
Parameter
. - Parameter.Type - Enum in ai.djl.nn
-
Enumerates the types of
Parameter
. - ParameterList - Class in ai.djl.nn
-
Represents a set of names and Parameters.
- ParameterList() - Constructor for class ai.djl.nn.ParameterList
-
Create an empty
ParameterList
. - ParameterList(int) - Constructor for class ai.djl.nn.ParameterList
-
Constructs an empty
ParameterList
with the specified initial capacity. - ParameterList(List<Pair<String, Parameter>>) - Constructor for class ai.djl.nn.ParameterList
-
Constructs a
ParameterList
containing the elements of the specified list of Pairs. - ParameterList(List<String>, List<Parameter>) - Constructor for class ai.djl.nn.ParameterList
-
Constructs a
ParameterList
containing the elements of the specified keys and values. - ParameterList(Map<String, Parameter>) - Constructor for class ai.djl.nn.ParameterList
-
Constructs a
ParameterList
containing the elements of the specified map. - parameters - Variable in class ai.djl.nn.AbstractBlock
-
All direct parameters of this Block.
- ParameterServer - Interface in ai.djl.training
-
An interface for a key-value store to store parameters, and their corresponding gradients.
- parameterStore - Variable in class ai.djl.inference.Predictor
- ParameterStore - Class in ai.djl.training
-
The
ParameterStore
contains a map from a parameter to the mirrors of it on other devices. - ParameterStore() - Constructor for class ai.djl.training.ParameterStore
-
Constructs a new
ParameterStore
instance. - ParameterStore(NDManager, boolean) - Constructor for class ai.djl.training.ParameterStore
-
Constructs an empty
ParameterStore
. - paramPathResolver(String, Map<String, ?>) - Method in class ai.djl.BaseModel
- parent - Variable in class ai.djl.ndarray.BaseNDManager
- parse(String) - Static method in class ai.djl.metric.Metric
-
Returns a
Metric
instance parsed from the log string. - parse(String) - Static method in class ai.djl.repository.VersionRange
-
Creates a new version range from a string version range.
- PERCENT - ai.djl.metric.Unit
- percentile(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns percentile for this
NDArray
. - percentile(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns percentile for this
NDArray
. - percentile(Number, int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns median along given dimension(s).
- percentile(Number, int[]) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns median along given dimension(s).
- percentile(String, int) - Method in class ai.djl.metric.Metrics
-
Returns a percentile
Metric
object for the specified metric name. - pipeline - Variable in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
- pipeline - Variable in class ai.djl.modality.cv.translator.BaseImageTranslator
- pipeline - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
- pipeline - Variable in class ai.djl.training.dataset.RandomAccessDataset
- Pipeline - Class in ai.djl.translate
-
Pipeline
allows applying multiple transforms on an inputNDList
. - Pipeline() - Constructor for class ai.djl.translate.Pipeline
-
Creates a new instance of
Pipeline
that has noTransform
defined yet. - Pipeline(Transform...) - Constructor for class ai.djl.translate.Pipeline
-
Creates a new instance of
Pipeline
that can apply the given transforms on its input. - Point - Class in ai.djl.modality.cv.output
-
A point representing a location in
(x,y)
coordinate space, specified in double precision. - Point(double, double) - Constructor for class ai.djl.modality.cv.output.Point
-
Constructs and initializes a point at the specified
(x,y)
location in the coordinate space. - PointwiseFeedForwardBlock - Class in ai.djl.nn.transformer
-
Fully connected Feed-Forward network, only applied to the last dimension of the input.
- PointwiseFeedForwardBlock(List<Integer>, int, Function<NDList, NDList>) - Constructor for class ai.djl.nn.transformer.PointwiseFeedForwardBlock
-
Creates a pointwise feed-forward block.
- PolynomialDecayTracker - Class in ai.djl.training.tracker
-
Polynomial decay
Tracker
. - PolynomialDecayTracker(PolynomialDecayTracker.Builder) - Constructor for class ai.djl.training.tracker.PolynomialDecayTracker
-
Builds a PolynomialDecayTracker.
- PolynomialDecayTracker.Builder - Class in ai.djl.training.tracker
-
Builder for PolynomialDecayTracker.
- Pool - Class in ai.djl.nn.pooling
-
Utility class that provides
Block
and methods for different pooling functions. - POSE_ESTIMATION - Static variable in interface ai.djl.Application.CV
-
An application that accepts an image of a single person and returns the
Joints
locations of the person. - PostProcessor<O> - Interface in ai.djl.translate
-
An interface that provides post-processing functionality.
- pow(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Takes the power of this
NDArray
with the otherNDArray
element-wise. - pow(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Takes the power of this
NDArray
with the otherNDArray
element-wise. - pow(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- pow(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Takes the power of the
NDArray
with a number element-wise. - pow(Number) - Method in interface ai.djl.ndarray.NDArray
-
Takes the power of this
NDArray
with a number element-wise. - pow(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Takes the power of this
NDArray
with a number element-wise. - pow(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Takes the power of a number with a
NDArray
element-wise. - powi(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Takes the power of this
NDArray
with the otherNDArray
element-wise in place. - powi(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Takes the power of this
NDArray
with the otherNDArray
element-wise in place. - powi(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- powi(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Takes the power of the
NDArray
with a number element-wise in place. - powi(Number) - Method in interface ai.djl.ndarray.NDArray
-
Takes the power of this
NDArray
with a number element-wise in place. - powi(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Takes the power of this
NDArray
with a number element-wise in place. - powi(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Takes the power of a number with a
NDArray
element-wise in place. - predict(I) - Method in class ai.djl.inference.Predictor
-
Predicts an item for inference.
- predictInternal(TranslatorContext, NDList) - Method in class ai.djl.inference.Predictor
-
Predicts an item for inference.
- Predictor<I,O> - Class in ai.djl.inference
-
The
Predictor
interface provides a session for model inference. - Predictor(Model, Translator<I, O>, Device, boolean) - Constructor for class ai.djl.inference.Predictor
- prefetchNumber - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
- prefetchNumber - Variable in class ai.djl.training.dataset.RandomAccessDataset
- prelu(NDArray, NDArray) - Static method in class ai.djl.nn.core.Prelu
-
Applies a Prelu activation on the input
NDArray
. - Prelu - Class in ai.djl.nn.core
-
Applies Leaky Parametric ReLU activation element-wise to the input.
- Prelu() - Constructor for class ai.djl.nn.core.Prelu
-
Creates a Parametric ReLU Block.
- preluBlock() - Static method in class ai.djl.nn.Activation
-
Returns a
Prelu
block. - prepare() - Method in interface ai.djl.training.dataset.Dataset
-
Prepares the dataset for use.
- prepare(Shape[]) - Method in class ai.djl.nn.AbstractBaseBlock
-
Sets the shape of
Parameter
s. - prepare(Shape[]) - Method in class ai.djl.nn.convolutional.Convolution
-
Sets the shape of
Parameter
s. - prepare(Shape[]) - Method in class ai.djl.nn.convolutional.Deconvolution
-
Sets the shape of
Parameter
s. - prepare(Shape[]) - Method in class ai.djl.nn.core.Embedding
-
Sets the shape of
Parameter
s. - prepare(Shape[]) - Method in class ai.djl.nn.core.Linear
-
Sets the shape of
Parameter
s. - prepare(Shape[]) - Method in class ai.djl.nn.norm.BatchNorm
-
Sets the shape of
Parameter
s. - prepare(Shape[]) - Method in class ai.djl.nn.norm.LayerNorm
-
Sets the shape of
Parameter
s. - prepare(Shape[]) - Method in class ai.djl.nn.recurrent.RecurrentBlock
-
Sets the shape of
Parameter
s. - prepare(Artifact) - Method in class ai.djl.repository.MRL
-
Prepares the artifact for use.
- prepare(Artifact) - Method in interface ai.djl.repository.Repository
-
Prepares the artifact for use.
- prepare(Artifact, Progress) - Method in class ai.djl.repository.AbstractRepository
-
Prepares the artifact for use with progress tracking.
- prepare(Artifact, Progress) - Method in class ai.djl.repository.MRL
-
Prepares the artifact for use with progress tracking.
- prepare(Artifact, Progress) - Method in interface ai.djl.repository.Repository
-
Prepares the artifact for use with progress tracking.
- prepare(Artifact, Progress) - Method in class ai.djl.repository.SimpleRepository
-
Prepares the artifact for use with progress tracking.
- prepare(TranslatorContext) - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslator
-
Prepares the translator with the manager and model to use.
- prepare(TranslatorContext) - Method in class ai.djl.modality.cv.translator.ImageServingTranslator
-
Prepares the translator with the manager and model to use.
- prepare(TranslatorContext) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator
-
Prepares the translator with the manager and model to use.
- prepare(TranslatorContext) - Method in class ai.djl.modality.cv.translator.ObjectDetectionTranslator
-
Prepares the translator with the manager and model to use.
- prepare(TranslatorContext) - Method in class ai.djl.modality.cv.translator.wrapper.FileTranslator
-
Prepares the translator with the manager and model to use.
- prepare(TranslatorContext) - Method in class ai.djl.modality.cv.translator.wrapper.InputStreamTranslator
-
Prepares the translator with the manager and model to use.
- prepare(TranslatorContext) - Method in class ai.djl.modality.cv.translator.wrapper.UrlTranslator
-
Prepares the translator with the manager and model to use.
- prepare(TranslatorContext) - Method in class ai.djl.modality.nlp.translator.QaServingTranslator
-
Prepares the translator with the manager and model to use.
- prepare(TranslatorContext) - Method in class ai.djl.modality.nlp.translator.TextClassificationServingTranslator
-
Prepares the translator with the manager and model to use.
- prepare(TranslatorContext) - Method in interface ai.djl.translate.Translator
-
Prepares the translator with the manager and model to use.
- prepare(Progress) - Method in class ai.djl.training.dataset.ArrayDataset
-
Prepares the dataset for use with tracked progress.
- prepare(Progress) - Method in interface ai.djl.training.dataset.Dataset
-
Prepares the dataset for use with tracked progress.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.HyphenNormalizer
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.LambdaProcessor
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.LowerCaseConvertor
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.PunctuationSeparator
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.TextCleaner
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in interface ai.djl.modality.nlp.preprocess.TextProcessor
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.TextTerminator
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.TextTruncator
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in interface ai.djl.modality.nlp.preprocess.Tokenizer
-
Applies the preprocessing defined to the given input tokens.
- preprocess(List<String>) - Method in class ai.djl.modality.nlp.preprocess.UnicodeNormalizer
-
Applies the preprocessing defined to the given input tokens.
- PreProcessor<I> - Interface in ai.djl.translate
-
An interface that provides pre-processing functionality.
- preprocessTextToEmbed(List<String>) - Method in class ai.djl.modality.nlp.embedding.ModelZooTextEmbedding
-
Preprocesses the text to embed into an array to pass into the model.
- preprocessTextToEmbed(List<String>) - Method in class ai.djl.modality.nlp.embedding.SimpleTextEmbedding
-
Preprocesses the text to embed into an array to pass into the model.
- preprocessTextToEmbed(List<String>) - Method in interface ai.djl.modality.nlp.embedding.TextEmbedding
-
Preprocesses the text to embed into an array to pass into the model.
- preprocessTextToEmbed(List<String>) - Method in class ai.djl.modality.nlp.embedding.TrainableTextEmbedding
-
Preprocesses the text to embed into an array to pass into the model.
- preprocessWordToEmbed(String) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Pre-processes the word to embed into an array to pass into the model.
- preprocessWordToEmbed(String) - Method in interface ai.djl.modality.nlp.embedding.WordEmbedding
-
Pre-processes the word to embed into an array to pass into the model.
- probabilities - Variable in class ai.djl.modality.Classifications
- probabilities(ParameterStore, NDArray, boolean) - Method in class ai.djl.nn.transformer.IdEmbedding
-
Turns an array of embeddings of shape (d0 ...
- processInput(TranslatorContext, int[]) - Method in class ai.djl.modality.cv.translator.BigGANTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, Image) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, Image) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, Image) - Method in class ai.djl.modality.cv.translator.StyleTransferTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, Input) - Method in class ai.djl.modality.cv.translator.ImageServingTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, Input) - Method in class ai.djl.modality.nlp.translator.QaServingTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, Input) - Method in class ai.djl.modality.nlp.translator.TextClassificationServingTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, NDList) - Method in class ai.djl.translate.NoopTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, I) - Method in interface ai.djl.translate.PreProcessor
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, InputStream) - Method in class ai.djl.modality.cv.translator.wrapper.InputStreamTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, String) - Method in class ai.djl.modality.nlp.translator.SimpleText2TextTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, URL) - Method in class ai.djl.modality.cv.translator.wrapper.UrlTranslator
-
Processes the input and converts it to NDList.
- processInput(TranslatorContext, Path) - Method in class ai.djl.modality.cv.translator.wrapper.FileTranslator
-
Processes the input and converts it to NDList.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.BigGANTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.ImageServingTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.SimplePoseTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.SingleShotDetectionTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.StyleTransferTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.wrapper.FileTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.wrapper.InputStreamTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.wrapper.UrlTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.YoloTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.translator.YoloV5Translator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.nlp.translator.QaServingTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.nlp.translator.SimpleText2TextTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.nlp.translator.TextClassificationServingTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.translate.NoopTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in interface ai.djl.translate.PostProcessor
-
Processes the output NDList to the corresponding output object.
- prod() - Method in interface ai.djl.ndarray.NDArray
-
Returns the product of this
NDArray
. - prod() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the product of this
NDArray
. - prod(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the product of this
NDArray
elements over the given axes. - prod(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the product of this
NDArray
elements over the given axes. - prod(int[], boolean) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the product of this
NDArray
elements over the given axes. - ProgressBar - Class in ai.djl.training.util
-
ProgressBar
is an implementation ofProgress
. - ProgressBar() - Constructor for class ai.djl.training.util.ProgressBar
-
Creates an instance of
ProgressBar
with a maximum value of 1. - ProgressBar(String, long) - Constructor for class ai.djl.training.util.ProgressBar
-
Creates an instance of
ProgressBar
with the given maximum value, and displays the given message. - ProgressBar(String, long, String) - Constructor for class ai.djl.training.util.ProgressBar
-
Creates an instance of
ProgressBar
with the given maximum value, and displays the given message. - properties - Variable in class ai.djl.BaseModel
- PunctuationSeparator - Class in ai.djl.modality.nlp.preprocess
-
PunctuationSeparator
separates punctuation into a separate token. - PunctuationSeparator() - Constructor for class ai.djl.modality.nlp.preprocess.PunctuationSeparator
Q
- QAgent - Class in ai.djl.modality.rl.agent
-
An
RlAgent
that implements Q or Deep-Q Learning. - QAgent(Trainer, float) - Constructor for class ai.djl.modality.rl.agent.QAgent
-
Constructs a
QAgent
. - QAgent(Trainer, float, Batchifier) - Constructor for class ai.djl.modality.rl.agent.QAgent
-
Constructs a
QAgent
with a customBatchifier
. - QAInput - Class in ai.djl.modality.nlp.qa
-
The input container for a
Application.NLP.QUESTION_ANSWER
model. - QAInput(String, String) - Constructor for class ai.djl.modality.nlp.qa.QAInput
-
Creates the BERT QA model.
