- abs() - Method in interface ai.djl.ndarray.NDArray
-
Returns the absolute value of this NDArray
element-wise.
- AbstractBlock - Class in ai.djl.nn
-
AbstractBlock
is an abstract implementation of
Block
.
- AbstractBlock() - Constructor for class ai.djl.nn.AbstractBlock
-
- Accuracy - Class in ai.djl.training.metrics
-
- Accuracy(String, int, int) - Constructor for class ai.djl.training.metrics.Accuracy
-
Creates an accuracy metric.
- Accuracy() - Constructor for class ai.djl.training.metrics.Accuracy
-
Creates an accuracy metric that computes accuracy across axis 1 along the 0th index.
- Accuracy(String, int) - Constructor for class ai.djl.training.metrics.Accuracy
-
Creates an accuracy metric that computes accuracy across axis 1 along given index.
- acos() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse trigonometric cosine of this NDArray
element-wise.
- acosh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse hyperbolic cosine of this NDArray
element-wise.
- Activation - Class in ai.djl.nn
-
Utility class that provides activation functions and blocks.
- activation - Variable in class ai.djl.nn.recurrent.RecurrentCell.BaseBuilder
-
- Adam - Class in ai.djl.training.optimizer
-
Adam
is a generalization of the AdaGrad
Optimizer
.
- Adam(Adam.Builder) - Constructor for class ai.djl.training.optimizer.Adam
-
Creates a new instance of Adam
optimizer.
- adam() - Static method in class ai.djl.training.optimizer.Optimizer
-
- Adam.Builder - Class in ai.djl.training.optimizer
-
The Builder to construct an
Adam
object.
- add(Number) - Method in interface ai.djl.ndarray.NDArray
-
Adds a number to this NDArray
element-wise.
- add(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Adds other NDArray
s to this NDArray
element-wise.
- add(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Adds a number to the
NDArray
element-wise.
- add(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Adds a
NDArray
to a number element-wise.
- add(NDArray...) - Static method in class ai.djl.ndarray.NDArrays
-
- add(Block) - Method in class ai.djl.nn.ParallelBlock
-
Adds the given
Block
to the block, which is one parallel branch.
- add(Function<NDList, NDList>) - Method in class ai.djl.nn.ParallelBlock
-
Adds a
LambdaBlock
, that applies the given function, to the list of parallel
branches.
- add(Block) - Method in class ai.djl.nn.SequentialBlock
-
Adds the given
Block
to the block to be executed in order.
- add(Function<NDList, NDList>) - Method in class ai.djl.nn.SequentialBlock
-
Adds a
LambdaBlock
that applies the given function to the sequence of blocks.
- add(Transform) - Method in class ai.djl.translate.Pipeline
-
Adds the given
Transform
to the list of transforms to be applied on the input when
the
transform
method is called on this object.
- add(int, Transform) - Method in class ai.djl.translate.Pipeline
-
Adds the given
Transform
to the list of transforms to be applied on the
NDArray
at the given index in the input
NDList
.
- add(String, Transform) - Method in class ai.djl.translate.Pipeline
-
Adds the given
Transform
to the list of transforms to be applied on the
NDArray
with the given key as name in the input
NDList
.
- addAll(NDList) - Method in class ai.djl.ndarray.NDList
-
Appends all of the NDArrays in the specified NDList to the end of this NDList, in the order
that they are returned by the specified NDList's iterator.
- addAll(Shape) - Method in class ai.djl.ndarray.types.Shape
-
Joins a this shape with specified other
shape.
- addAll(Block...) - Method in class ai.djl.nn.ParallelBlock
-
Adds an array of blocks, each of which is a parallel branch.
- addAll(Collection<Block>) - Method in class ai.djl.nn.ParallelBlock
-
Adds a Collection
of blocks, each of which is a parallel branch.
- addAll(Block...) - Method in class ai.djl.nn.SequentialBlock
-
Adds an array of blocks to be executed in sequence, in order.
- addAll(Collection<Block>) - Method in class ai.djl.nn.SequentialBlock
-
Adds a Collection
of blocks to be executed in sequence, in order.
- addBooleanIndex(NDArray) - Method in class ai.djl.ndarray.index.NDIndex
-
Updates the NDIndex by appending a boolean NDArray.
- addColumnVector(NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Adds a column vector (copy).
- addCorrectInstances(long) - Method in class ai.djl.training.metrics.Accuracy
-
Add a number to the correct instances.
- addi(Number) - Method in interface ai.djl.ndarray.NDArray
-
Adds a number to this NDArray
element-wise in place.
- addi(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Adds other NDArray
s to this NDArray
element-wise in place.
- addi(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Adds a number to the
NDArray
element-wise in place.
- addi(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Adds a
NDArray
to a number element-wise in place.
- addi(NDArray...) - Static method in class ai.djl.ndarray.NDArrays
-
Adds all of the
NDArray
s together element-wise in place.
- addiColumnVector(NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Adds a column vector in place.
- addIndices(String) - Method in class ai.djl.ndarray.index.NDIndex
-
Updates the NDIndex by appending indices to the array.
- addIndices(long...) - Method in class ai.djl.ndarray.index.NDIndex
-
Updates the NDIndex by appending indices as specified values on the NDArray.
- addiRowVector(NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Adds a row vector in place.
- addMetric(Metric) - Method in class ai.djl.metric.Metrics
-
Adds a
Metric
to the collection.
- addMetric(String, Number) - Method in class ai.djl.metric.Metrics
-
Adds a Metric
given the metric's name
and value
.
- addMetric(String, Number, String) - Method in class ai.djl.metric.Metrics
-
Adds a Metric
given the metric's name
, value
, and unit
.
- addRowVector(NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Adds a row vector (copy).
- addSliceDim(long, long) - Method in class ai.djl.ndarray.index.NDIndex
-
Appends a new index to slice the dimension and returns a range of values.
- addSliceDim(long, long, long) - Method in class ai.djl.ndarray.index.NDIndex
-
Appends a new index to slice the dimension and returns a range of values.
- addTotalInstances(long) - Method in class ai.djl.training.metrics.Accuracy
-
Add a number to the total instances.
- addTrainingMetric(TrainingMetric) - Method in class ai.djl.training.DefaultTrainingConfig
-
- ai.djl - package ai.djl
-
Contains top level, framework-agnostic classes for both inference and training.
- ai.djl.engine - package ai.djl.engine
-
Contains classes responsible for loading a deep learning framework.
- ai.djl.inference - package ai.djl.inference
-
Contains classes to implement inference tasks.
- ai.djl.metric - package ai.djl.metric
-
Contains classes to collect metrics information.
- ai.djl.modality - package ai.djl.modality
-
Contains utility classes for each of the predefined modalities.
- ai.djl.modality.cv - package ai.djl.modality.cv
-
Contains utility classes for computer vision tasks and image processing.
- ai.djl.modality.cv.transform - package ai.djl.modality.cv.transform
-
- ai.djl.modality.cv.util - package ai.djl.modality.cv.util
-
Contains utility classes for image manipulation.
- ai.djl.ndarray - package ai.djl.ndarray
-
Contains classes and interfaces that define an n-dimensional array.
- ai.djl.ndarray.index - package ai.djl.ndarray.index
-
Contains classes that help access
NDArray
's indices.
- ai.djl.ndarray.types - package ai.djl.ndarray.types
-
Contains classes that define n-dimensional array data types.
- ai.djl.nn - package ai.djl.nn
-
Contains classes to construct neural networks.
- ai.djl.nn.convolutional - package ai.djl.nn.convolutional
-
Contains classes that define convolutional operations extending
Convolution
.
- ai.djl.nn.core - package ai.djl.nn.core
-
Contains classes that define simple neural network operations.
- ai.djl.nn.norm - package ai.djl.nn.norm
-
Contains classes that define normalizing neural network operations.
- ai.djl.nn.pooling - package ai.djl.nn.pooling
-
Contains pooling neural network operations in
Pool
and helpers for it.
- ai.djl.nn.recurrent - package ai.djl.nn.recurrent
-
Contains classes for recurrent neural network operations.
- ai.djl.training - package ai.djl.training
-
Contains classes and implementations to train a neural network.
- ai.djl.training.dataset - package ai.djl.training.dataset
-
Contains classes to download and prepare training and testing data.
- ai.djl.training.initializer - package ai.djl.training.initializer
-
- ai.djl.training.loss - package ai.djl.training.loss
-
Contains classes for measuring the
Loss
of a model.
- ai.djl.training.metrics - package ai.djl.training.metrics
-
Contains classes for monitoring the performance of models.
- ai.djl.training.optimizer - package ai.djl.training.optimizer
-
Contains classes for optimizing a neural network
Block
.
- ai.djl.training.optimizer.learningrate - package ai.djl.training.optimizer.learningrate
-
Contains classes for having a gradually changing learning rate.
- ai.djl.training.util - package ai.djl.training.util
-
Contains utilities to use during training.
- ai.djl.translate - package ai.djl.translate
-
Contains classes and interfaces that translate between java objects and NDArrays.
- all() - Method in interface ai.djl.ndarray.NDArray
-
Returns true
if all elements within this NDArray
are non-zero or true
.
- allClose(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns true
if two NDArray
s are element-wise equal within a tolerance.
- allClose(NDArray, double, double, boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns true
if two NDArray
are element-wise equal within a tolerance.
- allClose(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns
true
if two
NDArray
are element-wise equal within a tolerance.
- allClose(NDArray, NDArray, double, double, boolean) - Static method in class ai.djl.ndarray.NDArrays
-
Returns
true
if two
NDArray
are element-wise equal within a tolerance.
- allocateDirect(int) - Method in interface ai.djl.ndarray.NDManager
-
Allocates a new engine specific direct byte buffer.
- any() - Method in interface ai.djl.ndarray.NDArray
-
Returns true
if any of the elements within this NDArray
are non-zero or
true
.
- arange(Number) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values starting from 0.
- arange(Number, Number) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval with step 1.
- arange(Number, Number, Number) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval.
- arange(Number, Number, Number, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced values within a given interval.
- argMax() - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices of the maximum values into the flattened NDArray
.
- argMax(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices of the maximum values along given axis.
- argMin() - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices of the minimum values into the flattened NDArray
.
- argMin(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices of the minimum values along given axis.
- argSort() - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices that would sort this NDArray
.
- argSort(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices that would sort this NDArray
given the axis.
- argSort(int, boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the indices that would sort this NDArray
given the axis.
- ArrayDataset - Class in ai.djl.training.dataset
-
- ArrayDataset(RandomAccessDataset.BaseBuilder<?>) - Constructor for class ai.djl.training.dataset.ArrayDataset
-
- ArrayDataset.Builder - Class in ai.djl.training.dataset
-
- asDataType(ByteBuffer) - Method in enum ai.djl.ndarray.types.DataType
-
Converts a ByteBuffer
to a buffer for this data type.
- asin() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse trigonometric sine of this NDArray
element-wise.
- asInDevice(Device, boolean) - Method in interface ai.djl.ndarray.NDArray
-
Moves this
NDArray
to a different
Device
.
- asInDevice(Device, boolean) - Method in class ai.djl.ndarray.NDList
-
Converts all the
NDArray
in
NDList
to a different
Device
.
- asinh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse hyperbolic sine of this NDArray
element-wise.
- asMatrix() - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
into a 2-D
Matrix
.
- asType(DataType, boolean) - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to a different
DataType
.
- atan() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse trigonometric tangent of this NDArray
element-wise.
- atanh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the inverse hyperbolic tangent of this NDArray
element-wise.
- attach(NDManager) - Method in interface ai.djl.ndarray.NDArray
-
Attaches this
NDArray
to the specified
NDManager
.
- attach(NDManager) - Method in class ai.djl.ndarray.NDList
-
Attaches each ndarray in this list to the specified manager.
- attach(String, AutoCloseable) - Method in interface ai.djl.ndarray.NDManager
-
Attaches a
NDArray
or
NDManager
to this
NDManager
.
- attachGradient() - Method in interface ai.djl.ndarray.NDArray
-
- avgPool(NDArray, Shape, Shape, Shape, PoolingConvention, boolean) - Static method in class ai.djl.nn.pooling.Pool
-
Performs Avg Pooling on the input.
- avgPool(NDArray, Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Performs Avg Pooling on the input.
- axis - Variable in class ai.djl.training.metrics.Accuracy
-
- gelu(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies GELU(Gaussian Error Linear Unit) activation on the input
NDArray
.
- gelu(NDList) - Static method in class ai.djl.nn.Activation
-
Applies GELU(Gaussian Error Linear Unit) activation on the input singleton
NDList
.
- geluBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies the
GELU
activation function
in its forward function.
- generateAnchorBoxes(NDArray) - Method in class ai.djl.modality.cv.MultiBoxPrior
-
Generates the anchorBoxes array in the input's manager and device.
