public abstract class SupervisedModelParametersSchema<P extends SupervisedModel.SupervisedParameters,S extends SupervisedModelParametersSchema<P,S>> extends ModelParametersSchema<P,S>
ModelParametersSchema.ValidationMessageBase<I extends ModelBuilder.ValidationMessage,S extends ModelParametersSchema.ValidationMessageBase<I,S>>, ModelParametersSchema.ValidationMessageV2
Schema.Meta
Modifier and Type | Field and Description |
---|---|
boolean |
balance_classes
For imbalanced data, balance training data class counts via
over/under-sampling.
|
float[] |
class_sampling_factors
Desired over/under-sampling ratios per class (lexicographic order).
|
boolean |
do_classification |
float |
max_after_balance_size
When classes are balanced, limit the resulting dataset size to the
specified multiple of the original dataset size.
|
static java.lang.String[] |
own_fields |
FrameV2.ColSpecifierV2 |
response_column |
destination_key, ignored_columns, score_each_iteration, training_frame, validation_frame
__meta, _impl_class, _version_pattern
Constructor and Description |
---|
SupervisedModelParametersSchema() |
Modifier and Type | Method and Description |
---|---|
S |
fillFromImpl(P impl)
Version and Schema-specific filling from the implementation object.
|
P |
fillImpl(P impl)
Fill an impl object and any children from this schema and its children.
|
append_field_arrays, fields, writeParametersJSON
acceptsFrame, createAndFillImpl, createImpl, extractVersion, fillFromParms, getImplClass, getImplClass, getSchemaVersion, markdown, markdown, markdown, markdown, newInstance, register, registerAllSchemasIfNecessary, schema, schema, schema, schema, schema, schemaClass, schemaClass, schemaClass, schemaClass, schemas
clone, frozenType, read_impl, read, readExternal, readJSON_impl, readJSON, toJsonString, write_impl, write, writeExternal, writeHTML_impl, writeHTML, writeJSON_impl, writeJSON
public static java.lang.String[] own_fields
@API(help="Response column", is_member_of_frames={"training_frame","validation_frame"}, is_mutually_exclusive_with="ignored_columns", direction=INOUT) public FrameV2.ColSpecifierV2 response_column
@API(help="Convert the response column to an enum (forcing a classification instead of a regression) if needed.", direction=INOUT) public boolean do_classification
@API(help="Balance training data class counts via over/under-sampling (for imbalanced data).", level=secondary, direction=INOUT) public boolean balance_classes
@API(help="Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Requires balance_classes.", level=expert, direction=INOUT) public float[] class_sampling_factors
@API(help="Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires balance_classes.", level=expert, direction=INOUT) public float max_after_balance_size
public S fillFromImpl(P impl)
Schema
fillFromImpl
in class ModelParametersSchema<P extends SupervisedModel.SupervisedParameters,S extends SupervisedModelParametersSchema<P,S>>
public P fillImpl(P impl)
Schema
fillImpl
in class ModelParametersSchema<P extends SupervisedModel.SupervisedParameters,S extends SupervisedModelParametersSchema<P,S>>