public class SoftmaxCrossEntropyLoss extends Loss
SoftmaxCrossEntropyLoss
is a type of Loss
that calculates the softmax cross
entropy loss.
If sparse_label
is true
(default), label
should contain integer
category indicators. Then, \(L = -\sum_i \log p_{i, label_i}\). If sparse_label
is false
, label
should contain probability distribution and its shape should be the same as
the shape of prediction
. Then, \(L = -\sum_i \sum_j {label}_j \log p_{ij}\).
totalInstances
Constructor and Description |
---|
SoftmaxCrossEntropyLoss()
Creates a new instance of
SoftmaxCrossEntropyLoss with default parameters. |
SoftmaxCrossEntropyLoss(java.lang.String name)
Creates a new instance of
SoftmaxCrossEntropyLoss with default parameters. |
SoftmaxCrossEntropyLoss(java.lang.String name,
float weight,
int classAxis,
boolean sparseLabel,
boolean fromLogit)
Creates a new instance of
SoftmaxCrossEntropyLoss with the given parameters. |
Modifier and Type | Method and Description |
---|---|
NDArray |
evaluate(NDList label,
NDList prediction)
Calculates the evaluation between the labels and the predictions.
|
addAccumulator, getAccumulator, hingeLoss, hingeLoss, hingeLoss, l1Loss, l1Loss, l1Loss, l2Loss, l2Loss, l2Loss, maskedSoftmaxCrossEntropyLoss, maskedSoftmaxCrossEntropyLoss, maskedSoftmaxCrossEntropyLoss, resetAccumulator, sigmoidBinaryCrossEntropyLoss, sigmoidBinaryCrossEntropyLoss, sigmoidBinaryCrossEntropyLoss, softmaxCrossEntropyLoss, softmaxCrossEntropyLoss, softmaxCrossEntropyLoss, updateAccumulator
checkLabelShapes, checkLabelShapes, getName
public SoftmaxCrossEntropyLoss()
SoftmaxCrossEntropyLoss
with default parameters.public SoftmaxCrossEntropyLoss(java.lang.String name)
SoftmaxCrossEntropyLoss
with default parameters.name
- the name of the losspublic SoftmaxCrossEntropyLoss(java.lang.String name, float weight, int classAxis, boolean sparseLabel, boolean fromLogit)
SoftmaxCrossEntropyLoss
with the given parameters.name
- the name of the lossweight
- the weight to apply on the loss value, default 1classAxis
- the axis that represents the class probabilities, default -1sparseLabel
- whether labels are integer array or probabilities, default truefromLogit
- whether predictions are log probabilities or un-normalized numbers, default
false