- get(String) - Method in class ai.djl.modality.Classifications
-
Returns the result for a particular class name.
- get(int) - Method in class ai.djl.ndarray.index.NDIndex
-
Returns the index affecting the given dimension.
- get(NDIndex) - Method in interface ai.djl.ndarray.NDArray
-
Returns a partial NDArray
.
- get(String) - Method in interface ai.djl.ndarray.NDArray
-
Returns a partial NDArray
.
- get(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a partial NDArray
.
- get(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns a partial NDArray
.
- get(int) - Method in class ai.djl.ndarray.types.Shape
-
Returns the shape in the given dimension.
- get(NDManager, long) - Method in class ai.djl.training.dataset.ArrayDataset
-
Gets the
Record
for the given index from the dataset.
- get(NDManager, long) - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Gets the
Record
for the given index from the dataset.
- getArray() - Method in class ai.djl.nn.Parameter
-
Gets the values of this
Parameter
as an
NDArray
.
- getArtifact(String, Function<InputStream, T>) - Method in interface ai.djl.Model
-
Attempts to load the artifact using the given function and cache it if the specified artifact
is not already cached.
- getArtifact(String) - Method in interface ai.djl.Model
-
Finds an artifact resource with a given name in the model.
- getArtifactAsStream(String) - Method in interface ai.djl.Model
-
Finds an artifact resource with a given name in the model.
- getArtifactNames() - Method in interface ai.djl.Model
-
Returns the artifact names associated with the model.
- getAsFullSlice(Shape) - Method in class ai.djl.ndarray.index.NDIndex
-
Returns this index as a full slice if it can be represented as one.
- getAttachment(String) - Method in interface ai.djl.translate.TranslatorContext
-
Returns value of attached key-value pair to context.
- getBatchifier() - Method in interface ai.djl.translate.Translator
-
- getBatchSize() - Method in class ai.djl.training.DefaultTrainingConfig
-
Gets the batch size that must be used during training.
- getBatchSize() - Method in interface ai.djl.training.TrainingConfig
-
Gets the batch size that must be used during training.
- getBlock() - Method in interface ai.djl.Model
-
Gets the block from the Model.
- getBoolean(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a boolean element from this NDArray
.
- getBoundingBox() - Method in class ai.djl.modality.cv.DetectedObjects.DetectedObject
-
- getBounds() - Method in interface ai.djl.modality.cv.BoundingBox
-
Returns the bounding Rectangle
of this BoundingBox
.
- getBounds() - Method in class ai.djl.modality.cv.Rectangle
-
Returns the bounding Rectangle
of this BoundingBox
.
- getByte(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns an byte element from this NDArray
.
- getChildren() - Method in interface ai.djl.nn.Block
-
Returns a list of all the children of the block.
- getChildren() - Method in class ai.djl.nn.ParallelBlock
-
Returns a list of all the children of the block.
- getChildren() - Method in class ai.djl.nn.ParameterBlock
-
Returns a list of all the children of the block.
- getChildren() - Method in class ai.djl.nn.SequentialBlock
-
Returns a list of all the children of the block.
- getClassName() - Method in class ai.djl.modality.Classifications.Classification
-
Returns the class name.
- getColumn(long) - Method in interface ai.djl.ndarray.Matrix
-
Returns the specified column.
- getColumns(int...) - Method in interface ai.djl.ndarray.Matrix
-
Returns a new NDArray comprised of the specified columns only.
- getConfidence() - Method in class ai.djl.modality.cv.Joints.Joint
-
Returns the confidence probability for the joint.
- getData() - Method in class ai.djl.training.dataset.Batch
-
Gets the data of this Batch
.
- getData(NDManager) - Method in interface ai.djl.training.dataset.Dataset
-
Fetches an iterator that can iterate through the
Dataset
.
- getData(NDManager) - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Fetches an iterator that can iterate through the
Dataset
.
- getData() - Method in class ai.djl.training.dataset.Record
-
Gets the data of this Record
.
- getDataType() - Method in interface ai.djl.Model
-
Returns the standard data type used within the model.
- getDataType() - Method in interface ai.djl.ndarray.NDArray
-
- getDataType() - Method in class ai.djl.ndarray.types.DataDesc
-
- getDevice() - Method in interface ai.djl.ndarray.NDArray
-
Returns the
Device
of this
NDArray
.
- getDevice() - Method in interface ai.djl.ndarray.NDManager
-
Returns the default
Device
of this
NDManager
.
- getDeviceId() - Method in class ai.djl.Device
-
Returns the deviceId
of the Device.
- getDevices(int) - Static method in class ai.djl.Device
-
Returns an array of devices given the maximum number of GPUs to use.
- getDevices() - Method in class ai.djl.training.DefaultTrainingConfig
-
Gets the
Device
that are available for computation.
- getDevices() - Method in interface ai.djl.training.TrainingConfig
-
Gets the
Device
that are available for computation.
- getDeviceType() - Method in class ai.djl.Device
-
Returns the device type of the Device.
- getDirectParameters() - Method in interface ai.djl.nn.Block
-
Returns a list of all the direct parameters of the block.
- getDirectParameters() - Method in class ai.djl.nn.convolutional.Convolution
-
Returns a list of all the direct parameters of the block.
- getDirectParameters() - Method in class ai.djl.nn.core.Embedding
-
Returns a list of all the direct parameters of the block.
- getDirectParameters() - Method in class ai.djl.nn.core.Linear
-
Returns a list of all the direct parameters of the block.
- getDirectParameters() - Method in class ai.djl.nn.core.Prelu
-
Returns a list of all the direct parameters of the block.
- getDirectParameters() - Method in class ai.djl.nn.LambdaBlock
-
Returns a list of all the direct parameters of the block.
- getDirectParameters() - Method in class ai.djl.nn.norm.BatchNorm
-
Returns a list of all the direct parameters of the block.
- getDirectParameters() - Method in class ai.djl.nn.norm.Dropout
-
Returns a list of all the direct parameters of the block.
- getDirectParameters() - Method in class ai.djl.nn.ParallelBlock
-
Returns a list of all the direct parameters of the block.
- getDirectParameters() - Method in class ai.djl.nn.recurrent.GRU
-
Returns a list of all the direct parameters of the block.
- getDirectParameters() - Method in class ai.djl.nn.recurrent.LSTM
-
Returns a list of all the direct parameters of the block.
- getDirectParameters() - Method in class ai.djl.nn.recurrent.RNN
-
Returns a list of all the direct parameters of the block.
- getDirectParameters() - Method in class ai.djl.nn.SequentialBlock
-
Returns a list of all the direct parameters of the block.
- getDouble(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a double element from this NDArray
.
- getEncoded() - Method in class ai.djl.ndarray.types.Shape
-
Gets the byte array representation of this Shape
for serialization.
- getEngine(String) - Static method in class ai.djl.engine.Engine
-
Returns the Engine
with the given name.
- getEngine() - Method in interface ai.djl.engine.EngineProvider
-
Returns the instance of the
Engine
class EngineProvider should bind to.
- getEngineName() - Method in class ai.djl.engine.Engine
-
Returns the name of the Engine.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Conv1D
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Conv2D
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Conv3D
-
Returns the expected layout of the input.
- getExpectedLayout() - Method in class ai.djl.nn.convolutional.Convolution
-
Returns the expected layout of the input.
- getFloat(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a float element from this NDArray
.
- getFormat() - Method in enum ai.djl.ndarray.types.DataType
-
Returns the format of the data type.
- getGpuCount() - Method in class ai.djl.engine.Engine
-
Returns the number of GPUs available in the system.
- getGpuMemory(Device) - Method in class ai.djl.engine.Engine
-
Returns the MemoryUsage
of the specified GPU device.
- getGradient() - Method in interface ai.djl.ndarray.NDArray
-
Returns the gradient NDArray
attached to this NDArray
.
- getHeight() - Method in class ai.djl.modality.cv.Rectangle
-
Returns the height of the Rectangle.
- getId() - Method in class ai.djl.nn.Parameter
-
Gets the ID of this Parameter
.
- getIndex() - Method in class ai.djl.ndarray.index.NDIndexBooleans
-
Returns the mask binary NDArray
.
- getIndex() - Method in class ai.djl.ndarray.index.NDIndexFixed
-
Returns the dimension of the index.
- getIndices() - Method in class ai.djl.ndarray.index.NDIndex
-
Returns the indices.
- getInitializer() - Method in enum ai.djl.nn.ParameterType
-
- getInitializer() - Method in class ai.djl.training.DefaultTrainingConfig
-
Gets the
Initializer
to initialize the parameters of the model.
- getInitializer() - Method in interface ai.djl.training.TrainingConfig
-
Gets the
Initializer
to initialize the parameters of the model.
- getInstance() - Static method in class ai.djl.engine.Engine
-
Returns the default Engine.
- getInt(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns an int element from this NDArray
.
- getJoints() - Method in class ai.djl.modality.cv.Joints
-
Gets the joints for the image.
- getLabels() - Method in class ai.djl.training.dataset.Batch
-
Gets the labels corresponding to the data of this Batch
.
- getLabels() - Method in class ai.djl.training.dataset.Record
-
Gets the labels that correspond to the data of this Record
.
- getLayout() - Method in class ai.djl.ndarray.types.Shape
-
Returns the layout type for each axis in this shape.
- getLayoutType(int) - Method in class ai.djl.ndarray.types.Shape
-
Returns the layout type in the given dimension.
- getLeadingOnes() - Method in class ai.djl.ndarray.types.Shape
-
Returns the number of leading ones in the array shape.
- getLong(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a long element from this NDArray
.
- getLoss(NDList, NDList) - Method in class ai.djl.training.loss.CompositeLoss
-
Calculates loss between the label and prediction.
- getLoss(NDList, NDList) - Method in class ai.djl.training.loss.HingeLoss
-
Calculates loss between the label and prediction.
- getLoss(NDList, NDList) - Method in class ai.djl.training.loss.L1Loss
-
Calculates loss between the label and prediction.
- getLoss(NDList, NDList) - Method in class ai.djl.training.loss.L2Loss
-
Calculates loss between the label and prediction.
- getLoss(NDList, NDList) - Method in class ai.djl.training.loss.Loss
-
Calculates loss between the label and prediction.
- getLoss(NDList, NDList) - Method in class ai.djl.training.loss.SigmoidBinaryCrossEntropyLoss
-
Calculates loss between the label and prediction.
- getLoss(NDList, NDList) - Method in class ai.djl.training.loss.SingleShotDetectionLoss
-
Calculate loss between label and prediction.
- getLoss(NDList, NDList) - Method in class ai.djl.training.loss.SoftmaxCrossEntropyLoss
-
Calculates loss between the label and prediction.
- getLoss() - Method in interface ai.djl.training.Trainer
-
Gets the training
Loss
function of the trainer.
- getLossFunction() - Method in class ai.djl.training.DefaultTrainingConfig
-
Gets the
Loss
function to compute the loss against.
- getLossFunction() - Method in interface ai.djl.training.TrainingConfig
-
Gets the
Loss
function to compute the loss against.
- getManager() - Method in interface ai.djl.ndarray.NDArray
-
Returns the
NDManager
used to create this
NDArray
.
- getManager() - Method in class ai.djl.training.dataset.Batch
-
Gets the
NDManager
that is attached to this
Batch
.
- getManager() - Method in interface ai.djl.training.Trainer
-
- getMax() - Method in class ai.djl.ndarray.index.NDIndexFullSlice
-
Returns the slice max for each axis.
- getMax() - Method in class ai.djl.ndarray.index.NDIndexSlice
-
Returns the end of the range.
- getMetric(String) - Method in class ai.djl.metric.Metrics
-
Returns all
Metric
s with the specified metric name.
- getMetricName() - Method in class ai.djl.metric.Metric
-
Returns the name of the Metric
.
- getMetrics() - Method in interface ai.djl.translate.TranslatorContext
-
Returns the Metric tool to do benchmark.
- getMin() - Method in class ai.djl.ndarray.index.NDIndexFullSlice
-
Returns the slice min for each axis.
- getMin() - Method in class ai.djl.ndarray.index.NDIndexSlice
-
Returns the start of the range.
- getModel() - Method in interface ai.djl.training.Trainer
-
Returns the model used to create this trainer.
- getModel() - Method in interface ai.djl.translate.TranslatorContext
-
Returns the
Model
object to understand the input/output.
- getName() - Method in interface ai.djl.Model
-
Gets the model name.
- getName() - Method in interface ai.djl.ndarray.NDArray
-
Returns the name of this NDArray
.
- getName() - Method in class ai.djl.ndarray.types.DataDesc
-
- getName() - Method in class ai.djl.nn.Parameter
-
Gets the name of this Parameter
.