- QaServingTranslator - Class in ai.djl.modality.nlp.translator
- QaServingTranslator(Translator<QAInput, String>) - Constructor for class ai.djl.modality.nlp.translator.QaServingTranslator
-
Constructs a
QaServingTranslator
instance. - QATranslator - Class in ai.djl.modality.nlp.translator
-
An abstract class to define the question answering translator.
- QATranslator(QATranslator.BaseBuilder<?>) - Constructor for class ai.djl.modality.nlp.translator.QATranslator
- QATranslator.BaseBuilder<T extends QATranslator.BaseBuilder> - Class in ai.djl.modality.nlp.translator
-
The builder for question answering translator.
- quantize() - Method in interface ai.djl.Model
-
Converts the model to use a lower precision quantized network.
- QUESTION_ANSWER - Static variable in interface ai.djl.Application.NLP
-
An application that a reference document and a question about the document and returns text answering the question.
R
- random() - Method in class ai.djl.training.hyperparameter.param.HpCategorical
-
Returns a random value for the hyperparameter for a range of a fixed value if it is a
HpVal
. - random() - Method in class ai.djl.training.hyperparameter.param.HpFloat
-
Returns a random value for the hyperparameter for a range of a fixed value if it is a
HpVal
. - random() - Method in class ai.djl.training.hyperparameter.param.HpInt
-
Returns a random value for the hyperparameter for a range of a fixed value if it is a
HpVal
. - random() - Method in class ai.djl.training.hyperparameter.param.HpSet
-
Returns a random value for the hyperparameter for a range of a fixed value if it is a
HpVal
. - random() - Method in class ai.djl.training.hyperparameter.param.HpVal
-
Returns a random value for the hyperparameter for a range of a fixed value if it is a
HpVal
. - random() - Method in class ai.djl.training.hyperparameter.param.Hyperparameter
-
Returns a random value for the hyperparameter for a range of a fixed value if it is a
HpVal
. - RandomAccessDataset - Class in ai.djl.training.dataset
-
RandomAccessDataset represent the dataset that support random access reads.
- RandomAccessDataset(RandomAccessDataset.BaseBuilder<?>) - Constructor for class ai.djl.training.dataset.RandomAccessDataset
-
Creates a new instance of
RandomAccessDataset
with the given necessary configurations. - RandomAccessDataset.BaseBuilder<T extends RandomAccessDataset.BaseBuilder<T>> - Class in ai.djl.training.dataset
-
The Builder to construct a
RandomAccessDataset
. - randomAction() - Method in class ai.djl.modality.rl.ActionSpace
-
Returns a random action.
- randomBrightness(NDArray, float) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Randomly jitters image brightness with a factor chosen from [max(0, 1 - brightness), 1 + brightness].
- RandomBrightness - Class in ai.djl.modality.cv.transform
-
A
Transform
that randomly jitters image brightness with a factor chosen from [max(0, 1 - brightness), 1 + brightness]. - RandomBrightness(float) - Constructor for class ai.djl.modality.cv.transform.RandomBrightness
-
Creates a
RandomBrightness
Transform
. - randomColorJitter(NDArray, float, float, float, float) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Randomly jitters the brightness, contrast, saturation, and hue of an image.
- RandomColorJitter - Class in ai.djl.modality.cv.transform
-
A
Transform
that randomly jitters the brightness, contrast, saturation, and hue of an image. - RandomColorJitter(float, float, float, float) - Constructor for class ai.djl.modality.cv.transform.RandomColorJitter
-
Creates a
RandomColorJitter
Transform
. - randomFlipLeftRight(NDArray) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Randomly flip the input image left to right with a probability of 0.5.
- RandomFlipLeftRight - Class in ai.djl.modality.cv.transform
-
A
Transform
that randomly flip the input image left to right with a probability of 0.5. - RandomFlipLeftRight() - Constructor for class ai.djl.modality.cv.transform.RandomFlipLeftRight
- randomFlipTopBottom(NDArray) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Randomly flip the input image top to bottom with a probability of 0.5.
- RandomFlipTopBottom - Class in ai.djl.modality.cv.transform
-
A
Transform
that randomly flip the input image top to bottom with a probability of 0.5. - RandomFlipTopBottom() - Constructor for class ai.djl.modality.cv.transform.RandomFlipTopBottom
- randomHue(NDArray, float) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Randomly jitters image hue with a factor chosen from [max(0, 1 - hue), 1 + hue].
- RandomHue - Class in ai.djl.modality.cv.transform
-
A
Transform
that randomly jitters image hue with a factor chosen from [max(0, 1 - hue), 1 + hue]. - RandomHue(float) - Constructor for class ai.djl.modality.cv.transform.RandomHue
-
Creates a
RandomHue
Transform
. - randomInteger(long, long, Shape, DataType) - Method in class ai.djl.ndarray.BaseNDManager
-
Returns random integer values from low (inclusive) to high (exclusive).
- randomInteger(long, long, Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Returns random integer values from low (inclusive) to high (exclusive).
- randomMultinomial(int, NDArray) - Method in class ai.djl.ndarray.BaseNDManager
-
Draw samples from a multinomial distribution.
- randomMultinomial(int, NDArray) - Method in interface ai.djl.ndarray.NDManager
-
Draw samples from a multinomial distribution.
- randomMultinomial(int, NDArray, Shape) - Method in class ai.djl.ndarray.BaseNDManager
-
Draw samples from a multinomial distribution.
- randomMultinomial(int, NDArray, Shape) - Method in interface ai.djl.ndarray.NDManager
-
Draw samples from a multinomial distribution.
- randomNormal(float, float, Shape, DataType) - Method in class ai.djl.ndarray.BaseNDManager
-
Draws random samples from a normal (Gaussian) distribution.
- randomNormal(float, float, Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Draws random samples from a normal (Gaussian) distribution.
- randomNormal(float, float, Shape, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
-
Draws random samples from a normal (Gaussian) distribution.
- randomNormal(Shape) - Method in interface ai.djl.ndarray.NDManager
-
Draws random samples from a normal (Gaussian) distribution with mean 0 and standard deviation 1.
- randomNormal(Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Draws random samples from a normal (Gaussian) distribution with mean 0 and standard deviation 1.
- randomResizedCrop(NDArray, int, int, double, double, double, double) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Crop the input image with random scale and aspect ratio.
- RandomResizedCrop - Class in ai.djl.modality.cv.transform
-
A
Transform
that crop the input image with random scale and aspect ratio. - RandomResizedCrop(int, int, double, double, double, double) - Constructor for class ai.djl.modality.cv.transform.RandomResizedCrop
-
Creates a
RandomResizedCrop
Transform
. - RandomSampler - Class in ai.djl.training.dataset
-
RandomSampler
is an implementation of theSampler.SubSampler
interface. - RandomSampler() - Constructor for class ai.djl.training.dataset.RandomSampler
-
Creates a new instance of
RandomSampler
. - RandomSampler(int) - Constructor for class ai.djl.training.dataset.RandomSampler
-
Creates a new instance of
RandomSampler
with the given seed. - randomSplit(int...) - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Splits the dataset set into multiple portions.
- randomUniform(float, float, Shape) - Method in interface ai.djl.ndarray.NDManager
-
Draws samples from a uniform distribution.
- randomUniform(float, float, Shape, DataType) - Method in class ai.djl.ndarray.BaseNDManager
-
Draws samples from a uniform distribution.
- randomUniform(float, float, Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Draws samples from a uniform distribution.
- randomUniform(float, float, Shape, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
-
Draws samples from a uniform distribution.
- readInputShapes(DataInputStream) - Method in class ai.djl.nn.AbstractBaseBlock
- readParameters(Path, Map<String, ?>) - Method in class ai.djl.BaseModel
- Record - Class in ai.djl.training.dataset
-
Record
represents a single element of data and labels fromDataset
. - Record(NDList, NDList) - Constructor for class ai.djl.training.dataset.Record
-
Creates a new instance of
Record
with a single element of data and its corresponding labels. - Rectangle - Class in ai.djl.modality.cv.output
-
A
Rectangle
specifies an area in a coordinate space that is enclosed by theRectangle
object's upper-left pointPoint
in the coordinate space, its width, and its height. - Rectangle(double, double, double, double) - Constructor for class ai.djl.modality.cv.output.Rectangle
-
Constructs a new
Rectangle
whose upper-left corner is specified as(x,y)
and whose width and height are specified by the arguments of the same name. - Rectangle(Point, double, double) - Constructor for class ai.djl.modality.cv.output.Rectangle
-
Constructs a new
Rectangle
whose upper-left corner is specified as coordinatepoint
and whose width and height are specified by the arguments of the same name. - RecurrentBlock - Class in ai.djl.nn.recurrent
-
RecurrentBlock
is an abstract implementation of recurrent neural networks. - RecurrentBlock(RecurrentBlock.BaseBuilder<?>) - Constructor for class ai.djl.nn.recurrent.RecurrentBlock
-
Creates a
RecurrentBlock
object. - RecurrentBlock.BaseBuilder<T extends RecurrentBlock.BaseBuilder> - Class in ai.djl.nn.recurrent
-
The Builder to construct a
RecurrentBlock
type ofBlock
. - registerEngine(EngineProvider) - Static method in class ai.djl.engine.Engine
-
Registers a
EngineProvider
if not registered. - registerModelZoo(ZooProvider) - Static method in class ai.djl.repository.zoo.ModelZoo
-
Refreshes model zoo.
- registerRepositoryFactory(RepositoryFactory) - Static method in interface ai.djl.repository.Repository
-
Registers a
RepositoryFactory
to handle the specified url scheme. - registerTranslator(Class<I>, Class<O>, Translator<I, O>) - Method in class ai.djl.translate.DefaultTranslatorFactory
-
Registers a
Translator
with theTranslatorFactory
. - relu(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies ReLU activation on the input
NDArray
. - relu(NDList) - Static method in class ai.djl.nn.Activation
-
Applies ReLU activation on the input singleton
NDList
. - RELU - ai.djl.nn.recurrent.RNN.Activation
- reluBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies theReLU
activation function in its forward function. - RemoteRepository - Class in ai.djl.repository
-
A
RemoteRepository
is aRepository
located on a remote web server. - RemoteRepository(String, URI) - Constructor for class ai.djl.repository.RemoteRepository
-
(Internal) Constructs a remote repository.
- remove(String) - Method in class ai.djl.ndarray.NDList
-
Removes the first occurrence of the specified element from this NDList if it is present.
- removeLastBlock() - Method in class ai.djl.nn.SequentialBlock
-
Removes the
Block
added last from the sequence of blocks. - removeLastBlock() - Method in interface ai.djl.nn.SymbolBlock
-
Removes the last block in the symbolic graph.
- repeat(int, long) - Method in interface ai.djl.ndarray.NDArray
-
Repeats element of this
NDArray
the number of times given repeats along given axis. - repeat(int, long) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Repeats element of this
NDArray
the number of times given repeats along given axis. - repeat(long) - Method in interface ai.djl.ndarray.NDArray
-
Repeats element of this
NDArray
the number of times given repeats. - repeat(long) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Repeats element of this
NDArray
the number of times given repeats. - repeat(long[]) - Method in interface ai.djl.ndarray.NDArray
-
Repeats element of this
NDArray
the number of times given repeats along each axis. - repeat(long[]) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Repeats element of this
NDArray
the number of times given repeats along each axis. - repeat(Shape) - Method in interface ai.djl.ndarray.NDArray
-
Repeats element of this
NDArray
to match the desired shape. - repeat(Shape) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Repeats element of this
NDArray
to match the desired shape. - replaceLastBlock(Block) - Method in class ai.djl.nn.SequentialBlock
-
Replaces the
Block
last added from the sequence of blocks, and adds the given block. - ReplayBuffer - Interface in ai.djl.modality.rl
-
Records
RlEnv.Step
s so that they can be trained on. - Repository - Interface in ai.djl.repository
-
Repository
is a format for storing dataArtifact
s for various uses including deep learning models and datasets. - RepositoryFactory - Interface in ai.djl.repository
-
A interface responsible to create
Repository
instances. - requiresGradient() - Method in class ai.djl.nn.Parameter
-
Returns whether this parameter needs gradients to be computed.
- rescaleGrad - Variable in class ai.djl.training.optimizer.Optimizer
- reset() - Method in interface ai.djl.modality.rl.env.RlEnv
-
Resets the environment to it's default state.
- reset(String, long, String) - Method in class ai.djl.training.util.ProgressBar
- resetAccumulator(String) - Method in class ai.djl.training.evaluator.AbstractAccuracy
-
Resets the evaluator value with the given key.
- resetAccumulator(String) - Method in class ai.djl.training.evaluator.BoundingBoxError
-
Resets the evaluator value with the given key.
- resetAccumulator(String) - Method in class ai.djl.training.evaluator.Evaluator
-
Resets the evaluator value with the given key.
- resetAccumulator(String) - Method in class ai.djl.training.evaluator.IndexEvaluator
-
Resets the evaluator value with the given key.
- resetAccumulator(String) - Method in class ai.djl.training.loss.AbstractCompositeLoss
-
Resets the evaluator value with the given key.
- resetAccumulator(String) - Method in class ai.djl.training.loss.Loss
-
Resets the evaluator value with the given key.
- reshape(long...) - Method in interface ai.djl.ndarray.NDArray
-
Reshapes this
NDArray
to the givenShape
. - reshape(Shape) - Method in interface ai.djl.ndarray.NDArray
-
Reshapes this
NDArray
to the givenShape
. - reshape(Shape) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Reshapes this
NDArray
to the givenShape
. - resize(NDArray, int) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Resizes an image to the given width and height.
- resize(NDArray, int, int) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Resizes an image to the given width and height.
- resize(NDArray, int, int, Image.Interpolation) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Resizes an image to the given width and height with given interpolation.
- Resize - Class in ai.djl.modality.cv.transform
-
A
Transform
that resizes the image. - Resize(int) - Constructor for class ai.djl.modality.cv.transform.Resize
-
Creates a
Resize
Transform
that resizes to the given size. - Resize(int, int) - Constructor for class ai.djl.modality.cv.transform.Resize
-
Creates a
Resize
Transform
that resizes to the given width and height. - Resize(int, int, Image.Interpolation) - Constructor for class ai.djl.modality.cv.transform.Resize
-
Creates a
Resize
Transform
that resizes to the given width and height with given interpolation. - resolve(MRL, Map<String, String>) - Method in class ai.djl.repository.JarRepository
-
Returns the artifact matching a mrl, version, and property filter.
