Class DataframeAnalysisClassification.Builder
java.lang.Object
co.elastic.clients.elasticsearch.ml.DataframeAnalysisBase.AbstractBuilder<DataframeAnalysisClassification.Builder>
co.elastic.clients.elasticsearch.ml.DataframeAnalysisClassification.Builder
- All Implemented Interfaces:
ObjectBuilder<DataframeAnalysisClassification>
- Enclosing class:
- DataframeAnalysisClassification
public static class DataframeAnalysisClassification.Builder extends DataframeAnalysisBase.AbstractBuilder<DataframeAnalysisClassification.Builder> implements ObjectBuilder<DataframeAnalysisClassification>
Builder for
DataframeAnalysisClassification.-
Constructor Summary
Constructors Constructor Description Builder() -
Method Summary
Modifier and Type Method Description DataframeAnalysisClassificationbuild()Builds aDataframeAnalysisClassification.DataframeAnalysisClassification.BuilderclassAssignmentObjective(java.lang.String value)API name:class_assignment_objectiveDataframeAnalysisClassification.BuildernumTopClasses(java.lang.Integer value)Defines the number of categories for which the predicted probabilities are reported.protected DataframeAnalysisClassification.Builderself()Methods inherited from class co.elastic.clients.elasticsearch.ml.DataframeAnalysisBase.AbstractBuilder
addFeatureProcessors, addFeatureProcessors, alpha, dependentVariable, downsampleFactor, earlyStoppingEnabled, eta, etaGrowthRatePerTree, featureBagFraction, featureProcessors, featureProcessors, featureProcessors, gamma, lambda, maxOptimizationRoundsPerHyperparameter, maxTrees, numTopFeatureImportanceValues, predictionFieldName, randomizeSeed, softTreeDepthLimit, softTreeDepthTolerance, trainingPercentMethods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
Builder
public Builder()
-
-
Method Details
-
classAssignmentObjective
public DataframeAnalysisClassification.Builder classAssignmentObjective(@Nullable java.lang.String value)API name:class_assignment_objective -
numTopClasses
Defines the number of categories for which the predicted probabilities are reported. It must be non-negative or -1. If it is -1 or greater than the total number of categories, probabilities are reported for all categories; if you have a large number of categories, there could be a significant effect on the size of your destination index. NOTE: To use the AUC ROC evaluation method,num_top_classesmust be set to -1 or a value greater than or equal to the total number of categories.API name:
num_top_classes -
self
- Specified by:
selfin classDataframeAnalysisBase.AbstractBuilder<DataframeAnalysisClassification.Builder>
-
build
Builds aDataframeAnalysisClassification.- Specified by:
buildin interfaceObjectBuilder<DataframeAnalysisClassification>- Throws:
java.lang.NullPointerException- if some of the required fields are null.
-