- getName() - Method in class ai.djl.training.metrics.TrainingMetric
-
Gets the name of this TrainingMetric
.
- getNDArrayInternal() - Method in interface ai.djl.ndarray.NDArray
-
Returns an internal representative of Native NDArray
.
- getNDManager() - Method in interface ai.djl.Model
-
- getNDManager() - Method in interface ai.djl.translate.TranslatorContext
-
- getNewLearningRate(int) - Method in class ai.djl.training.optimizer.learningrate.FactorTracker
-
Fetches the value of the learning rate after the given number of steps/updates.
- getNewLearningRate(int) - Method in class ai.djl.training.optimizer.learningrate.LearningRateTracker
-
Fetches the value of the learning rate after the given number of steps/updates.
- getNewLearningRate(int) - Method in class ai.djl.training.optimizer.learningrate.MultiFactorTracker
-
Fetches the value of the learning rate after the given number of steps/updates.
- getNumberOfObjects() - Method in class ai.djl.modality.cv.DetectedObjects
-
Returns the number of objects found in an image.
- getNumOfBytes() - Method in enum ai.djl.ndarray.types.DataType
-
Returns the number of bytes for each element.
- getOptimizer() - Method in class ai.djl.training.DefaultTrainingConfig
-
- getOptimizer() - Method in interface ai.djl.training.TrainingConfig
-
- getOutput(long, long, long, long) - Method in enum ai.djl.nn.pooling.PoolingConvention
-
Computes the size of the output in the given input dimension for this PoolingConvention
.
- getOutputShapes(NDManager, Shape[]) - Method in interface ai.djl.nn.Block
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.convolutional.Convolution
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.core.Embedding
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.core.Linear
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.core.Prelu
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.LambdaBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.norm.BatchNorm
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.norm.Dropout
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.ParallelBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.recurrent.GRU
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.recurrent.LSTM
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.recurrent.RNN
-
Returns the expected output shapes of the block for the specified input shapes.
- getOutputShapes(NDManager, Shape[]) - Method in class ai.djl.nn.SequentialBlock
-
Returns the expected output shapes of the block for the specified input shapes.
- getParameters() - Method in class ai.djl.nn.AbstractBlock
-
Returns a list of all the parameters of the block, including the parameters of its children
fetched recursively.
- getParameters() - Method in interface ai.djl.nn.Block
-
Returns a list of all the parameters of the block, including the parameters of its children
fetched recursively.
- getParameterShape(String, Shape[]) - Method in interface ai.djl.nn.Block
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParameterShape(String, Shape[]) - Method in class ai.djl.nn.convolutional.Convolution
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParameterShape(String, Shape[]) - Method in class ai.djl.nn.core.Embedding
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParameterShape(String, Shape[]) - Method in class ai.djl.nn.core.Linear
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParameterShape(String, Shape[]) - Method in class ai.djl.nn.core.Prelu
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParameterShape(String, Shape[]) - Method in class ai.djl.nn.LambdaBlock
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParameterShape(String, Shape[]) - Method in class ai.djl.nn.norm.BatchNorm
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParameterShape(String, Shape[]) - Method in class ai.djl.nn.norm.Dropout
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParameterShape(String, Shape[]) - Method in class ai.djl.nn.ParallelBlock
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParameterShape(String, Shape[]) - Method in class ai.djl.nn.recurrent.GRU
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParameterShape(String, Shape[]) - Method in class ai.djl.nn.recurrent.LSTM
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParameterShape(String, Shape[]) - Method in class ai.djl.nn.recurrent.RNN
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParameterShape(String, Shape[]) - Method in class ai.djl.nn.SequentialBlock
-
Returns the shape of the specified direct parameter of this block given the shapes of the
input to the block.
- getParentManager() - Method in interface ai.djl.ndarray.NDManager
-
Returns the parent NDManager
.
- getPath() - Method in interface ai.djl.modality.cv.BoundingBox
-
Returns an iterator object that iterates along the BoundingBox
boundary and provides
access to the geometry of the BoundingBox
outline.
- getPath() - Method in class ai.djl.modality.cv.Rectangle
-
Returns an iterator object that iterates along the BoundingBox
boundary and provides
access to the geometry of the BoundingBox
outline.
- getPipeline() - Method in class ai.djl.modality.cv.ImageTranslator
-
- getPipeline() - Method in interface ai.djl.translate.PreProcessor
-
- getPoint() - Method in interface ai.djl.modality.cv.BoundingBox
-
Returns the top left point of the bounding box.
- getPoint() - Method in class ai.djl.modality.cv.Rectangle
-
Returns the top left point of the bounding box.
- getProbability() - Method in class ai.djl.modality.Classifications.Classification
-
Returns the probability.
- getProbDist() - Method in class ai.djl.modality.cv.Mask
-
Returns the probability for each pixel.
- getProperty(String) - Method in interface ai.djl.Model
-
Gets the property of the model based on property name.
- getRank() - Method in class ai.djl.ndarray.index.NDIndex
-
Returns the number of dimensions specified in the Index.
- getRank() - Method in class ai.djl.ndarray.index.NDIndexAll
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in class ai.djl.ndarray.index.NDIndexBooleans
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in interface ai.djl.ndarray.index.NDIndexElement
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in class ai.djl.ndarray.index.NDIndexFixed
-
Returns the number of dimensions occupied by this index element.
- getRank() - Method in class ai.djl.ndarray.index.NDIndexSlice
-
Returns the number of dimensions occupied by this index element.
- getRow(long) - Method in interface ai.djl.ndarray.Matrix
-
Returns the specified row.
- getRows(int...) - Method in interface ai.djl.ndarray.Matrix
-
Returns a new NDArray comprised of the specified rows only.
- getSampler() - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- getScalar(long, long) - Method in interface ai.djl.ndarray.Matrix
-
Returns the element at the specified row/column.
- getScalar(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns a scalar NDArray
corresponding to a single element.
- getShape() - Method in class ai.djl.ndarray.index.NDIndexFullSlice
-
Returns the slice shape without squeezing.
- getShape() - Method in interface ai.djl.ndarray.NDArray
-
Returns the
Shape
of this
NDArray
.
- getShape() - Method in class ai.djl.ndarray.types.DataDesc
-
- getShape() - Method in class ai.djl.ndarray.types.Shape
-
Returns the dimensions of the Shape
.
- getSparseFormat() - Method in interface ai.djl.ndarray.NDArray
-
- getSqueezedShape() - Method in class ai.djl.ndarray.index.NDIndexFullSlice
-
Returns the slice shape with squeezing.
- getStep() - Method in class ai.djl.ndarray.index.NDIndexFullSlice
-
Returns the slice step for each axis.
- getStep() - Method in class ai.djl.ndarray.index.NDIndexSlice
-
Returns the step between each slice.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Conv1D
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Conv2D
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Conv3D
-
Returns the string representing the layout of the input.
- getStringLayout() - Method in class ai.djl.nn.convolutional.Convolution
-
Returns the string representing the layout of the input.
- getTimestamp() - Method in class ai.djl.metric.Metric
-
Returns the timestamp of the Metric
.
- getToSqueeze() - Method in class ai.djl.ndarray.index.NDIndexFullSlice
-
Returns the list of axis to squeeze.
- getTrailingOnes() - Method in class ai.djl.ndarray.types.Shape
-
Returns the number of trailing ones in the array shape.
- getTrainingMetric(Class<T>) - Method in interface ai.djl.training.Trainer
-
Gets the training
TrainingMetric
that is an instance of the given
Class
.
- getTrainingMetrics() - Method in class ai.djl.training.DefaultTrainingConfig
-
Returns the list of
TrainingMetric
that should be computed during training.
- getTrainingMetrics() - Method in interface ai.djl.training.TrainingConfig
-
Returns the list of
TrainingMetric
that should be computed during training.
- getType() - Method in enum ai.djl.ndarray.types.SparseFormat
-
Returns the SparseFormat
name.
- getType() - Method in class ai.djl.nn.Parameter
-
Gets the type of this Parameter
.
- getType() - Method in enum ai.djl.training.GradReq
-
Gets the type of this GradReq
.
- getUid() - Method in interface ai.djl.ndarray.NDArray
-
Returns unique identifier of this NDArray
.
- getUint8(long...) - Method in interface ai.djl.ndarray.NDArray
-
Returns an integer element from this NDArray
that represent unsigned integer with 8
bits.
- getUnit() - Method in class ai.djl.metric.Metric
-
Returns the unit of the Metric
.
- getUnknownValueCount() - Method in class ai.djl.ndarray.types.Shape
-
Return the count of unknown value in this Shape
.
- getValidationLoss() - Method in interface ai.djl.training.Trainer
-
Gets the validation
Loss
function of the trainer.
- getValidationMetric(Class<T>) - Method in interface ai.djl.training.Trainer
-
Gets the validation
TrainingMetric
that is an instance of the given
Class
.
- getValue() - Method in class ai.djl.metric.Metric
-
Returns the value of the Metric
.
- getValue() - Method in enum ai.djl.ndarray.types.LayoutType
-
Returns the character representation of the layout type.
- getValue() - Method in enum ai.djl.ndarray.types.SparseFormat
-
Returns the integer value of this SparseFormat
.
- getValue() - Method in enum ai.djl.training.GradReq
-
Gets the value of this GradType
.
- getValue() - Method in class ai.djl.training.loss.CompositeLoss
-
Calculates metric values.
- getValue() - Method in class ai.djl.training.loss.Loss
-
Calculates metric values.
- getValue() - Method in class ai.djl.training.metrics.Accuracy
-
Calculates metric values.
- getValue() - Method in class ai.djl.training.metrics.BoundingBoxError
-
Calculates metric values.
- getValue() - Method in class ai.djl.training.metrics.TrainingMetric
-
Calculates metric values.
- getValue(Parameter, Device) - Method in class ai.djl.training.ParameterStore
-
Returns the value of a mirrored parameter on a device.
- getVersion() - Method in class ai.djl.engine.Engine
-
Returns the version of the deep learning framework.
- getVersion() - Method in class ai.djl.nn.convolutional.Conv1D
-
Gets the version of the Convolution
block.
- getVersion() - Method in class ai.djl.nn.convolutional.Conv2D
-
Gets the version of the Convolution
block.
- getVersion() - Method in class ai.djl.nn.convolutional.Conv3D
-
Gets the version of the Convolution
block.
- getVersion() - Method in class ai.djl.nn.convolutional.Convolution
-
Gets the version of the Convolution
block.
- getWeightDecay() - Method in class ai.djl.training.optimizer.Optimizer
-
Gets the value of weight decay.
- getWidth() - Method in class ai.djl.modality.cv.Rectangle
-
Returns the width of the Rectangle.
- getX() - Method in class ai.djl.modality.cv.Point
-
Returns the X coordinate of this Point
in double
precision.
- getX() - Method in class ai.djl.modality.cv.Rectangle
-
Returns the left x-coordinate of the Rectangle.
- getY() - Method in class ai.djl.modality.cv.Point
-
Returns the Y coordinate of this Point
in double
precision.
- getY() - Method in class ai.djl.modality.cv.Rectangle
-
Returns the top y-coordinate of the Rectangle.
- globalAvgPool(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs Global Avg Pooling on the input.
- globalLpPool(NDArray, int) - Static method in class ai.djl.nn.pooling.Pool
-
Performs Global LP Pooling on the input.
- globalMaxPool(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs Global Max Pooling on the input.
- globalSumPool(NDArray) - Static method in class ai.djl.nn.pooling.Pool
-
Performs Global Sum Pooling on the input.
- gpu() - Static method in class ai.djl.Device
-
Returns the default GPU Device.
- gpu(int) - Static method in class ai.djl.Device
-
Returns a new instance of GPU Device
with the specified deviceId
.
- GradientCollector - Interface in ai.djl.training
-
An interface that provides a mechanism to collect gradients during training.
- GradReq - Enum in ai.djl.training
-
An enum that indicates whether gradient is required.
- GRU - Class in ai.djl.nn.recurrent
-
Applies GRU (Gated Recurrent Unit) recurrent layer to input.
- GRU.Builder - Class in ai.djl.nn.recurrent
-
The Builder to construct a
GRU
type of
Block
.
- gt(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Greater" comparison.
- gt(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Greater Than" comparison.
- gt(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater Than" comparison.
- gt(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater Than" comparison.
- gt(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater Than" comparison.
- gte(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Greater or equals" comparison.
- gte(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Greater or equals" comparison.
- gte(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater or equals" comparison.
- gte(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater or equals" comparison.
- gte(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Greater or equals" comparison.
- L1Loss - Class in ai.djl.training.loss
-
L1Loss
calculates L1 loss between label and prediction.