- resolve(MRL, Map<String, String>) - Method in class ai.djl.repository.LocalRepository
-
Returns the artifact matching a mrl, version, and property filter.
- resolve(MRL, Map<String, String>) - Method in class ai.djl.repository.RemoteRepository
-
Returns the artifact matching a mrl, version, and property filter.
- resolve(MRL, Map<String, String>) - Method in interface ai.djl.repository.Repository
-
Returns the artifact matching a mrl, version, and property filter.
- resolve(MRL, Map<String, String>) - Method in class ai.djl.repository.SimpleRepository
-
Returns the artifact matching a mrl, version, and property filter.
- resolve(MRL, Map<String, String>) - Method in class ai.djl.repository.SimpleUrlRepository
-
Returns the artifact matching a mrl, version, and property filter.
- resolvePath(Artifact.Item, String) - Method in class ai.djl.repository.AbstractRepository
- resolvePath(Artifact.Item, String) - Method in class ai.djl.repository.SimpleRepository
- resources - Variable in class ai.djl.ndarray.BaseNDManager
- results - Variable in class ai.djl.training.hyperparameter.optimizer.BaseHpOptimizer
- ret(T) - Method in interface ai.djl.ndarray.NDManager
-
Returns a value outside of this manager by attaching to this manager's parent.
- returnResource() - Method in class ai.djl.ndarray.BaseNDManager.TempResource
- returnState - Variable in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
- returnState - Variable in class ai.djl.nn.recurrent.RecurrentBlock
- RlAgent - Interface in ai.djl.modality.rl.agent
- RlEnv - Interface in ai.djl.modality.rl.env
-
An environment to use for reinforcement learning.
- RlEnv.Step - Interface in ai.djl.modality.rl.env
-
A record of taking a step in the environment.
- rmsprop() - Static method in class ai.djl.training.optimizer.Optimizer
-
Returns a new instance of
RmsProp.Builder
that can build anRmsProp
optimizer. - RmsProp - Class in ai.djl.training.optimizer
-
The
RMSProp
Optimizer
. - RmsProp(RmsProp.Builder) - Constructor for class ai.djl.training.optimizer.RmsProp
-
Creates a new instance of
RMSProp
optimizer. - RmsProp.Builder - Class in ai.djl.training.optimizer
-
The Builder to construct an
RmsProp
object. - RNN - Class in ai.djl.nn.recurrent
-
RNN
is an implementation of recurrent neural networks which applies a single-gate recurrent layer to input. - RNN.Activation - Enum in ai.djl.nn.recurrent
-
An enum that enumerates the type of activation.
- RNN.Builder - Class in ai.djl.nn.recurrent
- rotate90(int, int[]) - Method in interface ai.djl.ndarray.NDArray
-
Rotates an array by 90 degrees in the plane specified by axes.
- rotate90(int, int[]) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Rotates an array by 90 degrees in the plane specified by axes.
- rotate90(NDArray, int) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Rotate an image NDArray counter-clockwise 90 degree.
- round() - Method in interface ai.djl.ndarray.NDArray
-
Returns the round of this
NDArray
element-wise. - round() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the round of this
NDArray
element-wise. - ROW_SPARSE - ai.djl.ndarray.types.SparseFormat
- runEnvironment(RlAgent, boolean) - Method in interface ai.djl.modality.rl.env.RlEnv
-
Runs the environment from reset until done.
- RUNNING_MEAN - ai.djl.nn.Parameter.Type
- RUNNING_VAR - ai.djl.nn.Parameter.Type
S
- sample(RandomAccessDataset) - Method in class ai.djl.training.dataset.BatchSampler
-
Fetches an iterator that iterates through the given
RandomAccessDataset
in mini-batches of indices. - sample(RandomAccessDataset) - Method in class ai.djl.training.dataset.RandomSampler
-
Fetches an iterator that iterates through the indices of the given
RandomAccessDataset
. - sample(RandomAccessDataset) - Method in interface ai.djl.training.dataset.Sampler
-
Fetches an iterator that iterates through the given
RandomAccessDataset
in mini-batches of indices. - sample(RandomAccessDataset) - Method in interface ai.djl.training.dataset.Sampler.SubSampler
-
Fetches an iterator that iterates through the indices of the given
RandomAccessDataset
. - sample(RandomAccessDataset) - Method in class ai.djl.training.dataset.SequenceSampler
-
Fetches an iterator that iterates through the indices of the given
RandomAccessDataset
. - sampler - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
- sampler - Variable in class ai.djl.training.dataset.RandomAccessDataset
- Sampler - Interface in ai.djl.training.dataset
-
An interface for sampling data items from a
RandomAccessDataset
. - Sampler.SubSampler - Interface in ai.djl.training.dataset
-
An interface that samples a single data item at a time.
- save(BufferedImage, OutputStream, String) - Method in class ai.djl.modality.cv.BufferedImageFactory
- save(DataOutputStream) - Method in class ai.djl.nn.Parameter
-
Writes the parameter NDArrays to the given output stream.
- save(InputStream, Path, Artifact.Item, Progress) - Method in class ai.djl.repository.AbstractRepository
- save(OutputStream, String) - Method in interface ai.djl.modality.cv.Image
-
Save the image to file.
- save(Path, String) - Method in class ai.djl.BaseModel
-
Saves the model to the specified
modelPath
with the name provided. - save(Path, String) - Method in interface ai.djl.Model
-
Saves the model to the specified
modelPath
with the name provided. - save(Path, String) - Method in class ai.djl.repository.zoo.ZooModel
-
Saves the model to the specified
modelPath
with the name provided. - saveInputShapes(DataOutputStream) - Method in class ai.djl.nn.AbstractBaseBlock
- saveMetadata(DataOutputStream) - Method in class ai.djl.nn.AbstractBaseBlock
-
Override this method to save additional data apart from parameter values.
- saveMetadata(DataOutputStream) - Method in class ai.djl.nn.core.Linear
-
Override this method to save additional data apart from parameter values.
- saveMetadata(DataOutputStream) - Method in class ai.djl.nn.norm.BatchNorm
-
Override this method to save additional data apart from parameter values.
- saveMetadata(DataOutputStream) - Method in class ai.djl.nn.norm.LayerNorm
-
Override this method to save additional data apart from parameter values.
- saveModel(Model, TrainingResult) - Method in class ai.djl.training.hyperparameter.EasyHpo
-
Saves the best hyperparameter set.
- saveModel(Trainer) - Method in class ai.djl.training.listener.SaveModelTrainingListener
- SaveModelTrainingListener - Class in ai.djl.training.listener
-
A
TrainingListener
that saves a model and can save checkpoints. - SaveModelTrainingListener(String) - Constructor for class ai.djl.training.listener.SaveModelTrainingListener
-
Constructs a
SaveModelTrainingListener
using the model's name. - SaveModelTrainingListener(String, String) - Constructor for class ai.djl.training.listener.SaveModelTrainingListener
-
Constructs a
SaveModelTrainingListener
. - SaveModelTrainingListener(String, String, int) - Constructor for class ai.djl.training.listener.SaveModelTrainingListener
-
Constructs a
SaveModelTrainingListener
. - saveParameters(DataOutputStream) - Method in class ai.djl.modality.nlp.Decoder
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.modality.nlp.Encoder
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.modality.nlp.EncoderDecoder
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.AbstractBaseBlock
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in interface ai.djl.nn.Block
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.core.ConstantEmbedding
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.core.Embedding
-
Writes the parameters of the block to the given outputStream.
- ScaledDotProductAttentionBlock - Class in ai.djl.nn.transformer
-
A Block implementing scaled product attention according to Vaswani et.
- ScaledDotProductAttentionBlock.Builder - Class in ai.djl.nn.transformer
-
A builder for
ScaledDotProductAttentionBlock
s. - scaleGradient(double) - Method in interface ai.djl.ndarray.NDArray
-
Returns an NDArray equal to this that magnifies the gradient propagated to this by a constant.
- search(VersionRange, Map<String, String>) - Method in class ai.djl.repository.Metadata.MatchAllMetadata
-
Returns the artifacts matching the version and property requirements.
- search(VersionRange, Map<String, String>) - Method in class ai.djl.repository.Metadata
-
Returns the artifacts matching the version and property requirements.
- self() - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
- self() - Method in class ai.djl.modality.cv.translator.ImageClassificationTranslator.Builder
- self() - Method in class ai.djl.modality.cv.translator.InstanceSegmentationTranslator.Builder
- self() - Method in class ai.djl.modality.cv.translator.SimplePoseTranslator.Builder
- self() - Method in class ai.djl.modality.cv.translator.SingleShotDetectionTranslator.Builder
- self() - Method in class ai.djl.modality.cv.translator.YoloTranslator.Builder
- self() - Method in class ai.djl.modality.cv.translator.YoloV5Translator.Builder
- self() - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding.Builder
-
Returns this {code Builder} object.
- self() - Method in class ai.djl.modality.nlp.translator.QATranslator.BaseBuilder
- self() - Method in class ai.djl.nn.convolutional.Conv1d.Builder
- self() - Method in class ai.djl.nn.convolutional.Conv1dTranspose.Builder
- self() - Method in class ai.djl.nn.convolutional.Conv2d.Builder
- self() - Method in class ai.djl.nn.convolutional.Conv2dTranspose.Builder
- self() - Method in class ai.djl.nn.convolutional.Conv3d.Builder
- self() - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
- self() - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
- self() - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Returns this {code Builder} object.
- self() - Method in class ai.djl.nn.recurrent.GRU.Builder
- self() - Method in class ai.djl.nn.recurrent.LSTM.Builder
- self() - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
- self() - Method in class ai.djl.nn.recurrent.RNN.Builder
- self() - Method in class ai.djl.training.dataset.ArrayDataset.Builder
-
Returns this {code Builder} object.
- self() - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Returns this {code Builder} object.
- self() - Method in class ai.djl.training.optimizer.Adadelta.Builder
- self() - Method in class ai.djl.training.optimizer.Adagrad.Builder
- self() - Method in class ai.djl.training.optimizer.Adam.Builder
- self() - Method in class ai.djl.training.optimizer.Nag.Builder
- self() - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
- self() - Method in class ai.djl.training.optimizer.RmsProp.Builder
- self() - Method in class ai.djl.training.optimizer.Sgd.Builder
- selu(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies Scaled ELU activation on the input
NDArray
. - selu(NDList) - Static method in class ai.djl.nn.Activation
-
Applies Scaled ELU activation on the input singleton
NDList
. - seluBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies theSELU
activation function in its forward function. - SEMANTIC_SEGMENTATION - Static variable in interface ai.djl.Application.CV
-
An application that classifies each pixel in an image into a category.
- SENTIMENT_ANALYSIS - Static variable in interface ai.djl.Application.NLP
-
An application that classifies text into positive or negative, an specific case of
Application.NLP.TEXT_CLASSIFICATION
. - sequenceMask(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Sets all elements outside the sequence to 0.
- sequenceMask(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Sets all elements outside the sequence to 0.
- sequenceMask(NDArray, float) - Method in interface ai.djl.ndarray.NDArray
-
Sets all elements outside the sequence to a constant value.
- sequenceMask(NDArray, float) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Sets all elements outside the sequence to a constant value.
- sequenceMask(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- sequenceMask(NDArray, NDArray, float) - Static method in class ai.djl.ndarray.NDArrays
- SequenceSampler - Class in ai.djl.training.dataset
-
SequenceSampler
is an implementation of theSampler.SubSampler
interface. - SequenceSampler() - Constructor for class ai.djl.training.dataset.SequenceSampler
- SequentialBlock - Class in ai.djl.nn
-
SequentialBlock
is aBlock
whose children form a chain of blocks with each child block feeding its output to the next. - SequentialBlock() - Constructor for class ai.djl.nn.SequentialBlock
-
Creates an empty sequential block.
- serialize(Classifications, Type, JsonSerializationContext) - Method in class ai.djl.modality.Classifications.ClassificationsSerializer
- ServingTranslator - Interface in ai.djl.translate
- ServingTranslatorFactory - Class in ai.djl.translate
-
A
TranslatorFactory
that creates an genericTranslator
. - ServingTranslatorFactory() - Constructor for class ai.djl.translate.ServingTranslatorFactory
- set(byte[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this
NDArray
value from an array of bytes. - set(double[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this
NDArray
value from an array of doubles. - set(float[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this
NDArray
value from an array of floats. - set(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this
NDArray
value from an array of ints. - set(long[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this
NDArray
value from an array of longs. - set(NDIndex, NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Sets the specified index in this
NDArray
with the given values. - set(NDIndex, NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Sets the specified index in this
NDArray
with the given values. - set(NDIndex, Number) - Method in interface ai.djl.ndarray.NDArray
-
Sets the specified index in this
NDArray
with the given value. - set(NDIndex, Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Sets the specified index in this
NDArray
with the given value. - set(NDIndex, Function<NDArray, NDArray>) - Method in interface ai.djl.ndarray.NDArray
-
Sets the specific index by a function.
- set(NDIndex, Function<NDArray, NDArray>) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Sets the specific index by a function.
- set(NDArray, NDIndexBooleans, NDArray) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Sets the values of the array at the boolean locations with an array.
- set(NDArray, NDIndexFullSlice, NDArray) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Sets the values of the array at the fullSlice with an array.
- set(NDArray, NDIndexFullSlice, Number) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Sets the values of the array at the fullSlice with a number.
- set(NDArray, NDIndex, NDArray) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Sets the values of the array at the index locations with an array.
- set(NDArray, NDIndex, Number) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Sets the values of the array at the index locations with a number.
- set(NDArray, Number) - Method in interface ai.djl.ndarray.NDArray
-
Sets the
NDArray
by boolean mask. - set(NDArray, Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Sets the
NDArray
by boolean mask. - set(Buffer) - Method in interface ai.djl.ndarray.NDArray
-
Sets this
NDArray
value fromBuffer
. - set(Buffer) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Sets this
NDArray
value fromBuffer
. - setActivation(RNN.Activation) - Method in class ai.djl.nn.recurrent.RNN.Builder
-
Sets the activation for the RNN - ReLu or Tanh.
- setApplication(Application) - Method in class ai.djl.repository.Metadata
-
Sets the
Application
. - setArguments(Map<String, ?>) - Method in interface ai.djl.translate.ServingTranslator
-
Sets the configurations for the
Translator
instance. - setArguments(Map<String, Object>) - Method in class ai.djl.repository.Artifact
-
Sets the artifact arguments.
- setArray(NDArray) - Method in class ai.djl.nn.Parameter
-
Sets the values of this
Parameter
. - setArtifact(Artifact) - Method in class ai.djl.repository.Artifact.Item
-
Sets the artifact associated with this item.
- setArtifactId(String) - Method in class ai.djl.repository.Metadata
-
Sets the artifactId.
