public abstract static class SupervisedModel.SupervisedParameters extends Model.Parameters
Modifier and Type | Field and Description |
---|---|
boolean |
_balance_classes
Should all classes be over/under-sampled to balance the class
distribution?
|
float[] |
_class_sampling_factors
Desired over/under-sampling ratios per class (lexicographic order).
|
boolean |
_convert_to_enum
Convert the response column to an enum (forcing a classification
instead of a regression) as needed.
|
float |
_max_after_balance_size
When classes are being balanced, limit the resulting dataset size to
the specified multiple of the original dataset size.
|
int |
_max_hit_ratio_k
The maximum number (top K) of predictions to use for hit ratio
computation (for multi-class only, 0 to disable)
|
java.lang.String |
_response_column
Supervised models have an expected response they get to train with!
|
_destination_key, _dropConsCols, _dropNA20Cols, _ignored_columns, _max_confusion_matrix_size, _score_each_iteration, _train, _valid
Constructor and Description |
---|
SupervisedModel.SupervisedParameters() |
checksum_impl, defaultDropConsCols, defaultDropNA20Cols, missingColumnsType, read_lock_frames, read_unlock_frames, train, valid
clone, frozenType, read_impl, read, readExternal, readJSON_impl, readJSON, toJsonString, write_impl, write, writeExternal, writeHTML_impl, writeHTML, writeJSON_impl, writeJSON
public java.lang.String _response_column
public boolean _convert_to_enum
public boolean _balance_classes
public float _max_after_balance_size
public float[] _class_sampling_factors
public int _max_hit_ratio_k