- L1Loss(float, int) - Constructor for class ai.djl.training.loss.L1Loss
-
Calculates L1 Loss between the label and prediction, a.k.a.
- L1Loss() - Constructor for class ai.djl.training.loss.L1Loss
-
Calculates L1 Loss between the label and prediction, a.k.a.
- l1Loss() - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L1Loss
with default weight and batch axis.
- l1Loss(float, int) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L1Loss
with given weight and batch axis.
- L2Loss - Class in ai.djl.training.loss
-
Calculates L2Loss between label and prediction, a.k.a.
- L2Loss(float, int) - Constructor for class ai.djl.training.loss.L2Loss
-
Calculates L2Loss between the label and prediction, a.k.a.
- L2Loss() - Constructor for class ai.djl.training.loss.L2Loss
-
Calculate L2Loss between the label and prediction, a.k.a.
- l2Loss() - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L2Loss
with default weight and batch axis.
- l2Loss(float, int) - Static method in class ai.djl.training.loss.Loss
-
Returns a new instance of
L2Loss
with given weight and batch axis.
- labels - Variable in class ai.djl.training.dataset.ArrayDataset
-
- LambdaBlock - Class in ai.djl.nn
-
LambdaBlock
is a
Block
with no parameters or children.
- LambdaBlock(Function<NDList, NDList>) - Constructor for class ai.djl.nn.LambdaBlock
-
Creates a LambdaBlock that can apply the specified function.
- LayoutType - Enum in ai.djl.ndarray.types
-
An enum to represent the meaning of a particular axis in an
NDArray
.
- leakyRelu(NDArray, float) - Static method in class ai.djl.nn.Activation
-
Applies Leaky ReLU activation on the input
NDArray
.
- leakyRelu(NDList, float) - Static method in class ai.djl.nn.Activation
-
Applies Leaky ReLU activation on the input singleton
NDList
.
- leakyReluBlock(float) - Static method in class ai.djl.nn.Activation
-
- LearningRateTracker - Class in ai.djl.training.optimizer.learningrate
-
A LearningRateTracker
tracks the evolution of the learning rate through the training
process.
- LearningRateTracker.LrBaseBuilder<T extends LearningRateTracker.LrBaseBuilder> - Class in ai.djl.training.optimizer.learningrate
-
- like() - Method in interface ai.djl.ndarray.NDArray
-
- Linear - Class in ai.djl.nn.core
-
A Linear block applies a linear transformation \(Y = XW^T + b\).
- Linear.Builder - Class in ai.djl.nn.core
-
- linspace(Number, Number, int) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced numbers over a specified interval.
- linspace(Number, Number, int, boolean, Device) - Method in interface ai.djl.ndarray.NDManager
-
Returns evenly spaced numbers over a specified interval.
- load(Path) - Method in interface ai.djl.Model
-
Loads the model from the modelPath
.
- load(Path, String) - Method in interface ai.djl.Model
-
Loads the model from the modelPath
and the given name.
- load(Path, String, Map<String, String>) - Method in interface ai.djl.Model
-
Loads the model from the modelPath
with the name and options provided.
- load(NDManager, DataInputStream) - Method in class ai.djl.nn.Parameter
-
Loads parameter NDArrays from InputStream.
- loadParameters(NDManager, DataInputStream) - Method in interface ai.djl.nn.Block
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.convolutional.Convolution
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.core.Embedding
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.core.Linear
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.core.Prelu
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.LambdaBlock
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.norm.BatchNorm
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.norm.Dropout
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.ParallelBlock
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.recurrent.GRU
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.recurrent.LSTM
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.recurrent.RNN
-
Loads the parameters from the given input stream.
- loadParameters(NDManager, DataInputStream) - Method in class ai.djl.nn.SequentialBlock
-
Loads the parameters from the given input stream.
- LocalParameterServer - Class in ai.djl.training
-
LocalParameterServer
is an implementation of the ParameterServer
interface.
- LocalParameterServer(Optimizer) - Constructor for class ai.djl.training.LocalParameterServer
-
Create a new instance of LocalParameterServer
for the given optimizer.
- log() - Method in interface ai.djl.ndarray.NDArray
-
Returns the natural logarithmic value of this NDArray
element-wise.
- log10() - Method in interface ai.djl.ndarray.NDArray
-
Returns the base 10 logarithm of this NDArray
element-wise.
- log2() - Method in interface ai.djl.ndarray.NDArray
-
Returns the base 2 logarithm of this NDArray
element-wise.
- logicalAnd(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the truth value of this NDArray
AND the other NDArray
element-wise.
- logicalAnd(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- logicalNot() - Method in interface ai.djl.ndarray.NDArray
-
Computes the truth value of NOT this NDArray
element-wise.
- logicalOr(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Computes the truth value of this NDArray
OR the other NDArray
element-wise.
- logicalOr(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- logicalXor(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Computes the truth value of this NDArray
XOR the other NDArray
element-wise.
- logicalXor(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- Loss - Class in ai.djl.training.loss
-
Loss functions or Cost Functions to evaluate model predictions against true labels.
- Loss(String) - Constructor for class ai.djl.training.loss.Loss
-
Base class for metric with abstract update methods.
- lpPool(NDArray, Shape, Shape, Shape, PoolingConvention, int) - Static method in class ai.djl.nn.pooling.Pool
-
Performs LP Pooling on the input.
- lpPool(NDArray, Shape, Shape, Shape, int) - Static method in class ai.djl.nn.pooling.Pool
-
Performs LP Pooling on the input.
- LrBaseBuilder() - Constructor for class ai.djl.training.optimizer.learningrate.LearningRateTracker.LrBaseBuilder
-
- LSTM - Class in ai.djl.nn.recurrent
-
Applies Long Short-Term Memory recurrent layer to input.
- LSTM.Builder - Class in ai.djl.nn.recurrent
-
The Builder to construct a
LSTM
type of
Block
.
- lstmStateClipMax - Variable in class ai.djl.nn.recurrent.RecurrentCell.BaseBuilder
-
- lstmStateClipMin - Variable in class ai.djl.nn.recurrent.RecurrentCell.BaseBuilder
-
- lt(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Less" comparison.
- lt(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Less" comparison.
- lt(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less" comparison.
- lt(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less" comparison.
- lt(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less" comparison.
- lte(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Less or equals" comparison.
- lte(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the boolean NDArray
for element-wise "Less or equals" comparison.
- lte(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less or equals" comparison.
- lte(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less or equals" comparison.
- lte(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the boolean
NDArray
for element-wise "Less or equals" comparison.
- MalformedModelException - Exception in ai.djl
-
Thrown to indicate Model parameters are not in expected format or are malformed.
- MalformedModelException(String) - Constructor for exception ai.djl.MalformedModelException
-
Constructs a new exception with the specified detail message.
- MalformedModelException(String, Throwable) - Constructor for exception ai.djl.MalformedModelException
-
Constructs a new exception with the specified detail message and cause.
- MalformedModelException(Throwable) - Constructor for exception ai.djl.MalformedModelException
-
Constructs a new exception with the specified cause and a detail message of (cause==null ? null : cause.toString())
which typically contains the class and detail
message of cause
.
- manager - Variable in class ai.djl.inference.BasePredictor
-
- map(Function<Pair<Long, LayoutType>, Pair<Long, LayoutType>>) - Method in class ai.djl.ndarray.types.Shape
-
Returns a mapped shape.
- Mask - Class in ai.djl.modality.cv
-
A mask with a probability for each pixel within a bounding rectangle.
- Mask(double, double, double, double, float[][]) - Constructor for class ai.djl.modality.cv.Mask
-
Constructs a Mask with the given data.
- Matrix - Interface in ai.djl.ndarray
-
An interface representing a 2-dimensional matrix.
- max() - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this NDArray
.
- max(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this NDArray
along given axes.
- max(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this NDArray
along given axes.
- maximum(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this NDArray
and a number element-wise.
- maximum(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this NDArray
and the other NDArray
element-wise.
- maximum(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the maximum of a
NDArray
and a number element-wise.
- maximum(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the maximum of a number and a
NDArray
element-wise.
- maximum(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- maxIteration - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- maxPool(NDArray, Shape, Shape, Shape, PoolingConvention) - Static method in class ai.djl.nn.pooling.Pool
-
Performs Max Pooling on the input.
- maxPool(NDArray, Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Performs Max Pooling on the input.
- mean(String) - Method in class ai.djl.metric.Metrics
-
Returns the average value of the specified metric.
- mean() - Method in interface ai.djl.ndarray.NDArray
-
Returns the average of this NDArray
.
- mean(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the average of this NDArray
along given axes.
- mean(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the average of this NDArray
along given axes.
- median() - Method in interface ai.djl.ndarray.NDArray
-
Returns median value for this NDArray
.
- median(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns median value along given axes.
- Metric - Class in ai.djl.metric
-
A class representing a single recorded Metric
value.
- Metric(String, Number) - Constructor for class ai.djl.metric.Metric
-
Constructs a Metric
instance with the specified metricName
and
value
.
- Metric(String, Number, String) - Constructor for class ai.djl.metric.Metric
-
Constructs a Metric
instance with the specified metricName
, value
, and unit
.
- Metrics - Class in ai.djl.metric
-
A collection of
Metric
objects organized by metric name.
- Metrics() - Constructor for class ai.djl.metric.Metrics
-
Constructs an empty Metrics
instance.
- min() - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this NDArray
.
- min(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this NDArray
along given axes.
- min(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this NDArray
along given axes.
- minimum(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this NDArray
and a number element-wise.
- minimum(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns the maximum of this NDArray
and the other NDArray
element-wise.
- minimum(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the minimum of a
NDArray
and a number element-wise.
- minimum(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns the minimum of a number and a
NDArray
element-wise.
- minimum(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- mod(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns element-wise remainder of division.
- mod(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns element-wise remainder of division.
- mod(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division.
- mod(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division.
- mod(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division.
- mode - Variable in class ai.djl.nn.recurrent.RecurrentCell
-
- model - Variable in class ai.djl.inference.BasePredictor
-
- Model - Interface in ai.djl
-
A model is a collection of artifacts that is created by the training process.
- ModelException - Exception in ai.djl
-
Thrown to indicate Model parameter or load exceptions parent to Model Exceptions.
- ModelException(String) - Constructor for exception ai.djl.ModelException
-
Constructs a new exception with the specified detail message.
- ModelException(String, Throwable) - Constructor for exception ai.djl.ModelException
-
Constructs a new exception with the specified detail message and cause.
- ModelException(Throwable) - Constructor for exception ai.djl.ModelException
-
Constructs a new exception with the specified cause and a detail message of (cause==null ? null : cause.toString())
which typically contains the class and detail
message of cause
.
- modi(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns element-wise remainder of division in place.
- modi(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Returns in place element-wise remainder of division in place.
- modi(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division in place.
- modi(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division in place.
- modi(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Returns element-wise remainder of division.
- mul(Number) - Method in interface ai.djl.ndarray.NDArray
-
Multiplies this NDArray
by a number element-wise.
- mul(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Multiplies this NDArray
by other NDArray
s element-wise.
- mul(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies the
NDArray
by a number element-wise.
- mul(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies a number by a
NDArray
element-wise.
- mul(NDArray...) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies all of the
NDArray
s together element-wise.
- mulColumnVector(NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Multiplies a column vector (copy).
- muli(Number) - Method in interface ai.djl.ndarray.NDArray
-
Multiplies this NDArray
by a number element-wise in place.
- muli(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Multiplies this NDArray
by other NDArray
s element-wise in place.
- muli(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies the
NDArray
by a number element-wise in place.
- muli(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies a number by a
NDArray
element-wise.
- muli(NDArray...) - Static method in class ai.djl.ndarray.NDArrays
-
Multiplies all of the
NDArray
s together element-wise in place.
- muliColumnVector(NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Multiplies a column vector in place.
- muliRowVector(NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Multiplies a row vector in place.
- mulRowVector(NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Multiplies a row vector (copy).
- MultiBoxDetection - Class in ai.djl.modality.cv
-
MultiBoxDetection
is the class that takes the output of a multi-box detection model, and
converts it into an NDList that contains the object detections.
- MultiBoxDetection(MultiBoxDetection.Builder) - Constructor for class ai.djl.modality.cv.MultiBoxDetection
-
- MultiBoxDetection.Builder - Class in ai.djl.modality.cv
-
- MultiBoxPrior - Class in ai.djl.modality.cv
-
MultiBoxPrior
is the class that generates anchor boxes that act as priors for object
detection.
- MultiBoxPrior(MultiBoxPrior.Builder) - Constructor for class ai.djl.modality.cv.MultiBoxPrior
-
- MultiBoxPrior.Builder - Class in ai.djl.modality.cv
-
- MultiBoxTarget - Class in ai.djl.modality.cv
-
MultiBoxTarget
is the class that computes the training targets for training a Single Shot
Detection (SSD) models.