- setArtifacts(List<Artifact>) - Method in class ai.djl.repository.Metadata
-
Sets the artifacts for the metadata.
- setAttachment(String, Object) - Method in interface ai.djl.translate.TranslatorContext
-
Set a key-value pair of attachments.
- setBaseValue(float) - Method in class ai.djl.training.tracker.CosineTracker.Builder
-
Sets the initial value after no steps.
- setBaseValue(float) - Method in class ai.djl.training.tracker.FactorTracker.Builder
-
Sets the initial value after no steps.
- setBaseValue(float) - Method in class ai.djl.training.tracker.LinearTracker.Builder
-
Sets the initial value after no steps.
- setBaseValue(float) - Method in class ai.djl.training.tracker.MultiFactorTracker.Builder
-
Sets the initial value after no steps.
- setBaseValue(float) - Method in class ai.djl.training.tracker.PolynomialDecayTracker.Builder
-
Sets the initial value after no steps.
- setBatchifier(Batchifier) - Method in class ai.djl.translate.NoopTranslator
-
Sets the
Batchifier
for the Translator. - setBlock(Block) - Method in class ai.djl.BaseModel
-
Sets the block for the Model for training and inference.
- setBlock(Block) - Method in interface ai.djl.Model
-
Sets the block for the Model for training and inference.
- setBlock(Block) - Method in class ai.djl.repository.zoo.ZooModel
-
Sets the block for the Model for training and inference.
- setCheckpoint(int) - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
Sets the checkpoint frequency in
SaveModelTrainingListener
. - setCode(int) - Method in class ai.djl.modality.Output
-
Sets the status code of the output.
- setContent(PairList<String, BytesSupplier>) - Method in class ai.djl.modality.Input
-
Sets the content of the input.
- setData(NDArray...) - Method in class ai.djl.training.dataset.ArrayDataset.Builder
-
Sets the data as an
NDArray
for theArrayDataset
. - setDataType(DataType) - Method in class ai.djl.BaseModel
-
Sets the standard data type used within the model.
- setDataType(DataType) - Method in interface ai.djl.Model
-
Sets the standard data type used within the model.
- setDataType(DataType) - Method in class ai.djl.ndarray.types.DataDesc
- setDataType(DataType) - Method in class ai.djl.repository.zoo.ZooModel
-
Sets the standard data type used within the model.
- setDecaySteps(int) - Method in class ai.djl.training.tracker.PolynomialDecayTracker.Builder
-
Sets the number of training steps to decay learning rate in.
- setDescription(String) - Method in class ai.djl.repository.Metadata
-
Sets the description.
- setDictionarySize(int) - Method in class ai.djl.nn.transformer.IdEmbedding.Builder
-
Sets the number of ids that should be embedded.
- setEmbeddingSize(int) - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Sets the size of the embeddings.
- setEmbeddingSize(int) - Method in class ai.djl.nn.transformer.IdEmbedding.Builder
-
Sets the size of the embeddings.
- setEmbeddingSize(int) - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock.Builder
-
Sets the embedding Size to be used for the internal token representation.
- setEndLearningRate(float) - Method in class ai.djl.training.tracker.PolynomialDecayTracker.Builder
-
Sets the learning rate at which to end rate decay.
- setEpoch(int) - Method in class ai.djl.training.TrainingResult
-
Sets the actual number of epoch.
- setEvaluations(Map<String, Float>) - Method in class ai.djl.training.TrainingResult
-
Sets the raw evaluation metrics.
- setExtension(String) - Method in class ai.djl.repository.Artifact.Item
-
Sets the file extension.
- setFactor(float) - Method in class ai.djl.training.tracker.FactorTracker.Builder
-
Sets the value of the multiplicative factor.
- setFiles(Map<String, Artifact.Item>) - Method in class ai.djl.repository.Artifact
-
Sets the file items.
- setFilters(int) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the Required number of filters.
- setFilters(int) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the Required number of filters.
- setGroupId(String) - Method in class ai.djl.repository.Metadata
-
Sets the groupId.
- setHeadCount(int) - Method in class ai.djl.nn.transformer.ScaledDotProductAttentionBlock.Builder
-
Sets the number of attention Heads, must divide the embedding size without rest.
- setId(String) - Method in class ai.djl.repository.License
-
Sets the identifier of the license.
- setImageFactory(ImageFactory) - Static method in class ai.djl.modality.cv.ImageFactory
-
Sets a custom instance of
ImageFactory
. - setInitializer(Initializer) - Method in class ai.djl.nn.Parameter
-
Sets the
Initializer
for thisParameter
, if not already set. - setInitializer(Initializer, Parameter.Type) - Method in class ai.djl.nn.AbstractBaseBlock
-
Sets an
Initializer
to all the parameters that match parameter type in the block. - setInitializer(Initializer, Parameter.Type) - Method in interface ai.djl.nn.Block
-
Sets an
Initializer
to all the parameters that match parameter type in the block. - setInitializer(Initializer, String) - Method in class ai.djl.nn.AbstractBaseBlock
-
Sets an
Initializer
to the specified direct parameter of the block, overriding the initializer of the parameter, if already set. - setInitializer(Initializer, String) - Method in interface ai.djl.nn.Block
-
Sets an
Initializer
to the specified direct parameter of the block, overriding the initializer of the parameter, if already set. - setInitializer(Initializer, Predicate<Parameter>) - Method in class ai.djl.nn.AbstractBaseBlock
-
Sets an
Initializer
to all the parameters that match Predicate in the block. - setInitializer(Initializer, Predicate<Parameter>) - Method in interface ai.djl.nn.Block
-
Sets an
Initializer
to all the parameters that match Predicate in the block. - setKernelShape(Shape) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the shape of the kernel.
- setKernelShape(Shape) - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Sets the shape of the kernel.
- setLastUpdated(Date) - Method in class ai.djl.repository.Metadata
-
Sets the last update date for the metadata.
- setLearningRateTracker(Tracker) - Method in class ai.djl.training.optimizer.Nag.Builder
-
Sets the
Tracker
for this optimizer. - setLearningRateTracker(Tracker) - Method in class ai.djl.training.optimizer.Sgd.Builder
-
Sets the
Tracker
for this optimizer. - setLicense(Map<String, License>) - Method in class ai.djl.repository.Metadata
-
Sets the
License
. - setMainTracker(Tracker) - Method in class ai.djl.training.tracker.WarmUpTracker.Builder
-
Sets the base value.
- setMaxUpdates(int) - Method in class ai.djl.training.tracker.CosineTracker.Builder
-
Sets the maximum number of updates after which the value should remain constant.
- setMessage(String) - Method in class ai.djl.modality.Output
-
Sets the status message of the output.
- setMetadata(Metadata) - Method in class ai.djl.repository.Artifact
-
Sets the associated metadata.
- setMetadataVersion(String) - Method in class ai.djl.repository.Artifact
-
Sets the metadata format version.
- setMetadataVersion(String) - Method in class ai.djl.repository.Metadata
-
Sets the metadata format version.
- setMetrics(Metrics) - Method in class ai.djl.inference.Predictor
-
Attaches a Metrics param to use for benchmark.
- setMetrics(Metrics) - Method in class ai.djl.training.Trainer
-
Attaches a Metrics param to use for benchmarking.
- setModelDir(Path) - Method in class ai.djl.BaseModel
- setMomentum(float) - Method in class ai.djl.training.optimizer.Nag.Builder
-
Sets the momentum for
Nag
. - setName(String) - Method in class ai.djl.ndarray.BaseNDManager
-
Sets the name for the NDManager.
- setName(String) - Method in interface ai.djl.ndarray.NDArray
-
Sets name of this
NDArray
. - setName(String) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Sets name of this
NDArray
. - setName(String) - Method in interface ai.djl.ndarray.NDManager
-
Sets the name for the NDManager.
- setName(String) - Method in class ai.djl.ndarray.types.DataDesc
-
Sets the name of the
NDArray
. - setName(String) - Method in class ai.djl.nn.Parameter.Builder
-
Sets the name of the
Parameter
. - setName(String) - Method in class ai.djl.repository.Artifact.Item
-
Sets the item name.
- setName(String) - Method in class ai.djl.repository.Artifact
-
Sets the artifact name.
- setName(String) - Method in class ai.djl.repository.License
-
Sets the name of the license.
- setName(String) - Method in class ai.djl.repository.Metadata
-
Sets the metadata-level name.
- setNumLayers(int) - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
Sets the Required number of stacked layers.
- setOptions(Map<String, String>) - Method in class ai.djl.repository.Artifact
-
Sets the artifact arguments.
- setOverrideModelName(String) - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
Sets the override model name to save checkpoints with.
- setParameterServer(ParameterServer, Device[]) - Method in class ai.djl.training.ParameterStore
-
Sets the parameterServer used to apply updates to the parameters.
- setPipeline(Pipeline) - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
-
Sets the
Pipeline
to use for pre-processing the image. - setProperties(Map<String, String>) - Method in class ai.djl.modality.Input
-
Sets the properties of the input.
- setProperties(Map<String, String>) - Method in class ai.djl.repository.Artifact
-
Sets the artifact properties.
- setProperty(String, String) - Method in class ai.djl.BaseModel
-
Sets a property to the model.
- setProperty(String, String) - Method in interface ai.djl.Model
-
Sets a property to the model.
- setProperty(String, String) - Method in class ai.djl.repository.zoo.ZooModel
-
Sets a property to the model.
- setRandomSeed(int) - Method in class ai.djl.engine.Engine
-
Seeds the random number generator in DJL Engine.
- setRatios(List<Float>) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the aspect ratios of the anchor boxes to be generated around each pixel.
- setRepositoryUri(URI) - Method in class ai.djl.repository.Metadata
-
Sets the repository URI.
- setRequiresGradient(boolean) - Method in interface ai.djl.ndarray.NDArray
-
Attaches a gradient
NDArray
to thisNDArray
and marks it soGradientCollector.backward(NDArray)
can compute the gradient with respect to it. - setRequiresGradient(boolean) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Attaches a gradient
NDArray
to thisNDArray
and marks it soGradientCollector.backward(NDArray)
can compute the gradient with respect to it. - setRescaleGrad(float) - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
Sets the value used to rescale the gradient.
- setResourceType(String) - Method in class ai.djl.repository.Metadata
-
Returns the resource type.
- setSampling(int, boolean) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets the
Sampler
with the given batch size. - setSampling(int, boolean, boolean) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets the
Sampler
with the given batch size. - setSampling(Sampler) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets the
Sampler
for the dataset. - setSaveModelCallback(Consumer<Trainer>) - Method in class ai.djl.training.listener.SaveModelTrainingListener
-
Sets the callback function on model saving.
- setScalar(NDIndex, Number) - Method in interface ai.djl.ndarray.NDArray
-
Sets the specified scalar in this
NDArray
with the given value. - setScalar(NDIndex, Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Sets the specified scalar in this
NDArray
with the given value. - setScalar(NDArray, NDIndex, Number) - Method in class ai.djl.ndarray.index.NDArrayIndexer
-
Sets a scalar value in the array at the indexed location.
- setSha1Hash(String) - Method in class ai.djl.repository.Artifact.Item
-
Sets the sha1hash of the item.
- setShape(Shape) - Method in class ai.djl.ndarray.types.DataDesc
- setShape(Shape) - Method in class ai.djl.nn.Parameter
-
Sets the shape of this
Parameter
. - setSize(long) - Method in class ai.djl.repository.Artifact.Item
-
Sets the file size.
- setSizes(List<Float>) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the sizes of the anchor boxes to be generated around each pixel.
- setSnapshot(boolean) - Method in class ai.djl.repository.Artifact
-
Sets if the artifact is a snapshot.
- setStateSize(int) - Method in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
-
Sets the Required size of the state for each layer.
- setSteps(int[]) - Method in class ai.djl.training.tracker.MultiFactorTracker.Builder
-
Sets an array of integers indicating when the value should be changed, usually in an uneven interval of steps.
- setTokenDictionarySize(int) - Method in class ai.djl.nn.transformer.BertBlock.Builder
-
Sets the number of tokens in the dictionary.
- setTopK(int) - Method in class ai.djl.modality.Classifications
-
Set the topK number of classes to be displayed.
- setType(Parameter.Type) - Method in class ai.djl.nn.Parameter.Builder
-
Sets the
Type
of theParameter
. - setType(Class<String>) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding.Builder
-
Creates a new
Embedding.BaseBuilder
with the specified embedding type. - setType(Class<T>) - Method in class ai.djl.nn.core.Embedding.BaseBuilder
-
Creates a new
Embedding.BaseBuilder
with the specified embedding type. - setType(String) - Method in class ai.djl.repository.Artifact.Item
-
Sets the type of the item.
- setTypes(Class<P>, Class<Q>) - Method in class ai.djl.repository.zoo.Criteria.Builder
-
Creates a new @{code Builder} class with the specified input and output data type.
- setUnits(long) - Method in class ai.djl.nn.core.Linear.Builder
-
Sets the number of output channels.
- setupHyperParams() - Method in class ai.djl.training.hyperparameter.EasyHpo
-
Returns the initial hyperparameters.
- setupTrainingConfig(HpSet) - Method in class ai.djl.training.hyperparameter.EasyHpo
-
Returns the
TrainingConfig
to use to train each hyperparameter set. - setUri(String) - Method in class ai.djl.repository.Artifact.Item
-
Sets the URI of the item.
- setUrl(String) - Method in class ai.djl.repository.License
-
Sets the url of the license.
- setVersion(String) - Method in class ai.djl.repository.Artifact
-
Sets the artifact version.
- setVocabulary(Vocabulary) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding.Builder
-
Sets the
Vocabulary
to be used. - setWebsite(String) - Method in class ai.djl.repository.Metadata
-
Sets the website.
- sgd() - Static method in class ai.djl.training.optimizer.Optimizer
-
Returns a new instance of
Sgd.Builder
that can build anSgd
optimizer. - Sgd - Class in ai.djl.training.optimizer
-
Sgd
is a Stochastic Gradient Descent (SGD) optimizer. - Sgd(Sgd.Builder) - Constructor for class ai.djl.training.optimizer.Sgd
-
Creates a new instance of
Sgd
. - Sgd.Builder - Class in ai.djl.training.optimizer
-
The Builder to construct an
Sgd
object. - shape - Variable in class ai.djl.ndarray.NDArrayAdapter
- Shape - Class in ai.djl.ndarray.types
-
A class that presents the
NDArray
's shape information. - Shape(long...) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a
Shape
with specified dimension as(long... shape)
. - Shape(long[], LayoutType[]) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a
Shape
with specified dimension and layout. - Shape(long[], String) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a
Shape
with specified dimension and layout. - Shape(PairList<Long, LayoutType>) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a
Shape
with specified shape and layout pairList. - Shape(List<Long>) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a
Shape
with specified dimension. - shapeEquals(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Checks 2
NDArray
s for equal shapes. - shapeEquals(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Checks 2
NDArray
s for equal shapes. - sigmoid(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies Sigmoid activation on the input
NDArray
. - sigmoid(NDList) - Static method in class ai.djl.nn.Activation
-
Applies Sigmoid activation on the input singleton
NDList
. - sigmoidBinaryCrossEntropyLoss() - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
SigmoidBinaryCrossEntropyLoss
with default arguments. - sigmoidBinaryCrossEntropyLoss(String) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
SigmoidBinaryCrossEntropyLoss
with default arguments. - sigmoidBinaryCrossEntropyLoss(String, float, boolean) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
SigmoidBinaryCrossEntropyLoss
with the given arguments. - SigmoidBinaryCrossEntropyLoss - Class in ai.djl.training.loss
-
SigmoidBinaryCrossEntropyLoss
is a type ofLoss
. - SigmoidBinaryCrossEntropyLoss() - Constructor for class ai.djl.training.loss.SigmoidBinaryCrossEntropyLoss
-
Performs Sigmoid cross-entropy loss for binary classification.
