public class Conv2D extends Convolution
The input to a Conv2D is an NDList with a single 4-D NDArray. The layout of the NDArray must be "NCHW". The
shapes are
data: (batch_size, channel, height, width)
weight: (num_filter, channel, kernel[0], kernel[1])
bias: (num_filter,)
out: (batch_size, num_filter, out_height, out_width) out_height = f(height, kernel[0], pad[0], stride[0], dilate[0]) out_width = f(width, kernel[1], pad[1], stride[1], dilate[1]) where f(x, k, p, s, d) = floor((x + 2 * p - d * (k - 1) - 1)/s) + 1
Both weight and bias are learn-able parameters.
| Modifier and Type | Class and Description |
|---|---|
static class |
Conv2D.Builder
|
Convolution.ConvolutionBuilder<T extends Convolution.ConvolutionBuilder>bias, dilate, includeBias, kernel, numFilters, numGroups, pad, stride, weightinputNames, inputShapes| Modifier and Type | Method and Description |
|---|---|
static Conv2D.Builder |
builder()
Creates a builder to build a
Conv2D. |
protected LayoutType[] |
getExpectedLayout()
Returns the expected layout of the input.
|
protected java.lang.String |
getStringLayout()
Returns the string representing the layout of the input.
|
protected int |
numDimensions()
Returns the number of dimensions of the input.
|
beforeInitialize, forward, getDirectParameters, getOutputShapes, getParameterShape, loadParameters, saveParametersgetChildren, initialize, toStringcast, clear, describeInput, getParameters, isInitialized, readInputShapes, saveInputShapes, setInitializer, setInitializerclone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitforward, validateLayoutprotected LayoutType[] getExpectedLayout()
getExpectedLayout in class Convolutionprotected java.lang.String getStringLayout()
getStringLayout in class Convolutionprotected int numDimensions()
numDimensions in class Convolutionpublic static Conv2D.Builder builder()
Conv2D.