- MultiBoxTarget(MultiBoxTarget.Builder) - Constructor for class ai.djl.modality.cv.MultiBoxTarget
-
- MultiBoxTarget.Builder - Class in ai.djl.modality.cv
-
- multiFactorTracker() - Static method in class ai.djl.training.optimizer.learningrate.LearningRateTracker
-
- MultiFactorTracker - Class in ai.djl.training.optimizer.learningrate
-
MultiFactorTracker
is an implementation of
LearningRateTracker
which is updated
by a multiplicative factor, at an uneven interval of steps, until it reaches a specified stop
value.
- MultiFactorTracker(MultiFactorTracker.Builder) - Constructor for class ai.djl.training.optimizer.learningrate.MultiFactorTracker
-
Creates a new instance of MultiFactorTracker
.
- MultiFactorTracker.Builder - Class in ai.djl.training.optimizer.learningrate
-
- onEpoch() - Method in interface ai.djl.training.TrainingListener
-
Listens to the end of an epoch during training.
- ones(Shape, DataType) - Method in interface ai.djl.ndarray.NDManager
-
Creates an instance of
NDArray
with specified
Shape
filled with ones.
- ones(Shape) - Method in interface ai.djl.ndarray.NDManager
-
Creates an instance of
NDArray
with specified
Shape
filled with ones.
- ones(Shape, DataType, Device) - Method in interface ai.djl.ndarray.NDManager
-
- ONES - Static variable in interface ai.djl.training.initializer.Initializer
-
- onesLike() - Method in interface ai.djl.ndarray.NDArray
-
- onTrainingBatch() - Method in interface ai.djl.training.TrainingListener
-
Listens to the end of training one batch of data during training.
- onValidationBatch() - Method in interface ai.djl.training.TrainingListener
-
Listens to the end of validating one batch of data during validation.
- optAxis(int) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
Set the axis in which channel is specified.
- optBackgroundId(int) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the class ID for the background.
- optBaseLearningRate(float) - Method in class ai.djl.training.optimizer.learningrate.LearningRateTracker.LrBaseBuilder
-
Sets the base learning rate.
- optBatchier(Batchifier) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- optBeginNumUpdate(int) - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
Sets the initial value of the number of updates.
- optBeta1(float) - Method in class ai.djl.training.optimizer.Adam.Builder
-
Sets the decay rate for the first moment estimates.
- optBeta2(float) - Method in class ai.djl.training.optimizer.Adam.Builder
-
Sets the decay rate for the second moment estimates.
- optBias(boolean) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the optional parameter of whether to include a bias vector.
- optBias(boolean) - Method in class ai.djl.nn.core.Linear.Builder
-
Sets the optional parameter that indicates whether to include a bias vector with default
value of true.
- optBidrectional(boolean) - Method in class ai.djl.nn.recurrent.RecurrentCell.BaseBuilder
-
Sets the optional parameter that indicates whether to use bidirectional recurrent layers.
- optCenter(boolean) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
If True, add offset of `beta` to normalized tensor.
- optClip(boolean) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the boolean parameter that indicates whether to clip out-of-boundary boxes.
- optClip(boolean) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the boolean parameter that indicates whether to clip out-of-boundary boxes.
- optClipGrad(float) - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
Sets the value of the \(clipGrad\).
- optDataType(DataType) - Method in class ai.djl.nn.core.Embedding.Builder
-
Sets the data type of the embedding arrays (default is Float32).
- optDevice(Device) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- optDilate(Shape) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the dilation along each dimension.
- optDropRate(float) - Method in class ai.djl.nn.recurrent.RecurrentCell.BaseBuilder
-
Sets the drop rate of the dropout on the outputs of each RNN layer, except the last
layer.
- optEpsilon(float) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
Sets the epsilon value to prevent division by 0.
- optEpsilon(float) - Method in class ai.djl.training.optimizer.Adam.Builder
-
Sets \(epsilon\) - a small quantity for numerical stability.
- optExcutor(ExecutorService, int) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets the ExecutorService
to spawn threads to fetch data.
- optFactor(float) - Method in class ai.djl.training.optimizer.learningrate.FactorTracker.Builder
-
Sets the value of the multiplicative factor.
- optFactor(float) - Method in class ai.djl.training.optimizer.learningrate.MultiFactorTracker.Builder
-
Set the value of the multiplicative factor.
- optFlag(NDImageUtils.Flag) - Method in class ai.djl.modality.cv.ImageTranslator.BaseBuilder
-
- optForceSuppress(boolean) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the boolean parameter that indicates whether to suppress all detections regardless
of class_id.
- optIgnoreLabel(float) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the label for ignored anchors.
- Optimizer - Class in ai.djl.training.optimizer
-
An Optimizer
updates the weight parameters to minimize the loss function.
- Optimizer(Optimizer.OptimizerBuilder<?>) - Constructor for class ai.djl.training.optimizer.Optimizer
-
Creates a new instance of Optimizer
.
- Optimizer.OptimizerBuilder<T extends Optimizer.OptimizerBuilder> - Class in ai.djl.training.optimizer
-
- OptimizerBuilder() - Constructor for class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
- optIouThreshold(float) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the anchor-GroundTruth overlap threshold to be regarded as a positive match.
- optLabels(NDArray...) - Method in class ai.djl.training.dataset.ArrayDataset.Builder
-
Sets the labels for the data in the ArrayDataset
.
- optLearningRateTracker(LearningRateTracker) - Method in class ai.djl.training.optimizer.Adam.Builder
-
- optLstmStateClipMin(float, float) - Method in class ai.djl.nn.recurrent.RecurrentCell.BaseBuilder
-
Sets the minimum and maximum clip value of LSTM states.
- optMaxEdge(int) - Method in class ai.djl.modality.cv.InstanceSegmentationTranslator.Builder
-
Sets the maximum edge length of the rescaled image.
- optMaxIteration(long) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets the maximum number of iterations.
- optMinNegativeSamples(int) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the minimum number of negative samples.
- optMomentum(float) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
Set the momentum for moving average.
- optMomentum(float) - Method in class ai.djl.training.optimizer.Sgd.Builder
-
Sets the momentum for
Sgd
.
- optNegativeMinigRatio(float) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the max negative to positive samples ratio.
- optNegativeMiningThreshold(float) - Method in class ai.djl.modality.cv.MultiBoxTarget.Builder
-
Sets the threshold used for negative mining.
- optNmsThreashold(float) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the non-maximum suppression(NMS) threshold.
- optNmsTopK(int) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the boolean parameter that indicates whether to clip out-of-boundary boxes.
- optNumGroups(int) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the number of group partitions.
- optOffsets(List<Float>) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the value of the center-box offsets across \(x\) and \(y\) dimensions.
- optPad(Shape) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the padding along each dimension.
- optPipeline(Pipeline) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- optProbability(float) - Method in class ai.djl.nn.norm.Dropout.Builder
-
Sets the probability or the fraction of the input that gets dropped out during training
time.
- optRescaleSize(double, double) - Method in class ai.djl.modality.cv.SingleShotDetectionTranslator.Builder
-
Sets the optional rescale size.
- optScale(boolean) - Method in class ai.djl.nn.norm.BatchNorm.Builder
-
If True, multiply result by `gamma`.
- optSharedAxes(int[]) - Method in class ai.djl.nn.norm.Dropout.Builder
-
Sets the axes for variational dropout kernel.
- optShortEdge(int) - Method in class ai.djl.modality.cv.InstanceSegmentationTranslator.Builder
-
Sets the shorter edge length of the rescaled image.
- optStateOutput(boolean) - Method in class ai.djl.nn.recurrent.RecurrentCell.BaseBuilder
-
Sets the optional parameter that indicates whether to have the states as symbol outputs.
- optSteps(List<Float>) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the step across \(x\) and \(y\) dimensions.
- optStopFactorLearningRate(float) - Method in class ai.djl.training.optimizer.learningrate.FactorTracker.Builder
-
Sets the stop value after which the learning rate should remain constant.
- optStride(Shape) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the stride of the convolution.
- optTargetPipeline(Pipeline) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- optThreshold(float) - Method in class ai.djl.modality.cv.InstanceSegmentationTranslator.Builder
-
Sets the threshold for prediction accuracy.
- optThreshold(float) - Method in class ai.djl.modality.cv.MultiBoxDetection.Builder
-
Sets the threshold score for a detection to be a positive prediction.
- optThreshold(float) - Method in class ai.djl.modality.cv.SimplePoseTranslator.Builder
-
Sets the threshold for prediction accuracy.
- optThreshold(float) - Method in class ai.djl.modality.cv.SingleShotDetectionTranslator.Builder
-
Sets the threshold for prediction accuracy.
- optUseDefault(boolean) - Method in class ai.djl.nn.core.Embedding.Builder
-
Sets whether to use a default embedding for undefined items (default true).
- optWarmUpBeginLearningRate(float) - Method in class ai.djl.training.optimizer.learningrate.LearningRateTracker.LrBaseBuilder
-
Sets the value of the learning rate at the beginning of warm-up mode.
- optWarmUpMode(WarmUpMode) - Method in class ai.djl.training.optimizer.learningrate.LearningRateTracker.LrBaseBuilder
-
- optWarmUpSteps(int) - Method in class ai.djl.training.optimizer.learningrate.LearningRateTracker.LrBaseBuilder
-
Sets the number of steps until the point the learning rate is updated in warm-up mode.
- optWeightDecays(float) - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
Sets the value of weight decay.
- pad - Variable in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
- pad - Variable in class ai.djl.nn.convolutional.Convolution
-
- ParallelBlock - Class in ai.djl.nn
-
ParallelBlock
is a
Block
whose children form a parallel branch in the network and
are combined to produce a single output.
- ParallelBlock(Function<List<NDList>, NDList>) - Constructor for class ai.djl.nn.ParallelBlock
-
Creates a parallel block whose branches are combined to form a single output by the given
function.
- ParallelBlock(Function<List<NDList>, NDList>, List<Block>) - Constructor for class ai.djl.nn.ParallelBlock
-
Creates a parallel block whose branches are formed by each block in the list of blocks, and
are combined to form a single output by the given function.
- Parameter - Class in ai.djl.nn
-
Parameter
is a container class that holds a learnable parameter of a model.
- Parameter(String, Block, ParameterType) - Constructor for class ai.djl.nn.Parameter
-
Creates a
Parameter
with the given name, and parameter type, and associated with the
given
Block
.
- Parameter(String, Block, ParameterType, boolean) - Constructor for class ai.djl.nn.Parameter
-
Creates a
Parameter
with the given name, and parameter type, and associated with the
given
Block
.
- ParameterBlock - Class in ai.djl.nn
-
ParameterBlock
is an abstract implementation of
Block
.
- ParameterBlock() - Constructor for class ai.djl.nn.ParameterBlock
-
- ParameterList - Class in ai.djl.nn
-
Represents a set of names and Parameters.
- ParameterList() - Constructor for class ai.djl.nn.ParameterList
-
Create an empty ParameterList
.
- ParameterList(int) - Constructor for class ai.djl.nn.ParameterList
-
Constructs an empty ParameterList
with the specified initial capacity.
- ParameterList(List<String>, List<Parameter>) - Constructor for class ai.djl.nn.ParameterList
-
Constructs a ParameterList
containing the elements of the specified keys and values.
- ParameterList(List<Pair<String, Parameter>>) - Constructor for class ai.djl.nn.ParameterList
-
Constructs a ParameterList
containing the elements of the specified list of Pairs.
- ParameterList(Map<String, Parameter>) - Constructor for class ai.djl.nn.ParameterList
-
Constructs a ParameterList
containing the elements of the specified map.
- ParameterServer - Interface in ai.djl.training
-
An interface for a key-value store to store parameters, and their corresponding gradients.
- ParameterStore - Class in ai.djl.training
-
The ParameterStore
contains a map from a parameter to the mirrors of it on other devices.
- ParameterStore(NDManager, boolean) - Constructor for class ai.djl.training.ParameterStore
-
Constructs an empty ParameterStore
.
- ParameterType - Enum in ai.djl.nn
-
- PathIterator - Interface in ai.djl.modality.cv
-
A sequence of points used to outline an object in an image.
- percentile(String, int) - Method in class ai.djl.metric.Metrics
-
Returns a percentile
Metric
object for the specified metric name.
- percentile(Number) - Method in interface ai.djl.ndarray.NDArray
-
Returns percentile for this NDArray
.
- percentile(Number, int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns median along given dimension(s).
- pipeline - Variable in class ai.djl.modality.cv.ImageTranslator.BaseBuilder
-
- pipeline - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- pipeline - Variable in class ai.djl.training.dataset.RandomAccessDataset
-
- Pipeline - Class in ai.djl.translate
-
Pipeline
allows applying multiple transforms on an input
NDList
.