- SigmoidBinaryCrossEntropyLoss(String) - Constructor for class ai.djl.training.loss.SigmoidBinaryCrossEntropyLoss
-
Performs Sigmoid cross-entropy loss for binary classification.
- SigmoidBinaryCrossEntropyLoss(String, float, boolean) - Constructor for class ai.djl.training.loss.SigmoidBinaryCrossEntropyLoss
-
Performs Sigmoid cross-entropy loss for binary classification.
- sigmoidBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies theSigmoid
activation function in its forward function. - sign() - Method in interface ai.djl.ndarray.NDArray
-
Returns the element-wise sign.
- sign() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the element-wise sign.
- signi() - Method in interface ai.djl.ndarray.NDArray
-
Returns the element-wise sign in-place.
- signi() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the element-wise sign in-place.
- SimpleCompositeLoss - Class in ai.djl.training.loss
- SimpleCompositeLoss() - Constructor for class ai.djl.training.loss.SimpleCompositeLoss
-
Creates a new empty instance of
CompositeLoss
that can combine the givenLoss
components. - SimpleCompositeLoss(String) - Constructor for class ai.djl.training.loss.SimpleCompositeLoss
-
Creates a new empty instance of
CompositeLoss
that can combine the givenLoss
components. - SimplePoseTranslator - Class in ai.djl.modality.cv.translator
- SimplePoseTranslator(SimplePoseTranslator.Builder) - Constructor for class ai.djl.modality.cv.translator.SimplePoseTranslator
-
Creates the Pose Estimation translator from the given builder.
- SimplePoseTranslator.Builder - Class in ai.djl.modality.cv.translator
-
The builder for Pose Estimation translator.
- SimplePoseTranslatorFactory - Class in ai.djl.modality.cv.translator
-
An
TranslatorFactory
that creates aSimplePoseTranslator
instance. - SimplePoseTranslatorFactory() - Constructor for class ai.djl.modality.cv.translator.SimplePoseTranslatorFactory
- SimpleRepository - Class in ai.djl.repository
-
A
SimpleRepository
is aRepository
containing only a single artifact without requiring a "metadata.json" file. - SimpleRepository(String, URI, Path) - Constructor for class ai.djl.repository.SimpleRepository
-
(Internal) Constructs a SimpleRepository.
- SimpleText2TextTranslator - Class in ai.djl.modality.nlp.translator
-
A
Translator
that performs pre-process and post-processing for a sequence-to-sequence text model. - SimpleText2TextTranslator() - Constructor for class ai.djl.modality.nlp.translator.SimpleText2TextTranslator
- SimpleTextEmbedding - Class in ai.djl.modality.nlp.embedding
-
A
TextEmbedding
that applies aWordEmbedding
to each word independently. - SimpleTextEmbedding(WordEmbedding) - Constructor for class ai.djl.modality.nlp.embedding.SimpleTextEmbedding
-
Constructs a
SimpleTextEmbedding
. - SimpleTokenizer - Class in ai.djl.modality.nlp.preprocess
-
SimpleTokenizer
is an implementation of theTokenizer
interface that converts sentences into token by splitting them by a given delimiter. - SimpleTokenizer() - Constructor for class ai.djl.modality.nlp.preprocess.SimpleTokenizer
-
Creates an instance of
SimpleTokenizer
with the default delimiter. - SimpleTokenizer(String) - Constructor for class ai.djl.modality.nlp.preprocess.SimpleTokenizer
-
Creates an instance of
SimpleTokenizer
with the given delimiter. - SimpleUrlRepository - Class in ai.djl.repository
-
A
SimpleUrlRepository
is aRepository
contains an archive file from a HTTP URL. - sin() - Method in interface ai.djl.ndarray.NDArray
-
Returns the trigonometric sine of this
NDArray
element-wise. - sin() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the trigonometric sine of this
NDArray
element-wise. - SingleShotDetectionAccuracy - Class in ai.djl.training.evaluator
-
SingleShotDetectionAccuracy
is an implementation ofAbstractAccuracy
. - SingleShotDetectionAccuracy(String) - Constructor for class ai.djl.training.evaluator.SingleShotDetectionAccuracy
-
Creates a new instance of
SingleShotDetectionAccuracy
with the given name. - SingleShotDetectionLoss - Class in ai.djl.training.loss
-
SingleShotDetectionLoss
is an implementation ofLoss
. - SingleShotDetectionLoss() - Constructor for class ai.djl.training.loss.SingleShotDetectionLoss
-
Base class for metric with abstract update methods.
- SingleShotDetectionTranslator - Class in ai.djl.modality.cv.translator
- SingleShotDetectionTranslator(SingleShotDetectionTranslator.Builder) - Constructor for class ai.djl.modality.cv.translator.SingleShotDetectionTranslator
-
Creates the SSD translator from the given builder.
- SingleShotDetectionTranslator.Builder - Class in ai.djl.modality.cv.translator
-
The builder for SSD translator.
- SingleShotDetectionTranslatorFactory - Class in ai.djl.modality.cv.translator
-
An
TranslatorFactory
that creates aSingleShotDetectionTranslator
instance. - SingleShotDetectionTranslatorFactory() - Constructor for class ai.djl.modality.cv.translator.SingleShotDetectionTranslatorFactory
- singleton(Function<NDArray, NDArray>) - Static method in class ai.djl.nn.LambdaBlock
-
Creates a
LambdaBlock
for a singleton function. - singletonOrThrow() - Method in class ai.djl.ndarray.NDList
-
Returns the only element if this is a singleton NDList or throws an exception if multiple elements.
- sinh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the hyperbolic sine of this
NDArray
element-wise. - sinh() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the hyperbolic sine of this
NDArray
element-wise. - size() - Method in class ai.djl.modality.nlp.DefaultVocabulary
-
Returns the size of the
Vocabulary
. - size() - Method in interface ai.djl.modality.nlp.Vocabulary
-
Returns the size of the
Vocabulary
. - size() - Method in interface ai.djl.ndarray.NDArray
-
Returns the total number of elements in this
NDArray
. - size() - Method in class ai.djl.ndarray.types.Shape
-
Returns the total size.
- size() - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Returns the size of this
Dataset
. - size(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the size of this
NDArray
along a given axis. - size(int...) - Method in class ai.djl.ndarray.types.Shape
-
Returns the size of a specific dimension or several specific dimensions.
- slice(int) - Method in class ai.djl.ndarray.types.Shape
-
Creates a new
Shape
whose content is a slice of this shape. - slice(int, int) - Method in class ai.djl.ndarray.types.Shape
-
Creates a new
Shape
whose content is a slice of this shape. - sliceAxis(int, long, long) - Static method in class ai.djl.ndarray.index.NDIndex
-
Creates an
NDIndex
that just has one slice in the given axis. - softmax(int) - Method in interface ai.djl.ndarray.NDArray
-
Applies the softmax function along the given axis.
- softmax(int) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Applies the softmax function along the given axis.
- SOFTMAX_REGRESSION - Static variable in interface ai.djl.Application.Tabular
-
An application that takes a feature vector (table row) and predicts a categorical feature based on it.
- softmaxCrossEntropyLoss() - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
SoftmaxCrossEntropyLoss
with default arguments. - softmaxCrossEntropyLoss(String) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
SoftmaxCrossEntropyLoss
with default arguments. - softmaxCrossEntropyLoss(String, float, int, boolean, boolean) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
SoftmaxCrossEntropyLoss
with the given arguments. - SoftmaxCrossEntropyLoss - Class in ai.djl.training.loss
-
SoftmaxCrossEntropyLoss
is a type ofLoss
that calculates the softmax cross entropy loss. - SoftmaxCrossEntropyLoss() - Constructor for class ai.djl.training.loss.SoftmaxCrossEntropyLoss
-
Creates a new instance of
SoftmaxCrossEntropyLoss
with default parameters. - SoftmaxCrossEntropyLoss(String) - Constructor for class ai.djl.training.loss.SoftmaxCrossEntropyLoss
-
Creates a new instance of
SoftmaxCrossEntropyLoss
with default parameters. - SoftmaxCrossEntropyLoss(String, float, int, boolean, boolean) - Constructor for class ai.djl.training.loss.SoftmaxCrossEntropyLoss
-
Creates a new instance of
SoftmaxCrossEntropyLoss
with the given parameters. - softPlus(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies softPlus activation on the input
NDArray
. - softPlus(NDList) - Static method in class ai.djl.nn.Activation
-
Applies softPlus activation on the input singleton
NDList
. - softPlusBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies theActivation.softPlus(NDList)
activation function in its forward function. - softSign(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies softSign activation on the input
NDArray
. - softSign(NDList) - Static method in class ai.djl.nn.Activation
-
Applies softPlus activation on the input singleton
NDList
. - softSignBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies theActivation.softSign(NDList)
activation function in its forward function. - sort() - Method in interface ai.djl.ndarray.NDArray
-
Sorts the flattened
NDArray
. - sort() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Sorts the flattened
NDArray
. - sort(int) - Method in interface ai.djl.ndarray.NDArray
-
Sorts the flattened
NDArray
. - sort(int) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Sorts the flattened
NDArray
. - sparseFormat - Variable in class ai.djl.nn.core.Embedding.BaseBuilder
- sparseFormat - Variable in class ai.djl.nn.core.Embedding
- SparseFormat - Enum in ai.djl.ndarray.types
-
An enum representing Sparse matrix storage formats.
- SparseNDArray - Interface in ai.djl.ndarray
-
An interface representing a Sparse NDArray.
- split(long) - Method in interface ai.djl.ndarray.NDArray
-
Splits this
NDArray
into multiple subNDArray
s given sections along first axis. - split(long[]) - Method in interface ai.djl.ndarray.NDArray
-
Splits this
NDArray
into multiple sub-NDArray
s given indices along first axis. - split(long[], int) - Method in interface ai.djl.ndarray.NDArray
-
Splits this
NDArray
into multiple sub-NDArray
s given indices along given axis. - split(long[], int) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Splits this
NDArray
into multiple sub-NDArray
s given indices along given axis. - split(long, int) - Method in interface ai.djl.ndarray.NDArray
-
Splits this
NDArray
into multiple subNDArray
s given sections along the given axis. - split(long, int) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Splits this
NDArray
into multiple subNDArray
s given sections along the given axis. - split(Device[], boolean) - Method in class ai.djl.training.dataset.Batch
-
Splits the data and labels in the
Batch
across the given devices. - split(NDList, int, boolean) - Method in interface ai.djl.translate.Batchifier
-
Splits the given
NDList
into the given number of slices. - split(NDList, int, boolean) - Method in class ai.djl.translate.PaddingStackBatchifier
-
Splits the given
NDList
into the given number of slices. - split(NDList, int, boolean) - Method in class ai.djl.translate.StackBatchifier
-
Splits the given
NDList
into the given number of slices. - sqrt() - Method in interface ai.djl.ndarray.NDArray
-
Returns the square root of this
NDArray
element-wise. - sqrt() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the square root of this
NDArray
element-wise. - square() - Method in interface ai.djl.ndarray.NDArray
-
Returns the square of this
NDArray
element-wise. - square() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the square of this
NDArray
element-wise. - squeeze() - Method in interface ai.djl.ndarray.NDArray
-
Removes all singleton dimensions from this
NDArray
Shape
. - squeeze(int) - Method in interface ai.djl.ndarray.NDArray
-
Removes a singleton dimension at the given axis.
- squeeze(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Removes singleton dimensions at the given axes.
- squeeze(int[]) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Removes singleton dimensions at the given axes.
- stack(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Joins a
NDArray
along the first axis. - stack(NDArray, int) - Method in interface ai.djl.ndarray.NDArray
-
Joins a
NDArray
along a new axis. - stack(NDList) - Static method in class ai.djl.ndarray.NDArrays
- stack(NDList, int) - Static method in class ai.djl.ndarray.NDArrays
- STACK - Static variable in interface ai.djl.translate.Batchifier
- StackBatchifier - Class in ai.djl.translate
-
StackBatchifier
is used to merge a list of samples to form a mini-batch of NDArray(s). - StackBatchifier() - Constructor for class ai.djl.translate.StackBatchifier
- StandardCapabilities - Class in ai.djl.engine
-
Constant definitions for the standard capability.
- start(long) - Method in class ai.djl.training.util.ProgressBar
- stateSize - Variable in class ai.djl.nn.recurrent.RecurrentBlock.BaseBuilder
- stateSize - Variable in class ai.djl.nn.recurrent.RecurrentBlock
- step() - Method in class ai.djl.training.Trainer
-
Updates all of the parameters of the model once.
- step(NDList, boolean) - Method in interface ai.djl.modality.rl.env.RlEnv
-
Takes a step by performing an action in this environment.
- stopGradient() - Method in interface ai.djl.ndarray.NDArray
-
Returns an NDArray equal to this that stop gradient propagation through it.
- stopGradient() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns an NDArray equal to this that stop gradient propagation through it.
- stream() - Method in class ai.djl.ndarray.index.NDIndex
-
Returns a stream of the NDIndexElements.
- stream() - Method in class ai.djl.ndarray.types.Shape
-
Returns a stream of the Shape.
- stride - Variable in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
- stride - Variable in class ai.djl.nn.convolutional.Convolution
- stride - Variable in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
- stride - Variable in class ai.djl.nn.convolutional.Deconvolution
- STRING - ai.djl.ndarray.types.DataType.Format
- STRING - ai.djl.ndarray.types.DataType
- stringValue(Map<String, ?>, String) - Static method in class ai.djl.translate.ArgumentsUtil
-
Returns the string value from the arguments.
- stringValue(Map<String, ?>, String, String) - Static method in class ai.djl.translate.ArgumentsUtil
-
Returns the string value from the arguments.
