public static class GLRMModel.GLRMParameters
extends hex.Model.Parameters
Modifier and Type | Class and Description |
---|---|
static class |
GLRMModel.GLRMParameters.Loss |
static class |
GLRMModel.GLRMParameters.Regularizer |
Modifier and Type | Field and Description |
---|---|
double |
_gamma_x |
double |
_gamma_y |
GLRM.Initialization |
_init |
double |
_init_step_size |
int |
_k |
java.lang.String |
_loading_name |
GLRMModel.GLRMParameters.Loss |
_loss |
GLRMModel.GLRMParameters.Loss[] |
_loss_by_col |
int[] |
_loss_by_col_idx |
int |
_max_iterations |
double |
_min_step_size |
GLRMModel.GLRMParameters.Loss |
_multi_loss |
int |
_period |
boolean |
_recover_svd |
GLRMModel.GLRMParameters.Regularizer |
_regularization_x |
GLRMModel.GLRMParameters.Regularizer |
_regularization_y |
long |
_seed |
DataInfo.TransformType |
_transform |
water.Key<water.fvec.Frame> |
_user_points |
boolean |
_verbose |
_balance_classes, _checkpoint, _class_sampling_factors, _distribution, _fold_assignment, _fold_column, _ignore_const_cols, _ignored_columns, _keep_cross_validation_predictions, _max_after_balance_size, _max_confusion_matrix_size, _max_hit_ratio_k, _model_id, _nfolds, _offset_column, _response_column, _score_each_iteration, _train, _tweedie_power, _valid, _weights_column, MAX_SUPPORTED_LEVELS
Constructor and Description |
---|
GLRMModel.GLRMParameters() |
Modifier and Type | Method and Description |
---|---|
boolean |
hasClosedForm() |
boolean |
hasClosedForm(long na_cnt) |
double |
impute(double u) |
static double |
impute(double u,
GLRMModel.GLRMParameters.Loss loss) |
double |
lgrad(double u,
double a) |
double |
lgrad(double u,
double a,
GLRMModel.GLRMParameters.Loss loss) |
double |
loss(double u,
double a) |
double |
loss(double u,
double a,
GLRMModel.GLRMParameters.Loss loss) |
int |
mimpute(double[] u) |
static int |
mimpute(double[] u,
GLRMModel.GLRMParameters.Loss multi_loss) |
double[] |
mlgrad(double[] u,
int a) |
static double[] |
mlgrad(double[] u,
int a,
GLRMModel.GLRMParameters.Loss multi_loss) |
double |
mloss(double[] u,
int a) |
static double |
mloss(double[] u,
int a,
GLRMModel.GLRMParameters.Loss multi_loss) |
double[] |
project_x(double[] u,
java.util.Random rand) |
double[] |
project_y(double[] u,
java.util.Random rand) |
double[] |
project(double[] u,
GLRMModel.GLRMParameters.Regularizer regularization,
java.util.Random rand) |
double |
regularize_x(double[] u) |
double |
regularize_x(double[][] u) |
double |
regularize_y(double[] u) |
double |
regularize_y(double[][] u) |
double |
regularize(double[][] u,
GLRMModel.GLRMParameters.Regularizer regularization) |
double |
regularize(double[] u,
GLRMModel.GLRMParameters.Regularizer regularization) |
double[] |
rproxgrad_x(double[] u,
double alpha,
java.util.Random rand) |
double[] |
rproxgrad_y(double[] u,
double alpha,
java.util.Random rand) |
checksum_impl, checksum, defaultDropConsCols, defaultDropNA20Cols, hasCheckpoint, missingColumnsType, read_lock_frames, read_unlock_frames, train, valid
public DataInfo.TransformType _transform
public int _k
public GLRM.Initialization _init
public water.Key<water.fvec.Frame> _user_points
public GLRMModel.GLRMParameters.Loss _loss
public GLRMModel.GLRMParameters.Loss _multi_loss
public int _period
public GLRMModel.GLRMParameters.Loss[] _loss_by_col
public int[] _loss_by_col_idx
public GLRMModel.GLRMParameters.Regularizer _regularization_x
public GLRMModel.GLRMParameters.Regularizer _regularization_y
public double _gamma_x
public double _gamma_y
public int _max_iterations
public double _init_step_size
public double _min_step_size
public long _seed
public java.lang.String _loading_name
public boolean _recover_svd
public boolean _verbose
public final boolean hasClosedForm()
public final boolean hasClosedForm(long na_cnt)
public final double loss(double u, double a)
public final double loss(double u, double a, GLRMModel.GLRMParameters.Loss loss)
public final double lgrad(double u, double a)
public final double lgrad(double u, double a, GLRMModel.GLRMParameters.Loss loss)
public final double mloss(double[] u, int a)
public static double mloss(double[] u, int a, GLRMModel.GLRMParameters.Loss multi_loss)
public final double[] mlgrad(double[] u, int a)
public static double[] mlgrad(double[] u, int a, GLRMModel.GLRMParameters.Loss multi_loss)
public final double regularize_x(double[] u)
public final double regularize_y(double[] u)
public final double regularize(double[] u, GLRMModel.GLRMParameters.Regularizer regularization)
public final double regularize_x(double[][] u)
public final double regularize_y(double[][] u)
public final double regularize(double[][] u, GLRMModel.GLRMParameters.Regularizer regularization)
public final double[] rproxgrad_x(double[] u, double alpha, java.util.Random rand)
public final double[] rproxgrad_y(double[] u, double alpha, java.util.Random rand)
public final double[] project_x(double[] u, java.util.Random rand)
public final double[] project_y(double[] u, java.util.Random rand)
public final double[] project(double[] u, GLRMModel.GLRMParameters.Regularizer regularization, java.util.Random rand)
public final double impute(double u)
public static double impute(double u, GLRMModel.GLRMParameters.Loss loss)
public final int mimpute(double[] u)
public static int mimpute(double[] u, GLRMModel.GLRMParameters.Loss multi_loss)