- Pipeline() - Constructor for class ai.djl.translate.Pipeline
-
Creates a new instance of
Pipeline
that has no
Transform
defined yet.
- Pipeline(Transform...) - Constructor for class ai.djl.translate.Pipeline
-
Creates a new instance of Pipeline
that can apply the given transforms on its input.
- Point - Class in ai.djl.modality.cv
-
A point representing a location in (x,y)
coordinate space, specified in double precision.
- Point(double, double) - Constructor for class ai.djl.modality.cv.Point
-
Constructs and initializes a point at the specified (x,y)
location in the coordinate
space.
- Pool - Class in ai.djl.nn.pooling
-
Utility class that provides Block
and methods for different pooling functions.
- PoolingConvention - Enum in ai.djl.nn.pooling
-
An enum that enumerates the different pooling conventions.
- PostProcessor<O> - Interface in ai.djl.translate
-
An interface that provides post-processing functionality.
- pow(Number) - Method in interface ai.djl.ndarray.NDArray
-
Takes the power of this NDArray
with a number element-wise.
- pow(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Takes the power of this NDArray
with the other NDArray
element-wise.
- pow(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Takes the power of the
NDArray
with a number element-wise.
- pow(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Takes the power of a number with a
NDArray
element-wise.
- pow(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- powi(Number) - Method in interface ai.djl.ndarray.NDArray
-
Takes the power of this NDArray
with a number element-wise in place.
- powi(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Takes the power of this NDArray
with the other NDArray
element-wise in place.
- powi(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Takes the power of the
NDArray
with a number element-wise in place.
- powi(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Takes the power of a number with a
NDArray
element-wise in place.
- powi(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- predict(I) - Method in class ai.djl.inference.BasePredictor
-
Predicts an item for inference.
- predict(I) - Method in interface ai.djl.inference.Predictor
-
Predicts an item for inference.
- Predictor<I,O> - Interface in ai.djl.inference
-
The Predictor
interface provides model inference functionality.
- prefetchNumber - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- prefetchNumber - Variable in class ai.djl.training.dataset.RandomAccessDataset
-
- Prelu - Class in ai.djl.nn.core
-
Applies Leaky Parametric ReLU activation element-wise to the input.
- Prelu() - Constructor for class ai.djl.nn.core.Prelu
-
Creates a Parametric ReLU Block.
- preluBlock() - Static method in class ai.djl.nn.Activation
-
- PreProcessor<I> - Interface in ai.djl.translate
-
An interface that provides pre-processing functionality.
- probabilities - Variable in class ai.djl.modality.Classifications
-
- processInput(TranslatorContext, BufferedImage) - Method in class ai.djl.modality.cv.ImageTranslator
-
Processes the BufferedImage
input and converts it to NDList.
- processInput(TranslatorContext, BufferedImage) - Method in class ai.djl.modality.cv.InstanceSegmentationTranslator
-
Processes the BufferedImage
input and converts it to NDList.
- processInput(TranslatorContext, I) - Method in interface ai.djl.translate.PreProcessor
-
Processes the input and converts it to NDList.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.ImageClassificationTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.InstanceSegmentationTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.SimplePoseTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in class ai.djl.modality.cv.SingleShotDetectionTranslator
-
Processes the output NDList to the corresponding output object.
- processOutput(TranslatorContext, NDList) - Method in interface ai.djl.translate.PostProcessor
-
Processes the output NDList to the corresponding output object.
- prod() - Method in interface ai.djl.ndarray.NDArray
-
Returns the product of this NDArray
.
- prod(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the product of this NDArray
elements over the given axes.
- prod(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the product of this NDArray
elements over the given axes.
- ProgressBar - Class in ai.djl.training.util
-
ProgressBar
is an implementation of Progress
.
- ProgressBar() - Constructor for class ai.djl.training.util.ProgressBar
-
Creates an instance of ProgressBar
with a maximum value of 1.
- ProgressBar(String, long) - Constructor for class ai.djl.training.util.ProgressBar
-
Creates an instance of ProgressBar
with the given maximum value, and displays the
given message.
- pull(String, NDArray[], int) - Method in class ai.djl.training.LocalParameterServer
-
Pulls the value of a key from Parameter Server to NDArrays.
- pull(String, NDArray[], int) - Method in interface ai.djl.training.ParameterServer
-
Pulls the value of a key from Parameter Server to NDArrays.
- push(String, NDArray[], int) - Method in class ai.djl.training.LocalParameterServer
-
Updates values of a key in Parameter Server.
- push(String, NDArray[], int) - Method in interface ai.djl.training.ParameterServer
-
Updates values of a key in Parameter Server.
- put(int, int, Number) - Method in interface ai.djl.ndarray.Matrix
-
Inserts the element at the specified index.
- putColumn(int, NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Inserts a column into this array.
- putiColumnVector(NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Assigns a column vector in place.
- putiRowVector(NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Assigns a row vector to each row of this array in place.
- putRow(long, NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Inserts a row into this matrix.
- sample(RandomAccessDataset) - Method in class ai.djl.training.dataset.BatchSampler
-
Fetches an iterator that iterates through the given
RandomAccessDataset
in
mini-batches of indices.
- sample(RandomAccessDataset) - Method in class ai.djl.training.dataset.RandomSampler
-
- sample(RandomAccessDataset) - Method in interface ai.djl.training.dataset.Sampler
-
Fetches an iterator that iterates through the given
RandomAccessDataset
in
mini-batches of indices.
- sample(RandomAccessDataset) - Method in interface ai.djl.training.dataset.Sampler.SubSampler
-
- sample(RandomAccessDataset) - Method in class ai.djl.training.dataset.SequenceSampler
-
- sampler - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- sampler - Variable in class ai.djl.training.dataset.RandomAccessDataset
-
- Sampler - Interface in ai.djl.training.dataset
-
- Sampler.SubSampler - Interface in ai.djl.training.dataset
-
An interface that samples a single data item at a time.
- save(Path, String) - Method in interface ai.djl.Model
-
Saves the model to the specified modelPath
with the name provided.
- save(DataOutputStream) - Method in class ai.djl.nn.Parameter
-
Writes the parameter NDArrays to the given output stream.
- saveParameters(DataOutputStream) - Method in interface ai.djl.nn.Block
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.convolutional.Convolution
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.core.Embedding
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.core.Linear
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.core.Prelu
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.LambdaBlock
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.norm.BatchNorm
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.norm.Dropout
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.ParallelBlock
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.recurrent.GRU
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.recurrent.LSTM
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.recurrent.RNN
-
Writes the parameters of the block to the given outputStream.
- saveParameters(DataOutputStream) - Method in class ai.djl.nn.SequentialBlock
-
Writes the parameters of the block to the given outputStream.
- self() - Method in class ai.djl.modality.cv.ImageClassificationTranslator.Builder
- self() - Method in class ai.djl.modality.cv.ImageTranslator.BaseBuilder
-
- self() - Method in class ai.djl.modality.cv.InstanceSegmentationTranslator.Builder
- self() - Method in class ai.djl.modality.cv.SimplePoseTranslator.Builder
- self() - Method in class ai.djl.modality.cv.SingleShotDetectionTranslator.Builder
- self() - Method in class ai.djl.nn.convolutional.Conv1D.Builder
- self() - Method in class ai.djl.nn.convolutional.Conv2D.Builder
- self() - Method in class ai.djl.nn.convolutional.Conv3D.Builder
- self() - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
- self() - Method in class ai.djl.nn.recurrent.GRU.Builder
- self() - Method in class ai.djl.nn.recurrent.LSTM.Builder
- self() - Method in class ai.djl.nn.recurrent.RecurrentCell.BaseBuilder
-
- self() - Method in class ai.djl.nn.recurrent.RNN.Builder
- self() - Method in class ai.djl.training.dataset.ArrayDataset.Builder
-
Returns this {code Builder} object.
- self() - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Returns this {code Builder} object.
- self() - Method in class ai.djl.training.optimizer.Adam.Builder
- self() - Method in class ai.djl.training.optimizer.learningrate.FactorTracker.Builder
- self() - Method in class ai.djl.training.optimizer.learningrate.LearningRateTracker.LrBaseBuilder
-
- self() - Method in class ai.djl.training.optimizer.learningrate.MultiFactorTracker.Builder
- self() - Method in class ai.djl.training.optimizer.Nag.Builder
- self() - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
- self() - Method in class ai.djl.training.optimizer.Sgd.Builder
- selu(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies Scaled ELU activation on the input
NDArray
.
- selu(NDList) - Static method in class ai.djl.nn.Activation
-
Applies Scaled ELU activation on the input singleton
NDList
.
- seluBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies the
SELU
activation function
in its forward function.
- SequenceSampler - Class in ai.djl.training.dataset
-
- SequenceSampler() - Constructor for class ai.djl.training.dataset.SequenceSampler
-
- SequentialBlock - Class in ai.djl.nn
-
SequentialBlock
is a
Block
whose children form a chain of blocks with each child
block feeding its output to the next.
- SequentialBlock() - Constructor for class ai.djl.nn.SequentialBlock
-
- set(Buffer) - Method in interface ai.djl.ndarray.NDArray
-
Sets this NDArray
value from Buffer
.
- set(float[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this NDArray
value from an array of floats.
- set(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this NDArray
value from an array of ints.
- set(double[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this NDArray
value from an array of doubles.
- set(long[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this NDArray
value from an array of longs.
- set(byte[]) - Method in interface ai.djl.ndarray.NDArray
-
Sets this NDArray
value from an array of bytes.
- set(NDIndex, NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Sets the specified index in this NDArray
with the given values.
- set(NDIndex, Number) - Method in interface ai.djl.ndarray.NDArray
-
Sets the specified index in this NDArray
with the given value.
- setActivation(RNN.Activation) - Method in class ai.djl.nn.recurrent.RecurrentCell.BaseBuilder
-
Sets the activation for the RNN - ReLu or Tanh.
- setArray(NDArray) - Method in class ai.djl.nn.Parameter
-
Sets the values of this Parameter
.
- setAttachment(String, Object) - Method in interface ai.djl.translate.TranslatorContext
-
Set a key-value pair of attachments.
- setBatchSize(int) - Method in class ai.djl.training.DefaultTrainingConfig
-
Sets the size of a batch for training.
- setBlock(Block) - Method in interface ai.djl.Model
-
Sets the block for the Model for training and inference.
- setClasses(List<String>) - Method in class ai.djl.modality.cv.SingleShotDetectionTranslator.Builder
-
Sets the class list.
- setData(NDArray...) - Method in class ai.djl.training.dataset.ArrayDataset.Builder
-
Sets the data as an
NDArray
for the
ArrayDataset
.
- setDataType(DataType) - Method in interface ai.djl.Model
-
Sets the standard data type used within the model.
- setDataType(DataType) - Method in class ai.djl.ndarray.types.DataDesc
-
- setDevices(Device[]) - Method in class ai.djl.training.DefaultTrainingConfig
-
Sets the array of
Device
available for training.
- setEmbeddingSize(int) - Method in class ai.djl.nn.core.Embedding.Builder
-
Sets the size of the embeddings.
- setInitializer(Initializer) - Method in class ai.djl.nn.AbstractBlock
-
- setInitializer(Initializer, String) - Method in class ai.djl.nn.AbstractBlock
-
Sets an
Initializer
to the specified direct parameter of the block, overriding the
initializer of the parameter, if already set.
- setInitializer(Initializer) - Method in interface ai.djl.nn.Block
-
- setInitializer(Initializer, String) - Method in interface ai.djl.nn.Block
-
Sets an
Initializer
to the specified direct parameter of the block, overriding the
initializer of the parameter, if already set.
- setInitializer(Initializer, boolean) - Method in class ai.djl.nn.Parameter
-
Sets the
Initializer
for this
Parameter
, if not already set.
- setItems(Collection<T>) - Method in class ai.djl.nn.core.Embedding.Builder
-
Sets the collection of items that should feature embeddings.
- setKernel(Shape) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the shape of the kernel.
- setLearningRateTracker(LearningRateTracker) - Method in class ai.djl.training.optimizer.Nag.Builder
-
- setLearningRateTracker(LearningRateTracker) - Method in class ai.djl.training.optimizer.Sgd.Builder
-
- setMandatoryDataType(DataType) - Method in class ai.djl.nn.Parameter
-
Sets the mandatory data type for this Parameter
.
- setMetrics(Metrics) - Method in class ai.djl.inference.BasePredictor
-
Attaches a Metrics param to use for benchmark.
- setMetrics(Metrics) - Method in interface ai.djl.inference.Predictor
-
Attaches a Metrics param to use for benchmark.