- StyleTransferTranslator - Class in ai.djl.modality.cv.translator
-
Built-in
Translator
that provides preprocessing and postprocessing for StyleTransfer. - StyleTransferTranslator() - Constructor for class ai.djl.modality.cv.translator.StyleTransferTranslator
- StyleTransferTranslatorFactory - Class in ai.djl.modality.cv.translator
-
A
TranslatorFactory
that creates aStyleTransferTranslator
instance. - StyleTransferTranslatorFactory() - Constructor for class ai.djl.modality.cv.translator.StyleTransferTranslatorFactory
- sub(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Subtracts the other
NDArray
from thisNDArray
element-wise. - sub(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Subtracts the other
NDArray
from thisNDArray
element-wise. - sub(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- sub(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Subtracts a number from the
NDArray
element-wise. - sub(Number) - Method in interface ai.djl.ndarray.NDArray
-
Subtracts a number from this
NDArray
element-wise. - sub(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Subtracts a number from this
NDArray
element-wise. - sub(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Subtracts a
NDArray
from a number element-wise. - subDataset(int, int) - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Returns a view of the portion of this data between the specified
fromIndex
, inclusive, andtoIndex
, exclusive. - subi(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Subtracts the other
NDArray
from thisNDArray
element-wise in place. - subi(NDArray) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Subtracts the other
NDArray
from thisNDArray
element-wise in place. - subi(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- subi(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Subtracts a number from the
NDArray
element-wise in place. - subi(Number) - Method in interface ai.djl.ndarray.NDArray
-
Subtracts a number from this
NDArray
element-wise in place. - subi(Number) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Subtracts a number from this
NDArray
element-wise in place. - subi(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Subtracts a
NDArray
from a number element-wise in place. - subManagerOf(NDResource) - Static method in interface ai.djl.ndarray.NDManager
-
Creates a new manager based on the given resource.
- subNDList(int) - Method in class ai.djl.ndarray.NDList
-
Returns a view of the portion of this NDList between the specified fromIndex, inclusive, and to the end.
- sum() - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum of this
NDArray
. - sum() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the sum of this
NDArray
. - sum(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum of this
NDArray
along given axes. - sum(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum of this
NDArray
along given axes. - sum(int[], boolean) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the sum of this
NDArray
along given axes. - swapAxes(int, int) - Method in interface ai.djl.ndarray.NDArray
-
Interchanges two axes of this
NDArray
. - swish(NDArray, float) - Static method in class ai.djl.nn.Activation
-
Applies Swish activation on the input
NDArray
. - swish(NDList, float) - Static method in class ai.djl.nn.Activation
-
Applies SWish activation on the input singleton
NDList
. - swishBlock(float) - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies theSwish
activation function in its forward function. - SymbolBlock - Interface in ai.djl.nn
-
SymbolBlock
is aBlock
is used to load models that were exported directly from the engine in its native format. - sync() - Method in class ai.djl.training.ParameterStore
-
Synchronizes the values on all mirrors with the main parameter.
- synsetLoader - Variable in class ai.djl.modality.cv.translator.BaseImageTranslator.ClassificationBuilder
- SynsetLoader(String) - Constructor for class ai.djl.modality.cv.translator.BaseImageTranslator.SynsetLoader
- SynsetLoader(URL) - Constructor for class ai.djl.modality.cv.translator.BaseImageTranslator.SynsetLoader
- SynsetLoader(List<String>) - Constructor for class ai.djl.modality.cv.translator.BaseImageTranslator.SynsetLoader
T
- tail() - Method in class ai.djl.ndarray.types.Shape
-
Returns the tail index of the shape.
- tan() - Method in interface ai.djl.ndarray.NDArray
-
Returns the trigonometric tangent of this
NDArray
element-wise. - tan() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the trigonometric tangent of this
NDArray
element-wise. - tanh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the hyperbolic tangent of this
NDArray
element-wise. - tanh() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the hyperbolic tangent of this
NDArray
element-wise. - tanh(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies Tanh activation on the input
NDArray
. - tanh(NDList) - Static method in class ai.djl.nn.Activation
-
Applies Tanh activation on the input singleton
NDList
. - TANH - ai.djl.nn.recurrent.RNN.Activation
- tanhBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies theTanh
activation function in its forward function. - target(NDList) - Method in class ai.djl.modality.cv.MultiBoxTarget
-
Computes multi-box training targets.
- targetPipeline - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
- targetPipeline - Variable in class ai.djl.training.dataset.RandomAccessDataset
- tempAttach(NDManager) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Temporarily attaches this
NDResource
to the specifiedNDManager
. - tempAttach(NDManager) - Method in class ai.djl.ndarray.NDList
-
Temporarily attaches this
NDResource
to the specifiedNDManager
. - tempAttach(NDManager) - Method in interface ai.djl.ndarray.NDResource
-
Temporarily attaches this
NDResource
to the specifiedNDManager
. - tempAttachAll(NDResource...) - Method in interface ai.djl.ndarray.NDManager
-
Temporarily attaches all resources to this manager.
- tempAttachInternal(NDManager, String, NDResource) - Method in class ai.djl.ndarray.BaseNDManager
-
Temporarily attaches a resource to this
NDManager
to be returned when this is closed. - tempAttachInternal(NDManager, String, NDResource) - Method in interface ai.djl.ndarray.NDManager
-
Temporarily attaches a resource to this
NDManager
to be returned when this is closed. - TempResource(NDResource, NDManager) - Constructor for class ai.djl.ndarray.BaseNDManager.TempResource
- tempResources - Variable in class ai.djl.ndarray.BaseNDManager
- TERABITS - ai.djl.metric.Unit
- TERABITS_PER_SECOND - ai.djl.metric.Unit
- TERABYTES - ai.djl.metric.Unit
- TERABYTES_PER_SECOND - ai.djl.metric.Unit
- TEST - ai.djl.training.dataset.Dataset.Usage
- TEXT_CLASSIFICATION - Static variable in interface ai.djl.Application.NLP
-
An application that classifies text data.
- TEXT_EMBEDDING - Static variable in interface ai.djl.Application.NLP
-
An application that takes text and returns a feature vector that represents the text.
- TextClassificationServingTranslator - Class in ai.djl.modality.nlp.translator
- TextClassificationServingTranslator(Translator<String, Classifications>) - Constructor for class ai.djl.modality.nlp.translator.TextClassificationServingTranslator
-
Constructs a
TextClassificationServingTranslator
instance. - TextCleaner - Class in ai.djl.modality.nlp.preprocess
-
Applies remove or replace of certain characters based on condition.
- TextCleaner(Function<Character, Boolean>) - Constructor for class ai.djl.modality.nlp.preprocess.TextCleaner
-
Remove a character if it meets the condition supplied.
- TextCleaner(Function<Character, Boolean>, char) - Constructor for class ai.djl.modality.nlp.preprocess.TextCleaner
-
Replace a character if it meets the condition supplied.
- TextEmbedding - Interface in ai.djl.modality.nlp.embedding
-
A class to manage 1-D
NDArray
representations of multiple words. - TextProcessor - Interface in ai.djl.modality.nlp.preprocess
-
TextProcessor
allows applying pre-processing to input tokens for natural language applications. - TextTerminator - Class in ai.djl.modality.nlp.preprocess
-
A
TextProcessor
that adds a beginning of string and end of string token. - TextTerminator() - Constructor for class ai.djl.modality.nlp.preprocess.TextTerminator
-
Constructs a default
TextTerminator
. - TextTerminator(boolean, boolean) - Constructor for class ai.djl.modality.nlp.preprocess.TextTerminator
-
Constructs a
TextTerminator
using the default tokens. - TextTerminator(boolean, boolean, String, String) - Constructor for class ai.djl.modality.nlp.preprocess.TextTerminator
-
Constructs a
TextTerminator
. - TextTruncator - Class in ai.djl.modality.nlp.preprocess
-
TextProcessor
that truncates text to a maximum size. - TextTruncator(int) - Constructor for class ai.djl.modality.nlp.preprocess.TextTruncator
-
Constructs a
TextTruncator
. - threshold - Variable in class ai.djl.modality.cv.translator.ObjectDetectionTranslator.ObjectDetectionBuilder
- threshold - Variable in class ai.djl.modality.cv.translator.ObjectDetectionTranslator
- tile(int, long) - Method in interface ai.djl.ndarray.NDArray
-
Constructs a
NDArray
by repeating thisNDArray
the number of times given by repeats along given axis. - tile(int, long) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Constructs a
NDArray
by repeating thisNDArray
the number of times given by repeats along given axis. - tile(long) - Method in interface ai.djl.ndarray.NDArray
-
Constructs a
NDArray
by repeating thisNDArray
the number of times given repeats. - tile(long) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Constructs a
NDArray
by repeating thisNDArray
the number of times given repeats. - tile(long[]) - Method in interface ai.djl.ndarray.NDArray
-
Constructs a
NDArray
by repeating thisNDArray
the number of times given by repeats. - tile(long[]) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Constructs a
NDArray
by repeating thisNDArray
the number of times given by repeats. - tile(Shape) - Method in interface ai.djl.ndarray.NDArray
-
Constructs a
NDArray
by repeating thisNDArray
the number of times to match the desired shape. - tile(Shape) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Constructs a
NDArray
by repeating thisNDArray
the number of times to match the desired shape. - TIME - ai.djl.ndarray.types.LayoutType
- TimeMeasureTrainingListener - Class in ai.djl.training.listener
-
TrainingListener
that outputs the training time metrics after training is done. - TimeMeasureTrainingListener(String) - Constructor for class ai.djl.training.listener.TimeMeasureTrainingListener
-
Constructs a
TimeMeasureTrainingListener
. - toArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to a Number array based on itsDataType
. - toArray() - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Returns the dataset contents as a Java array.
- toBooleanArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to a boolean array. - toByteArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to a byte array. - toByteBuffer() - Method in class ai.djl.modality.Classifications
-
Returns the
ByteBuffer
presentation of the object. - toByteBuffer() - Method in interface ai.djl.ndarray.BytesSupplier
-
Returns the
ByteBuffer
presentation of the object. - toByteBuffer() - Method in class ai.djl.ndarray.NDList
-
Returns the
ByteBuffer
presentation of the object. - toDebugString() - Method in interface ai.djl.ndarray.NDArray
-
Runs the debug string representation of this
NDArray
. - toDebugString(int, int, int, int) - Method in interface ai.djl.ndarray.NDArray
-
Runs the debug string representation of this
NDArray
. - toDegrees() - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
from radians to degrees element-wise. - toDegrees() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Converts this
NDArray
from radians to degrees element-wise. - toDense() - Method in interface ai.djl.ndarray.NDArray
-
Returns a dense representation of the sparse
NDArray
. - toDense() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns a dense representation of the sparse
NDArray
. - toDevice(Device, boolean) - Method in interface ai.djl.ndarray.NDArray
-
Moves this
NDArray
to a differentDevice
. - toDevice(Device, boolean) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Moves this
NDArray
to a differentDevice
. - toDevice(Device, boolean) - Method in class ai.djl.ndarray.NDList
- toDeviceType(Device) - Static method in interface ai.djl.DeviceType
-
Map device to its type number.
- toDoubleArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to a double array. - toFloatArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to a float array. - toIntArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to an int array. - toJson() - Method in class ai.djl.modality.Classifications
- toJson() - Method in class ai.djl.modality.cv.output.DetectedObjects
- tokenize(String) - Method in class ai.djl.modality.nlp.bert.BertFullTokenizer
-
Breaks down the given sentence into a list of tokens that can be represented by embeddings.
- tokenize(String) - Method in class ai.djl.modality.nlp.bert.BertTokenizer
-
Breaks down the given sentence into a list of tokens that can be represented by embeddings.
- tokenize(String) - Method in class ai.djl.modality.nlp.bert.WordpieceTokenizer
-
Breaks down the given sentence into a list of tokens that can be represented by embeddings.
- tokenize(String) - Method in class ai.djl.modality.nlp.preprocess.SimpleTokenizer
-
Breaks down the given sentence into a list of tokens that can be represented by embeddings.
- tokenize(String) - Method in interface ai.djl.modality.nlp.preprocess.Tokenizer
-
Breaks down the given sentence into a list of tokens that can be represented by embeddings.
- Tokenizer - Interface in ai.djl.modality.nlp.preprocess
-
Tokenizer
interface provides the ability to break-down sentences into embeddable tokens. - tokenizerName - Variable in class ai.djl.modality.nlp.translator.QATranslator
- tokenToString(List<String>) - Method in class ai.djl.modality.nlp.bert.BertFullTokenizer
-
Returns a string presentation of the tokens.
- tokenToString(List<String>) - Method in class ai.djl.modality.nlp.bert.BertTokenizer
-
Returns a string presentation of the tokens.
- toLayoutString() - Method in class ai.djl.ndarray.types.Shape
-
Returns the string layout type for each axis in this shape.
- toLongArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to a long array. - toLowerCase - Variable in class ai.djl.modality.nlp.translator.QATranslator
- toNDArray(NDManager) - Method in interface ai.djl.modality.cv.Image
-
Converts image to a RGB
NDArray
. - toNDArray(NDManager, Image.Flag) - Method in interface ai.djl.modality.cv.Image
-
Converts image to a
NDArray
. - topK() - Method in class ai.djl.modality.Classifications
-
Returns a list of the top classes.
- topK(int) - Method in class ai.djl.modality.Classifications
-
Returns a list of the top
k
best classes. - TopKAccuracy - Class in ai.djl.training.evaluator
-
TopKAccuracy
is anEvaluator
that computes the accuracy of the top k predictions. - TopKAccuracy(int) - Constructor for class ai.djl.training.evaluator.TopKAccuracy
-
Creates an instance of
TopKAccuracy
evaluator that computes topK accuracy across axis 1 along the 0th index. - TopKAccuracy(String, int) - Constructor for class ai.djl.training.evaluator.TopKAccuracy
-
Creates a
TopKAccuracy
instance. - toRadians() - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
from degrees to radians element-wise. - toRadians() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Converts this
NDArray
from degrees to radians element-wise. - toSparse(SparseFormat) - Method in interface ai.djl.ndarray.NDArray
-
Returns a sparse representation of
NDArray
. - toSparse(SparseFormat) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns a sparse representation of
NDArray
. - toString() - Method in class ai.djl.Application
- toString() - Method in class ai.djl.BaseModel
- toString() - Method in class ai.djl.Device
- toString() - Method in class ai.djl.metric.Metric
- toString() - Method in class ai.djl.modality.Classifications.Classification
- toString() - Method in class ai.djl.modality.Classifications
- toString() - Method in class ai.djl.modality.cv.output.DetectedObjects.DetectedObject
- toString() - Method in class ai.djl.modality.cv.output.Joints.Joint
- toString() - Method in class ai.djl.modality.cv.output.Joints
- toString() - Method in class ai.djl.modality.cv.output.Rectangle
- toString() - Method in class ai.djl.modality.Input
-
*
- toString() - Method in class ai.djl.ndarray.BaseNDManager
- toString() - Method in class ai.djl.ndarray.NDArrayAdapter
- toString() - Method in class ai.djl.ndarray.NDList
- toString() - Method in class ai.djl.ndarray.types.DataDesc
- toString() - Method in enum ai.djl.ndarray.types.DataType
- toString() - Method in class ai.djl.ndarray.types.Shape
- toString() - Method in class ai.djl.nn.AbstractBaseBlock
- toString() - Method in class ai.djl.nn.LambdaBlock
- toString() - Method in class ai.djl.nn.norm.Dropout
- toString() - Method in class ai.djl.nn.ParallelBlock
- toString() - Method in class ai.djl.nn.SequentialBlock
- toString() - Method in class ai.djl.repository.Artifact
- toString() - Method in class ai.djl.repository.MRL
- toString() - Method in class ai.djl.repository.Version
- toString() - Method in class ai.djl.repository.VersionRange
- toString() - Method in class ai.djl.repository.zoo.BaseModelLoader
- toString() - Method in class ai.djl.repository.zoo.Criteria
- toString() - Method in class ai.djl.training.hyperparameter.param.HpCategorical
- toString() - Method in class ai.djl.training.hyperparameter.param.HpFloat
- toString() - Method in class ai.djl.training.hyperparameter.param.HpInt
- toString() - Method in class ai.djl.training.hyperparameter.param.HpSet
- toString() - Method in class ai.djl.training.hyperparameter.param.HpVal
- toString() - Method in class ai.djl.training.TrainingResult
-
*
- toString(LayoutType[]) - Static method in enum ai.djl.ndarray.types.LayoutType
-
Converts a layout type array to a string of the character representations.
- toStringArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to a String array. - toStringArray(Charset) - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to a String array with the specified charset. - toStringArray(Charset) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Converts this
NDArray
to a String array with the specified charset. - totalInstances - Variable in class ai.djl.training.evaluator.Evaluator
- toTensor(NDArray) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Converts an image NDArray from preprocessing format to Neural Network format.
- ToTensor - Class in ai.djl.modality.cv.transform
- ToTensor() - Constructor for class ai.djl.modality.cv.transform.ToTensor
- toType(DataType, boolean) - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to a differentDataType
. - toType(DataType, boolean) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Converts this
NDArray
to a differentDataType
. - toUint8Array() - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to a uint8 array. - toURI() - Method in class ai.djl.repository.MRL
-
Returns the URI to the metadata location (used for
Repository
implementations). - trace() - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum along diagonals of this
NDArray
. - trace(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum along diagonals of this
NDArray
. - trace(int, int, int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum along diagonals of this
NDArray
. - trace(int, int, int) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the sum along diagonals of this
NDArray
. - Tracker - Interface in ai.djl.training.tracker
-
A
Tracker
represents a hyper-parameter that changes gradually through the training process. - TRAIN - ai.djl.training.dataset.Dataset.Usage
- TRAIN_ALL - Static variable in class ai.djl.training.listener.EvaluatorTrainingListener
- TRAIN_EPOCH - Static variable in class ai.djl.training.listener.EvaluatorTrainingListener
- TRAIN_PROGRESS - Static variable in class ai.djl.training.listener.EvaluatorTrainingListener
- TrainableTextEmbedding - Class in ai.djl.modality.nlp.embedding
- TrainableTextEmbedding(TrainableWordEmbedding) - Constructor for class ai.djl.modality.nlp.embedding.TrainableTextEmbedding
-
Constructs a
TrainableTextEmbedding
. - TrainableWordEmbedding - Class in ai.djl.modality.nlp.embedding
-
TrainableWordEmbedding
is an implementation ofWordEmbedding
andEmbedding
based on aDefaultVocabulary
. - TrainableWordEmbedding(TrainableWordEmbedding.Builder) - Constructor for class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Constructs a new instance of
TrainableWordEmbedding
from theTrainableWordEmbedding.Builder
. - TrainableWordEmbedding(Vocabulary, int) - Constructor for class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Constructs a new instance of
TrainableWordEmbedding
from aDefaultVocabulary
and a given embedding size. - TrainableWordEmbedding(NDArray, List<String>) - Constructor for class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Constructs a pretrained embedding.
- TrainableWordEmbedding(NDArray, List<String>, SparseFormat) - Constructor for class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Constructs a pretrained embedding.
- TrainableWordEmbedding.Builder - Class in ai.djl.modality.nlp.embedding
-
A builder for a
TrainableWordEmbedding
. - trainBatch(RlEnv.Step[]) - Method in class ai.djl.modality.rl.agent.EpsilonGreedy
-
Trains this
RlAgent
on a batch ofRlEnv.Step
s. - trainBatch(RlEnv.Step[]) - Method in class ai.djl.modality.rl.agent.QAgent
-
Trains this
RlAgent
on a batch ofRlEnv.Step
s. - trainBatch(RlEnv.Step[]) - Method in interface ai.djl.modality.rl.agent.RlAgent
-
Trains this
RlAgent
on a batch ofRlEnv.Step
s. - trainBatch(Trainer, Batch) - Static method in class ai.djl.training.EasyTrain
-
Trains the model with one iteration of the given
Batch
of data. - Trainer - Class in ai.djl.training
-
The
Trainer
interface provides a session for model training. - Trainer(Model, TrainingConfig) - Constructor for class ai.djl.training.Trainer
- TrainingConfig - Interface in ai.djl.training
-
An interface that is responsible for holding the configuration required by
Trainer
. - TrainingDivergedException - Exception in ai.djl
-
Thrown to indicate when there is a divergence during Training.
- TrainingDivergedException(String) - Constructor for exception ai.djl.TrainingDivergedException
-
Constructs a new exception with the specified detail message.
- TrainingDivergedException(String, Throwable) - Constructor for exception ai.djl.TrainingDivergedException
-
Constructs a new exception with the specified detail message and cause.
- TrainingDivergedException(Throwable) - Constructor for exception ai.djl.TrainingDivergedException
-
Constructs a new exception with the specified cause and a detail message of
(cause==null ? null : cause.toString())
which typically contains the class and detail message ofcause
. - TrainingListener - Interface in ai.djl.training.listener
-
TrainingListener
offers an interface that performs some actions when certain events have occurred in theTrainer
. - TrainingListener.BatchData - Class in ai.djl.training.listener
-
A class to pass data from the batch into the training listeners.
- TrainingListener.Defaults - Interface in ai.djl.training.listener
-
Contains default
TrainingListener
sets. - TrainingListenerAdapter - Class in ai.djl.training.listener
-
Base implementation of the training listener that does nothing.
- TrainingListenerAdapter() - Constructor for class ai.djl.training.listener.TrainingListenerAdapter
- TrainingResult - Class in ai.djl.training
-
A class that is responsible for holding the training result produced by
Trainer
. - TrainingResult() - Constructor for class ai.djl.training.TrainingResult
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.CenterCrop
-
Applies the
Transform
to the givenNDArray
. - transform(NDArray) - Method in class ai.djl.modality.cv.transform.Crop
-
Applies the
Transform
to the givenNDArray
. - transform(NDArray) - Method in class ai.djl.modality.cv.transform.Normalize
-
Applies the
Transform
to the givenNDArray
. - transform(NDArray) - Method in class ai.djl.modality.cv.transform.RandomBrightness
-
Applies the
Transform
to the givenNDArray
. - transform(NDArray) - Method in class ai.djl.modality.cv.transform.RandomColorJitter
-
Applies the
Transform
to the givenNDArray
. - transform(NDArray) - Method in class ai.djl.modality.cv.transform.RandomFlipLeftRight
-
Applies the
Transform
to the givenNDArray
. - transform(NDArray) - Method in class ai.djl.modality.cv.transform.RandomFlipTopBottom
-
Applies the
Transform
to the givenNDArray
. - transform(NDArray) - Method in class ai.djl.modality.cv.transform.RandomHue
-
Applies the
Transform
to the givenNDArray
. - transform(NDArray) - Method in class ai.djl.modality.cv.transform.RandomResizedCrop
-
Applies the
Transform
to the givenNDArray
. - transform(NDArray) - Method in class ai.djl.modality.cv.transform.Resize
-
Applies the
Transform
to the givenNDArray
. - transform(NDArray) - Method in class ai.djl.modality.cv.transform.ToTensor
-
Applies the
Transform
to the givenNDArray
. - transform(NDArray) - Method in class ai.djl.training.util.MinMaxScaler
-
Transforms the data using the previous calculated minimum and maximum.
- transform(NDArray) - Method in interface ai.djl.translate.Transform
-
Applies the
Transform
to the givenNDArray
. - transform(NDList) - Method in class ai.djl.translate.Pipeline
-
Applies the transforms configured in this object on the input
NDList
. - Transform - Interface in ai.djl.translate
-
An interface to apply various transforms to the input.
- TransformerEncoderBlock - Class in ai.djl.nn.transformer
-
Self-Attention based transformer encoder block.
- TransformerEncoderBlock(int, int, int, float, Function<NDList, NDList>) - Constructor for class ai.djl.nn.transformer.TransformerEncoderBlock
-
Creates a transformer encoder block.
- transformi(NDArray) - Method in class ai.djl.training.util.MinMaxScaler
-
Transforms the data in-place using the previous calculated minimum and maximum.
- TranslateException - Exception in ai.djl.translate
-
Thrown to indicate that an error is raised during processing of the input or output.
- TranslateException(String) - Constructor for exception ai.djl.translate.TranslateException
-
Constructs a new exception with the specified detail message.
- TranslateException(String, Throwable) - Constructor for exception ai.djl.translate.TranslateException
-
Constructs a new exception with the specified detail message and cause.
- TranslateException(Throwable) - Constructor for exception ai.djl.translate.TranslateException
-
Constructs a new exception with the specified cause and a detail message of
(cause==null ? null : cause.toString())
which typically contains the class and detail message ofcause
. - Translator<I,O> - Interface in ai.djl.translate
-
The
Translator
interface provides model pre-processing and postprocessing functionality. - TranslatorContext - Interface in ai.djl.translate
-
The
TranslatorContext
interface provides a toolkit for pre-processing and postprocessing functionality. - TranslatorFactory - Interface in ai.djl.translate
-
A utility class creates
Translator
instances. - translators - Variable in class ai.djl.translate.DefaultTranslatorFactory
- transpose() - Method in interface ai.djl.ndarray.NDArray
-
Returns this
NDArray
with axes transposed. - transpose() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns this
NDArray
with axes transposed. - transpose(int...) - Method in interface ai.djl.ndarray.NDArray
-
Returns this
NDArray
with given axes transposed. - transpose(int...) - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns this
NDArray
with given axes transposed. - trunc() - Method in interface ai.djl.ndarray.NDArray
-
Returns the truncated value of this
NDArray
element-wise. - trunc() - Method in class ai.djl.ndarray.NDArrayAdapter
-
Returns the truncated value of this
NDArray
element-wise. - truncatedNormal(float, float, Shape, DataType) - Method in class ai.djl.ndarray.BaseNDManager
-
Draws random samples from a normal (Gaussian) distribution, discarding and re-drawing any samples that are more than two standard deviations from the mean.
- truncatedNormal(float, float, Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Draws random samples from a normal (Gaussian) distribution, discarding and re-drawing any samples that are more than two standard deviations from the mean.
- truncatedNormal(float, float, Shape, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
-
Draws random samples from a normal (Gaussian) distribution, discarding and re-drawing any samples that are more than two standard deviations from the mean.
- truncatedNormal(Shape) - Method in interface ai.djl.ndarray.NDManager
-
Draws random samples from a normal (Gaussian) distribution with mean 0 and standard deviation 1, discarding and re-drawing any samples that are more than two standard deviations from the mean.
- truncatedNormal(Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Draws random samples from a normal (Gaussian) distribution with mean 0 and standard deviation 1, discarding and re-drawing any samples that are more than two standard deviations from the mean.
- TruncatedNormalInitializer - Class in ai.djl.training.initializer
-
Naive implementation of a truncated normal initializer.
- TruncatedNormalInitializer() - Constructor for class ai.djl.training.initializer.TruncatedNormalInitializer
-
Creates an instance of
TruncatedNormalInitializer
with a default sigma of 0.01. - TruncatedNormalInitializer(float) - Constructor for class ai.djl.training.initializer.TruncatedNormalInitializer
-
Creates a TruncatedNormalInitializer initializer.
- truncation - Variable in class ai.djl.modality.nlp.translator.QATranslator
U
- uid - Variable in class ai.djl.ndarray.BaseNDManager
- uid - Variable in class ai.djl.ndarray.NDArrayAdapter
- UINT - ai.djl.ndarray.types.DataType.Format
- UINT8 - ai.djl.ndarray.types.DataType
- unbatchify(NDList) - Method in interface ai.djl.translate.Batchifier
-
Reverses the
batchify
operation. - unbatchify(NDList) - Method in class ai.djl.translate.PaddingStackBatchifier
-
Reverses the
batchify
operation. - unbatchify(NDList) - Method in class ai.djl.translate.StackBatchifier
-
Reverses the
batchify
operation. - undefined(Repository, String, String) - Static method in class ai.djl.repository.MRL
-
Creates a dataset
MRL
with specified application. - UNDEFINED - Static variable in class ai.djl.Application
- unembed(long) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Returns the item corresponding to the given index.
- unembed(long) - Method in interface ai.djl.nn.core.AbstractIndexedEmbedding
-
Returns the item corresponding to the given index.
- unembed(long) - Method in class ai.djl.nn.core.ConstantEmbedding
-
Returns the item corresponding to the given index.
- unembed(long) - Method in class ai.djl.nn.core.Embedding.DefaultEmbedding
-
Returns the item corresponding to the given index.
- unembed(long) - Method in class ai.djl.nn.core.Embedding.DefaultItem
-
Returns the item corresponding to the given index.
- unembedText(NDArray) - Method in class ai.djl.modality.nlp.embedding.ModelZooTextEmbedding
-
Returns the closest matching text for a given embedding.
- unembedText(NDArray) - Method in class ai.djl.modality.nlp.embedding.SimpleTextEmbedding
-
Returns the closest matching text for a given embedding.
- unembedText(NDArray) - Method in interface ai.djl.modality.nlp.embedding.TextEmbedding
-
Returns the closest matching text for a given embedding.
- unembedText(NDArray) - Method in class ai.djl.modality.nlp.embedding.TrainableTextEmbedding
-
Returns the closest matching text for a given embedding.
- unembedWord(NDArray) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Returns the closest matching word for the given index.
- unembedWord(NDArray) - Method in interface ai.djl.modality.nlp.embedding.WordEmbedding
-
Returns the closest matching word for the given index.
- UnicodeNormalizer - Class in ai.djl.modality.nlp.preprocess
-
Applies unicode normalization to input strings.
- UnicodeNormalizer() - Constructor for class ai.djl.modality.nlp.preprocess.UnicodeNormalizer
-
Default version of the Unicode Normalizer using NFKC normal form.