- setMetrics(Metrics) - Method in interface ai.djl.training.Trainer
-
Attaches a Metrics param to use for benchmark.
- setMomentum(float) - Method in class ai.djl.training.optimizer.Nag.Builder
-
Sets the momentum for
Nag
.
- setName(String) - Method in interface ai.djl.ndarray.NDArray
-
Sets name of this NDArray
.
- setName(String) - Method in class ai.djl.ndarray.types.DataDesc
-
- setNumFilters(int) - Method in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
Sets the Required number of filters.
- setNumStackedLayers(int) - Method in class ai.djl.nn.recurrent.RecurrentCell.BaseBuilder
-
Sets the Required number of stacked layers.
- setOptimizer(Optimizer) - Method in class ai.djl.training.DefaultTrainingConfig
-
- setOutChannels(long) - Method in class ai.djl.nn.core.Linear.Builder
-
Sets the number of output channels.
- setParameterServer(ParameterServer, Device[]) - Method in class ai.djl.training.ParameterStore
-
Sets the parameterServer used to apply updates to the parameters.
- setPipeline(Pipeline) - Method in class ai.djl.modality.cv.ImageTranslator.BaseBuilder
-
Sets the
Pipeline
to use for pre-processing the image.
- setProperty(String, String) - Method in interface ai.djl.Model
-
Sets a property to the model.
- setRatios(List<Float>) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the aspect ratios of the anchor boxes to be generated around each pixel.
- setRescaleGrad(float) - Method in class ai.djl.training.optimizer.Optimizer.OptimizerBuilder
-
Sets the value used to rescale the gradient.
- setSampling(long, boolean) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets the
Sampler
with the given batch size.
- setSampling(long, boolean, boolean) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
Sets the
Sampler
with the given batch size.
- setSampling(Sampler) - Method in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- setScalar(NDIndex, Number) - Method in interface ai.djl.ndarray.NDArray
-
Sets the specified index in this NDArray
with the given value.
- setSequenceLength(boolean) - Method in class ai.djl.nn.recurrent.RecurrentCell.BaseBuilder
-
Sets the optional parameter that indicates whether to include an extra input parameter
sequence_length to specify variable length sequence.
- setShape(Shape) - Method in class ai.djl.ndarray.types.DataDesc
-
- setSizes(List<Float>) - Method in class ai.djl.modality.cv.MultiBoxPrior.Builder
-
Sets the sizes of the anchor boxes to be generated around each pixel.
- setStateSize(int) - Method in class ai.djl.nn.recurrent.RecurrentCell.BaseBuilder
-
Sets the Required size of the state for each layer.
- setStep(int) - Method in class ai.djl.training.optimizer.learningrate.FactorTracker.Builder
-
Sets the number of steps after which the multiplicative factor must be applied once.
- setSteps(int[]) - Method in class ai.djl.training.optimizer.learningrate.MultiFactorTracker.Builder
-
Sets an array of integers indicating when the learning rate should be changed, usually in
an uneven interval of steps.
- setSynsetArtifactName(String) - Method in class ai.djl.modality.cv.ImageClassificationTranslator.Builder
-
Sets the name of the synset file listing the potential classes for an image.
- setSynsetArtifactName(String) - Method in class ai.djl.modality.cv.InstanceSegmentationTranslator.Builder
-
Sets the name for the synset.
- setSynsetArtifactName(String) - Method in class ai.djl.modality.cv.SingleShotDetectionTranslator.Builder
-
Sets the name for the synset.
- setTrainingListener(TrainingListener) - Method in interface ai.djl.training.Trainer
-
- sgd() - Static method in class ai.djl.training.optimizer.Optimizer
-
Returns a new instance of
Sgd.Builder
that can build an
Sgd
optimizer.
- Sgd - Class in ai.djl.training.optimizer
-
Sgd
is a Stochastic Gradient Descent (SDG) optimizer.
- Sgd(Sgd.Builder) - Constructor for class ai.djl.training.optimizer.Sgd
-
Creates a new instance of Sgd
.
- Sgd.Builder - Class in ai.djl.training.optimizer
-
The Builder to construct an
Sgd
object.
- Shape - Class in ai.djl.ndarray.types
-
A class that presents the
NDArray
's shape information.
- Shape(long...) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a Shape
with specified dimension as {@code (long...
- Shape(List<Long>) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a Shape
with specified dimension.
- Shape(PairList<Long, LayoutType>) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a Shape
with specified shape and layout pairList.
- Shape(long[], String) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a Shape
with specified dimension and layout.
- Shape(long[], LayoutType[]) - Constructor for class ai.djl.ndarray.types.Shape
-
Constructs and initializes a Shape
with specified dimension and layout.
- shapeEquals(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Checks 2 NDArray
s for equal shapes.
- shapeEquals(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Checks 2
NDArray
s for equal shapes.
- sigmoid(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies Sigmoid activation on the input
NDArray
.
- sigmoid(NDList) - Static method in class ai.djl.nn.Activation
-
Applies Sigmoid activation on the input singleton
NDList
.
- sigmoidBinaryCrossEntropyLoss() - Static method in class ai.djl.training.loss.Loss
-
- sigmoidBinaryCrossEntropyLoss(float, int, boolean) - Static method in class ai.djl.training.loss.Loss
-
- SigmoidBinaryCrossEntropyLoss - Class in ai.djl.training.loss
-
SigmoidBinaryCrossEntropyLoss
is a type of
Loss
.
- SigmoidBinaryCrossEntropyLoss(float, int, boolean) - Constructor for class ai.djl.training.loss.SigmoidBinaryCrossEntropyLoss
-
Performs Sigmoid cross-entropy loss for binary classification.
- SigmoidBinaryCrossEntropyLoss() - Constructor for class ai.djl.training.loss.SigmoidBinaryCrossEntropyLoss
-
Performs Sigmoid cross-entropy loss for binary classification.
- sigmoidBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies the
Sigmoid
activation
function in its forward function.
- SimplePoseTranslator - Class in ai.djl.modality.cv
-
- SimplePoseTranslator(SimplePoseTranslator.Builder) - Constructor for class ai.djl.modality.cv.SimplePoseTranslator
-
Creates the Pose Estimation translator from the given builder.
- SimplePoseTranslator.Builder - Class in ai.djl.modality.cv
-
The builder for Pose Estimation translator.
- sin() - Method in interface ai.djl.ndarray.NDArray
-
Returns the trigonometric sine of this NDArray
element-wise.
- SingleShotDetectionAccuracy - Class in ai.djl.training.metrics
-
SingleShotDetectionAccuracy
is an implementation of
Accuracy
.
- SingleShotDetectionAccuracy(String) - Constructor for class ai.djl.training.metrics.SingleShotDetectionAccuracy
-
- SingleShotDetectionLoss - Class in ai.djl.training.loss
-
SingleShotDetectionLoss
is an implementation of
Loss
.
- SingleShotDetectionLoss(String) - Constructor for class ai.djl.training.loss.SingleShotDetectionLoss
-
Base class for metric with abstract update methods.
- SingleShotDetectionTranslator - Class in ai.djl.modality.cv
-
- SingleShotDetectionTranslator(SingleShotDetectionTranslator.Builder) - Constructor for class ai.djl.modality.cv.SingleShotDetectionTranslator
-
Creates the SSD translator from the given builder.
- SingleShotDetectionTranslator.Builder - Class in ai.djl.modality.cv
-
The builder for SSD translator.
- singletonOrThrow() - Method in class ai.djl.ndarray.NDList
-
Returns the only element if this is a singleton NDList or throws an exception if multiple
elements.
- sinh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the hyperbolic sine of this NDArray
element-wise.
- size(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the size of this NDArray
along a given axis.
- size() - Method in interface ai.djl.ndarray.NDArray
-
Returns the total number of elements in this NDArray
.
- size(int...) - Method in class ai.djl.ndarray.types.Shape
-
Returns the size of a specific dimension or several specific dimensions.
- size() - Method in class ai.djl.ndarray.types.Shape
-
Returns the total size.
- size() - Method in class ai.djl.training.dataset.ArrayDataset
-
Returns the size of this Dataset
.
- size() - Method in class ai.djl.training.dataset.RandomAccessDataset
-
Returns the size of this Dataset
.
- slice() - Method in interface ai.djl.ndarray.NDArray
-
Creates a new NDArray
whose content is a copy of this NDArray
's content.
- slice(int) - Method in class ai.djl.ndarray.types.Shape
-
Creates a new Shape
whose content is a slice of this shape.
- slice(int, int) - Method in class ai.djl.ndarray.types.Shape
-
Creates a new Shape
whose content is a slice of this shape.
- softmax(int) - Method in interface ai.djl.ndarray.NDArray
-
Applies the softmax function along the given axis.
- softmax(int, double) - Method in interface ai.djl.ndarray.NDArray
-
Applies the softmax function along the given axis.
- softmax(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Applies the softmax function along the given axes.
- softmax(int[], double) - Method in interface ai.djl.ndarray.NDArray
-
Applies the softmax function along the given axes.
- softmaxCrossEntropyLoss() - Static method in class ai.djl.training.loss.Loss
-
- softmaxCrossEntropyLoss(float, int, int, boolean, boolean) - Static method in class ai.djl.training.loss.Loss
-
- SoftmaxCrossEntropyLoss - Class in ai.djl.training.loss
-
SoftmaxCrossEntropyLoss
is a type of
Loss
that calculates the softmax cross
entropy loss.
- SoftmaxCrossEntropyLoss(float, int, int, boolean, boolean) - Constructor for class ai.djl.training.loss.SoftmaxCrossEntropyLoss
-
Creates a new instance of SoftmaxCrossEntropyLoss
with the given parameters.
- SoftmaxCrossEntropyLoss() - Constructor for class ai.djl.training.loss.SoftmaxCrossEntropyLoss
-
Creates a new instance of SoftmaxCrossEntropyLoss
with default parameters.
- softrelu(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies soft ReLU activation on the input
NDArray
.
- softrelu(NDList) - Static method in class ai.djl.nn.Activation
-
Applies soft ReLU activation on the input singleton
NDList
.
- softreluBlock() - Static method in class ai.djl.nn.Activation
-
- sort() - Method in interface ai.djl.ndarray.NDArray
-
Sorts the flattened NDArray
.
- sort(int) - Method in interface ai.djl.ndarray.NDArray
-
Sorts the flattened NDArray
.
- SparseFormat - Enum in ai.djl.ndarray.types
-
An enum representing Sparse matrix storage formats.
- SparseNDArray - Interface in ai.djl.ndarray
-
An interface representing a Sparse NDArray.
- split(int) - Method in interface ai.djl.ndarray.NDArray
-
Splits this NDArray
into multiple subNDArray
s given sections along first
axis.
- split(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Splits this NDArray
into multiple sub-NDArray
s given indices along first
axis.
- split(int, int) - Method in interface ai.djl.ndarray.NDArray
-
Splits this NDArray
into multiple subNDArray
s given sections along the given
axis.
- split(int[], int) - Method in interface ai.djl.ndarray.NDArray
-
Splits this NDArray
into multiple sub-NDArray
s given indices along given
axis.
- split(Device[], boolean) - Method in class ai.djl.training.dataset.Batch
-
Splits the data and labels in the Batch
across the given devices.
- split(NDList, int, boolean) - Method in interface ai.djl.translate.Batchifier
-
Splits the given
NDList
into the given number of slices.
- split(NDList, int, boolean) - Method in class ai.djl.translate.StackBatchifier
-
Splits the given
NDList
into the given number of slices.
- square() - Method in interface ai.djl.ndarray.NDArray
-
Returns the square of this NDArray
element-wise.
- squeeze() - Method in interface ai.djl.ndarray.NDArray
-
Removes all singleton dimensions from this
NDArray
Shape
.
- squeeze(int) - Method in interface ai.djl.ndarray.NDArray
-
Removes a singleton dimension at the given axis.
- squeeze(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Removes singleton dimensions at the given axes.
- stack(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Joins a NDArray
along the first axis.
- stack(NDArray, int) - Method in interface ai.djl.ndarray.NDArray
-
Joins a NDArray
along a new axis.
- stack(NDList) - Static method in class ai.djl.ndarray.NDArrays
-
- stack(NDList, int) - Static method in class ai.djl.ndarray.NDArrays
-
- STACK - Static variable in interface ai.djl.translate.Batchifier
-
- StackBatchifier - Class in ai.djl.translate
-
StackBatchifier
is used to merge a list of samples to form a mini-batch of NDArray(s).
- StackBatchifier() - Constructor for class ai.djl.translate.StackBatchifier
-
- start(long) - Method in class ai.djl.training.util.ProgressBar
- stateOutputs - Variable in class ai.djl.nn.recurrent.RecurrentCell.BaseBuilder
-
- stateOutputs - Variable in class ai.djl.nn.recurrent.RecurrentCell
-
- stateSize - Variable in class ai.djl.nn.recurrent.RecurrentCell.BaseBuilder
-
- stateSize - Variable in class ai.djl.nn.recurrent.RecurrentCell
-
- step() - Method in interface ai.djl.training.Trainer
-
Updates all of the parameters of the model once.