- UnicodeNormalizer(Normalizer.Form) - Constructor for class ai.djl.modality.nlp.preprocess.UnicodeNormalizer
-
Unicode normalizer with a configurable normal form.
- UNIFORM - ai.djl.training.initializer.XavierInitializer.RandomType
- UniformInitializer - Class in ai.djl.training.initializer
-
UniformInitializer
initializes weights with random values uniformly sampled from a given range. - UniformInitializer() - Constructor for class ai.djl.training.initializer.UniformInitializer
-
Creates an instance of
UniformInitializer
with a defaultscale
of 0.07. - UniformInitializer(float) - Constructor for class ai.djl.training.initializer.UniformInitializer
-
Initializes a uniform initializer.
- Unit - Enum in ai.djl.metric
-
An interface holds metric unit constants.
- UNKNOWN - ai.djl.ndarray.types.DataType.Format
- UNKNOWN - ai.djl.ndarray.types.DataType
- UNKNOWN - ai.djl.ndarray.types.LayoutType
- update(long, String) - Method in class ai.djl.training.util.ProgressBar
- update(Shape, int, long) - Static method in class ai.djl.ndarray.types.Shape
-
Returns a new shape altering the given dimension.
- update(HpSet, float) - Method in class ai.djl.training.hyperparameter.optimizer.BaseHpOptimizer
-
Updates the optimizer with the results of a hyperparameter test.
- update(HpSet, float) - Method in interface ai.djl.training.hyperparameter.optimizer.HpOptimizer
-
Updates the optimizer with the results of a hyperparameter test.
- update(String, NDArray[]) - Method in interface ai.djl.training.ParameterServer
-
Updates the parameter of a key from Parameter Server.
- update(String, NDArray[], NDArray[]) - Method in class ai.djl.training.LocalParameterServer
-
Updates the parameter of a key from Parameter Server.
- update(String, NDArray[], NDArray[]) - Method in interface ai.djl.training.ParameterServer
-
Updates the parameter of a key from Parameter Server.
- update(String, NDArray, NDArray) - Method in class ai.djl.training.optimizer.Adadelta
-
Updates the parameters according to the gradients.
- update(String, NDArray, NDArray) - Method in class ai.djl.training.optimizer.Adagrad
-
Updates the parameters according to the gradients.
- update(String, NDArray, NDArray) - Method in class ai.djl.training.optimizer.Adam
-
Updates the parameters according to the gradients.
- update(String, NDArray, NDArray) - Method in class ai.djl.training.optimizer.Nag
-
Updates the parameters according to the gradients.
- update(String, NDArray, NDArray) - Method in class ai.djl.training.optimizer.Optimizer
-
Updates the parameters according to the gradients.
- update(String, NDArray, NDArray) - Method in class ai.djl.training.optimizer.RmsProp
-
Updates the parameters according to the gradients.
- update(String, NDArray, NDArray) - Method in class ai.djl.training.optimizer.Sgd
-
Updates the parameters according to the gradients.
- updateAccumulator(String, NDList, NDList) - Method in class ai.djl.training.evaluator.AbstractAccuracy
-
Updates the evaluator with the given key based on a
NDList
of labels and predictions. - updateAccumulator(String, NDList, NDList) - Method in class ai.djl.training.evaluator.BoundingBoxError
-
Updates the evaluator with the given key based on a
NDList
of labels and predictions. - updateAccumulator(String, NDList, NDList) - Method in class ai.djl.training.evaluator.Evaluator
-
Updates the evaluator with the given key based on a
NDList
of labels and predictions. - updateAccumulator(String, NDList, NDList) - Method in class ai.djl.training.evaluator.IndexEvaluator
-
Updates the evaluator with the given key based on a
NDList
of labels and predictions. - updateAccumulator(String, NDList, NDList) - Method in class ai.djl.training.loss.AbstractCompositeLoss
-
Updates the evaluator with the given key based on a
NDList
of labels and predictions. - updateAccumulator(String, NDList, NDList) - Method in class ai.djl.training.loss.Loss
-
Updates the evaluator with the given key based on a
NDList
of labels and predictions. - updateAllParameters() - Method in class ai.djl.training.ParameterStore
-
Updates all the mirrored parameters.
- updateCount(String) - Method in class ai.djl.training.optimizer.Optimizer
- uri - Variable in class ai.djl.repository.AbstractRepository
- UrlTranslator<T> - Class in ai.djl.modality.cv.translator.wrapper
-
Built-in
Translator
that provides image pre-processing from URL. - UrlTranslator(Translator<Image, T>) - Constructor for class ai.djl.modality.cv.translator.wrapper.UrlTranslator
-
Creates a
UrlTranslator
instance. - useDefault - Variable in class ai.djl.nn.core.Embedding.BaseBuilder
V
- validate() - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
- validate() - Method in class ai.djl.modality.cv.translator.BaseImageTranslator.ClassificationBuilder
- validate() - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Validates that the required arguments are set.
- validate() - Method in class ai.djl.nn.convolutional.Deconvolution.DeconvolutionBuilder
-
Validates that the required arguments are set.
- VALIDATE_EPOCH - Static variable in class ai.djl.training.listener.EvaluatorTrainingListener
- validateBatch(Trainer, Batch) - Static method in class ai.djl.training.EasyTrain
-
Validates the given batch of data.
- validateBufferSize(Buffer, DataType, int) - Static method in class ai.djl.ndarray.BaseNDManager
-
Checks if the input buffer size is match expected data type.
- validateLayout(LayoutType[], LayoutType[]) - Static method in interface ai.djl.nn.Block
-
Validates that actual layout matches the expected layout.
- VALIDATION - ai.djl.training.dataset.Dataset.Usage
- valueOf(String) - Static method in enum ai.djl.metric.Unit
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum ai.djl.modality.cv.Image.Flag
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum ai.djl.modality.cv.Image.Interpolation
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum ai.djl.modality.cv.translator.YoloV5Translator.YoloOutputType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum ai.djl.ndarray.types.DataType.Format
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum ai.djl.ndarray.types.DataType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum ai.djl.ndarray.types.LayoutType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum ai.djl.ndarray.types.SparseFormat
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum ai.djl.nn.Parameter.Type
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum ai.djl.nn.recurrent.RNN.Activation
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum ai.djl.training.dataset.Dataset.Usage
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum ai.djl.training.initializer.XavierInitializer.FactorType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum ai.djl.training.initializer.XavierInitializer.RandomType
-
Returns the enum constant of this type with the specified name.
- valueOf(String) - Static method in enum ai.djl.training.tracker.WarmUpTracker.Mode
-
Returns the enum constant of this type with the specified name.
- values() - Static method in enum ai.djl.metric.Unit
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum ai.djl.modality.cv.Image.Flag
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum ai.djl.modality.cv.Image.Interpolation
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum ai.djl.modality.cv.translator.YoloV5Translator.YoloOutputType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum ai.djl.ndarray.types.DataType.Format
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum ai.djl.ndarray.types.DataType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum ai.djl.ndarray.types.LayoutType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum ai.djl.ndarray.types.SparseFormat
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum ai.djl.nn.Parameter.Type
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum ai.djl.nn.recurrent.RNN.Activation
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum ai.djl.training.dataset.Dataset.Usage
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum ai.djl.training.initializer.XavierInitializer.FactorType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum ai.djl.training.initializer.XavierInitializer.RandomType
-
Returns an array containing the constants of this enum type, in the order they are declared.
- values() - Static method in enum ai.djl.training.tracker.WarmUpTracker.Mode
-
Returns an array containing the constants of this enum type, in the order they are declared.
- version - Variable in class ai.djl.nn.AbstractBaseBlock
-
The model version of this block, used for checking if parameters are still valid during parameter loading.
- Version - Class in ai.djl.repository
- Version(String) - Constructor for class ai.djl.repository.Version
-
Constructs a version with the version string.
- VersionComparator() - Constructor for class ai.djl.repository.Artifact.VersionComparator
- VersionRange - Class in ai.djl.repository
- vocab - Variable in class ai.djl.modality.nlp.translator.QATranslator
- Vocabulary - Interface in ai.djl.modality.nlp
-
Vocabulary
is a collection of tokens. - vocabularyContains(String) - Method in class ai.djl.modality.nlp.embedding.TrainableWordEmbedding
-
Returns whether an embedding exists for a word.
- vocabularyContains(String) - Method in interface ai.djl.modality.nlp.embedding.WordEmbedding
-
Returns whether an embedding exists for a word.
W
- waitAll() - Method in interface ai.djl.ndarray.LazyNDArray
-
Runs all NDArrays and sleeps until their values are fully computed.
- waitToRead() - Method in interface ai.djl.ndarray.LazyNDArray
-
Runs the current NDArray and sleeps until the value is ready to read.
- waitToWrite() - Method in interface ai.djl.ndarray.LazyNDArray
-
Runs the current NDArray and sleeps until the value is ready to write.
- warmUp() - Static method in interface ai.djl.training.tracker.Tracker
-
Returns a new instance of
WarmUpTracker.Builder
that can build anWarmUpTracker
. - WarmUpTracker - Class in ai.djl.training.tracker
-
A
WarmUpTracker
applies a simple warm-up before executing a mainTracker
. - WarmUpTracker.Builder - Class in ai.djl.training.tracker
-
The Builder to construct a
WarmUpTracker
. - WarmUpTracker.Mode - Enum in ai.djl.training.tracker
-
An enum that enumerates the types of warm-up modes for a
WarmUpTracker
. - weight - Variable in class ai.djl.nn.convolutional.Convolution
- weight - Variable in class ai.djl.nn.convolutional.Deconvolution
- WEIGHT - ai.djl.nn.Parameter.Type
- where(NDArray, NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
- width - Variable in class ai.djl.modality.cv.translator.BaseImageTranslator.BaseBuilder
- WIDTH - ai.djl.ndarray.types.LayoutType
- withDefaultState(Map<String, Map<Device, NDArray>>, String, Device, Function<String, NDArray>) - Method in class ai.djl.training.optimizer.Optimizer
- WORD_EMBEDDING - Static variable in interface ai.djl.Application.NLP
-
An application that takes a word and returns a feature vector that represents the word.
- WORD_RECOGNITION - Static variable in interface ai.djl.Application.CV
-
An application that accepts an image of a single word and returns the
String
text of the word. - WordEmbedding - Interface in ai.djl.modality.nlp.embedding
-
A class to manage 1-D
NDArray
representations of words. - WordpieceTokenizer - Class in ai.djl.modality.nlp.bert
-
WordpieceTokenizer tokenizes a piece of text into its word pieces.
- WordpieceTokenizer(Vocabulary, String, int) - Constructor for class ai.djl.modality.nlp.bert.WordpieceTokenizer
-
Creates an instance of
WordpieceTokenizer
. - wrap(byte[]) - Static method in interface ai.djl.ndarray.BytesSupplier
-
Wraps a byte array into a {code BytesSupplier}.
- wrap(String) - Static method in interface ai.djl.ndarray.BytesSupplier
-
Wraps a string into a {code BytesSupplier}.
- wrapAsJson(Object) - Static method in interface ai.djl.ndarray.BytesSupplier
-
Wraps an object as json into a {code BytesSupplier}.
X
- XavierInitializer - Class in ai.djl.training.initializer
-
XavierInitializer
is anInitializer
that performs "Xavier" initialization for parameters. - XavierInitializer() - Constructor for class ai.djl.training.initializer.XavierInitializer
-
Creates a new instance of
XavierInitializer
. - XavierInitializer(XavierInitializer.RandomType, XavierInitializer.FactorType, float) - Constructor for class ai.djl.training.initializer.XavierInitializer
-
Initializes a Xavier initializer.
- XavierInitializer.FactorType - Enum in ai.djl.training.initializer
-
Enum for different types of factor type.
- XavierInitializer.RandomType - Enum in ai.djl.training.initializer
-
Enum for different types of random distributions.
Y
- YoloTranslator - Class in ai.djl.modality.cv.translator
-
A translator for yolo models.
- YoloTranslator(YoloTranslator.Builder) - Constructor for class ai.djl.modality.cv.translator.YoloTranslator
-
Constructs an ImageTranslator with the provided builder.
- YoloTranslator.Builder - Class in ai.djl.modality.cv.translator
-
The builder for
YoloTranslator
. - YoloTranslatorFactory - Class in ai.djl.modality.cv.translator
-
An
TranslatorFactory
that creates aYoloTranslator
instance. - YoloTranslatorFactory() - Constructor for class ai.djl.modality.cv.translator.YoloTranslatorFactory
- YoloV5Translator - Class in ai.djl.modality.cv.translator
-
A translator for YoloV5 models.
- YoloV5Translator(YoloV5Translator.Builder) - Constructor for class ai.djl.modality.cv.translator.YoloV5Translator
-
Constructs an ImageTranslator with the provided builder.
- YoloV5Translator.Builder - Class in ai.djl.modality.cv.translator
-
The builder for
YoloV5Translator
. - YoloV5Translator.YoloOutputType - Enum in ai.djl.modality.cv.translator
-
A enum represents the Yolo output type.
- YoloV5TranslatorFactory - Class in ai.djl.modality.cv.translator
-
An
TranslatorFactory
that creates aYoloV5Translator
instance. - YoloV5TranslatorFactory() - Constructor for class ai.djl.modality.cv.translator.YoloV5TranslatorFactory
Z
- zeros(Shape) - Method in interface ai.djl.ndarray.NDManager
- zeros(Shape, DataType) - Method in class ai.djl.ndarray.BaseNDManager
- zeros(Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
- zeros(Shape, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
- ZEROS - Static variable in interface ai.djl.training.initializer.Initializer
- zerosLike() - Method in interface ai.djl.ndarray.NDArray
- ZooModel<I,O> - Class in ai.djl.repository.zoo
- ZooModel(Model, Translator<I, O>) - Constructor for class ai.djl.repository.zoo.ZooModel
-
Constructs a
ZooModel
given the model and translator. - ZooProvider - Interface in ai.djl.repository.zoo
-
The
ZooProvider
is a service provider that enablesServiceLoader
to locate and load at the run time. - ZooProviderNotFoundException - Exception in ai.djl.repository.zoo
-
Runtime exception thrown when a provider of the required type cannot be found.
- ZooProviderNotFoundException(String) - Constructor for exception ai.djl.repository.zoo.ZooProviderNotFoundException
-
Constructs a new exception with the specified detail message.
- ZooProviderNotFoundException(String, Throwable) - Constructor for exception ai.djl.repository.zoo.ZooProviderNotFoundException
-
Constructs a new exception with the specified detail message and cause.
- ZooProviderNotFoundException(Throwable) - Constructor for exception ai.djl.repository.zoo.ZooProviderNotFoundException
-
Constructs a new exception with the specified cause and a detail message of
(cause==null ? null : cause.toString())
(which typically contains the class and detail message ofcause
).
All Classes All Packages