- stream() - Method in class ai.djl.ndarray.index.NDIndex
-
Returns a stream of the NDIndexElements.
- stream() - Method in class ai.djl.ndarray.types.Shape
-
Returns a stream of the Shape.
- stride - Variable in class ai.djl.nn.convolutional.Convolution.ConvolutionBuilder
-
- stride - Variable in class ai.djl.nn.convolutional.Convolution
-
- sub(Number) - Method in interface ai.djl.ndarray.NDArray
-
Subtracts a number from this NDArray
element-wise.
- sub(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Subtracts the other NDArray
from this NDArray
element-wise.
- sub(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Subtracts a number from the
NDArray
element-wise.
- sub(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Subtracts a
NDArray
from a number element-wise.
- sub(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- subColumnVector(NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Subtracts a column vector (copy).
- subi(Number) - Method in interface ai.djl.ndarray.NDArray
-
Subtracts a number from this NDArray
element-wise in place.
- subi(NDArray) - Method in interface ai.djl.ndarray.NDArray
-
Subtracts the other NDArray
from this NDArray
element-wise in place.
- subi(NDArray, Number) - Static method in class ai.djl.ndarray.NDArrays
-
Subtracts a number from the
NDArray
element-wise in place.
- subi(Number, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
Subtracts a
NDArray
from a number element-wise in place.
- subi(NDArray, NDArray) - Static method in class ai.djl.ndarray.NDArrays
-
- subiColumnVector(NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Subtracts a column vector in place.
- subiRowVector(NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Subtracts a row vector in place.
- subNDList(int) - Method in class ai.djl.ndarray.NDList
-
Returns a view of the portion of this NDList between the specified fromIndex, inclusive, and
to the end.
- subRowVector(NDArray) - Method in interface ai.djl.ndarray.Matrix
-
Subtracts a row vector (copy).
- sum() - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum of this NDArray
.
- sum(int[]) - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this NDArray
along given axes.
- sum(int[], boolean) - Method in interface ai.djl.ndarray.NDArray
-
Returns the minimum of this NDArray
along given axes.
- sumPool(NDArray, Shape, Shape, Shape, PoolingConvention) - Static method in class ai.djl.nn.pooling.Pool
-
Performs Sum Pooling on the input.
- sumPool(NDArray, Shape, Shape, Shape) - Static method in class ai.djl.nn.pooling.Pool
-
Performs Sum Pooling on the input.
- swapAxes(int, int) - Method in interface ai.djl.ndarray.NDArray
-
Interchanges two axes of this NDArray
.
- swish(NDArray, float) - Static method in class ai.djl.nn.Activation
-
Applies Swish activation on the input
NDArray
.
- swish(NDList, float) - Static method in class ai.djl.nn.Activation
-
Applies SWish activation on the input singleton
NDList
.
- swishBlock(float) - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies the
Swish
activation
function in its forward function.
- SymbolBlock - Interface in ai.djl.nn
-
SymbolBlock
is a
Block
is used to load models that were exported directly from
the engine in its native format.
- sync() - Method in class ai.djl.training.ParameterStore
-
Synchronizes the values on all mirrors with the main parameter.
- tan() - Method in interface ai.djl.ndarray.NDArray
-
Returns the trigonometric tangent of this NDArray
element-wise.
- tanh() - Method in interface ai.djl.ndarray.NDArray
-
Returns the hyperbolic tangent of this NDArray
element-wise.
- tanh(NDArray) - Static method in class ai.djl.nn.Activation
-
Applies Tanh activation on the input
NDArray
.
- tanh(NDList) - Static method in class ai.djl.nn.Activation
-
Applies Tanh activation on the input singleton
NDList
.
- tanhBlock() - Static method in class ai.djl.nn.Activation
-
Creates a
LambdaBlock
that applies the
Tanh
activation function
in its forward function.
- target(NDList) - Method in class ai.djl.modality.cv.MultiBoxTarget
-
Computes multi-box training targets.
- targetPipeline - Variable in class ai.djl.training.dataset.RandomAccessDataset.BaseBuilder
-
- targetPipeline - Variable in class ai.djl.training.dataset.RandomAccessDataset
-
- tile(long) - Method in interface ai.djl.ndarray.NDArray
-
Constructs a NDArray
by repeating this NDArray
the number of times given
repeats.
- tile(int, long) - Method in interface ai.djl.ndarray.NDArray
-
Constructs a NDArray
by repeating this NDArray
the number of times given by
repeats along given axis.
- tile(long[]) - Method in interface ai.djl.ndarray.NDArray
-
Constructs a NDArray
by repeating this NDArray
the number of times given by
repeats.
- tile(Shape) - Method in interface ai.djl.ndarray.NDArray
-
Constructs a NDArray
by repeating this NDArray
the number of times to match
the desired shape.
- toArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this
NDArray
to a Number array based on its
DataType
.
- toBooleanArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to a boolean array.
- toByteArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to a byte array.
- toByteBuffer() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to a ByteBuffer.
- toDegrees() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
from radians to degrees element-wise.
- toDense() - Method in interface ai.djl.ndarray.NDArray
-
Returns a dense representation of the sparse NDArray
.
- toDoubleArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to a double array.
- toDoubleMatrix() - Method in interface ai.djl.ndarray.Matrix
-
Converts this NDArray to a 2d double matrix.
- toFloatArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to a float array.
- toFloatMatrix() - Method in interface ai.djl.ndarray.Matrix
-
Converts this NDArray to a 2d float matrix.
- toIntArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to an int array.
- toIntMatrix() - Method in interface ai.djl.ndarray.Matrix
-
Converts this NDArray to a 2d int matrix.
- toLayoutString() - Method in class ai.djl.ndarray.types.Shape
-
Returns the string layout type for each axis in this shape.
- toLongArray() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to a long array.
- toLongMatrix() - Method in interface ai.djl.ndarray.Matrix
-
Converts this NDArray to a 2d long matrix.
- toNDArray(NDManager, BufferedImage) - Static method in class ai.djl.modality.cv.util.BufferedImageUtils
-
Converts a BufferedImage
to an RGB NDArray.
- toNDArray(NDManager, BufferedImage, NDImageUtils.Flag) - Static method in class ai.djl.modality.cv.util.BufferedImageUtils
-
Converts a BufferedImage
to an NDArray with designated color mode.
- topK(int) - Method in class ai.djl.modality.Classifications
-
Returns a list of the top k
best classes.
- TopKAccuracy - Class in ai.djl.training.metrics
-
TopKAccuracy
is a
TrainingMetric
that computes the accuracy of the top k
predictions.
- TopKAccuracy(String, int, int) - Constructor for class ai.djl.training.metrics.TopKAccuracy
-
Creates a TopKAccuracy
instance.
- TopKAccuracy(int, int) - Constructor for class ai.djl.training.metrics.TopKAccuracy
-
Creates an instance of TopKAccuracy
metric that computes topK accuracy across axis 1
along the given index.
- TopKAccuracy(int) - Constructor for class ai.djl.training.metrics.TopKAccuracy
-
Creates an instance of TopKAccuracy
metric that computes topK accuracy across axis 1
along the 0th index.
- toRadians() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
from degrees to radians element-wise.
- toSparse(SparseFormat) - Method in interface ai.djl.ndarray.NDArray
-
Returns a sparse representation of NDArray
.
- toString() - Method in class ai.djl.Device
- toString() - Method in class ai.djl.metric.Metric
- toString() - Method in class ai.djl.modality.Classifications.Classification
- toString() - Method in class ai.djl.modality.Classifications
- toString() - Method in class ai.djl.modality.cv.DetectedObjects.DetectedObject
- toString() - Method in class ai.djl.modality.cv.Joints.Joint
- toString() - Method in class ai.djl.modality.cv.Joints
- toString() - Method in class ai.djl.modality.cv.Rectangle
- toString() - Method in class ai.djl.ndarray.NDList
- toString() - Method in class ai.djl.ndarray.types.DataDesc
- toString() - Method in enum ai.djl.ndarray.types.DataType
- toString(LayoutType[]) - Static method in enum ai.djl.ndarray.types.LayoutType
-
Converts a layout type array to a string of the character representations.
- toString() - Method in class ai.djl.ndarray.types.Shape
- toString() - Method in class ai.djl.nn.LambdaBlock
- toString() - Method in class ai.djl.nn.ParallelBlock
- toString() - Method in class ai.djl.nn.ParameterBlock
- toString() - Method in class ai.djl.nn.SequentialBlock
- ToTensor - Class in ai.djl.modality.cv.transform
-
A
Transform
that converts an image
NDArray
from preprocessing format to Neural
Network format.
- ToTensor() - Constructor for class ai.djl.modality.cv.transform.ToTensor
-
- toTensor(NDArray) - Static method in class ai.djl.modality.cv.util.NDImageUtils
-
Converts an image NDArray from preprocessing format to Neural Network format.
- toUint8Array() - Method in interface ai.djl.ndarray.NDArray
-
Converts this NDArray
to a uint8 array.
- trace() - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum along diagonals of this NDArray
.
- trace(int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum along diagonals of this NDArray
.
- trace(int, int, int) - Method in interface ai.djl.ndarray.NDArray
-
Returns the sum along diagonals of this NDArray
.
- trainBatch(Batch) - Method in interface ai.djl.training.Trainer
-
Trains the model with one iteration of the given
Batch
of data.
- Trainer - Interface in ai.djl.training
-
An interface that represents a single training iteration.
- TrainingConfig - Interface in ai.djl.training
-
An interface that is responsible for holding the configuration required by
Trainer
.
- TrainingDivergedException - Exception in ai.djl
-
Thrown to indicate when there is a divergence during Training.
- TrainingDivergedException(String) - Constructor for exception ai.djl.TrainingDivergedException
-
Constructs a new exception with the specified detail message.
- TrainingDivergedException(String, Throwable) - Constructor for exception ai.djl.TrainingDivergedException
-
Constructs a new exception with the specified detail message and cause.
- TrainingDivergedException(Throwable) - Constructor for exception ai.djl.TrainingDivergedException
-
Constructs a new exception with the specified cause and a detail message of (cause==null ? null : cause.toString())
which typically contains the class and detail
message of cause
.
- TrainingListener - Interface in ai.djl.training
-
TrainingListener
offers an interface that allows performing some actions when certain
events have occurred in the
Trainer
.
- TrainingMetric - Class in ai.djl.training.metrics
-
Base class for all training metrics.
- TrainingMetric(String) - Constructor for class ai.djl.training.metrics.TrainingMetric
-
Creates a metric with abstract update methods.
- transform(NDArray) - Method in class ai.djl.modality.cv.InstanceSegmentationTranslator
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.CenterCrop
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.Crop
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.Normalize
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.Resize
-
Applies the
Transform
to the given
NDArray
.
- transform(NDArray) - Method in class ai.djl.modality.cv.transform.ToTensor
-
Applies the
Transform
to the given
NDArray
.
- transform(NDList) - Method in class ai.djl.translate.Pipeline
-
Applies the transforms configured in this object on the input
NDList
.
- Transform - Interface in ai.djl.translate
-
An interface to apply various transforms to the input.
- transform(NDArray) - Method in interface ai.djl.translate.Transform
-
Applies the
Transform
to the given
NDArray
.
- TranslateException - Exception in ai.djl.translate
-
Thrown to indicate that an error is raised during processing of the input or output.
- TranslateException(String) - Constructor for exception ai.djl.translate.TranslateException
-
Constructs a new exception with the specified detail message.
- TranslateException(String, Throwable) - Constructor for exception ai.djl.translate.TranslateException
-
Constructs a new exception with the specified detail message and cause.
- TranslateException(Throwable) - Constructor for exception ai.djl.translate.TranslateException
-
Constructs a new exception with the specified cause and a detail message of (cause==null ? null : cause.toString())
which typically contains the class and detail
message of cause
.
- Translator<I,O> - Interface in ai.djl.translate
-
The Translator
interface provides model pre-processing and postprocessing functionality.
- TranslatorContext - Interface in ai.djl.translate
-
The TranslatorContext
interface provides a toolkit for pre-processing and postprocessing
functionality.
- transpose() - Method in interface ai.djl.ndarray.NDArray
-
Returns this NDArray
with axes transposed.
- transpose(int...) - Method in interface ai.djl.ndarray.NDArray
-
Returns this NDArray
with given axes transposed.
- trunc() - Method in interface ai.djl.ndarray.NDArray
-
Returns the truncated value of this NDArray
element-wise.