Class DataframeAnalysisRegression
java.lang.Object
co.elastic.clients.elasticsearch.ml.DataframeAnalysisBase
co.elastic.clients.elasticsearch.ml.DataframeAnalysisRegression
- All Implemented Interfaces:
DataframeAnalysisVariant,JsonpSerializable,UnionVariant
@JsonpDeserializable public final class DataframeAnalysisRegression extends DataframeAnalysisBase implements DataframeAnalysisVariant
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classDataframeAnalysisRegression.BuilderBuilder forDataframeAnalysisRegression.Nested classes/interfaces inherited from class co.elastic.clients.elasticsearch.ml.DataframeAnalysisBase
DataframeAnalysisBase.AbstractBuilder<BuilderT extends DataframeAnalysisBase.AbstractBuilder<BuilderT>> -
Field Summary
Fields Modifier and Type Field Description static JsonpDeserializer<DataframeAnalysisRegression>_DESERIALIZERJson deserializer forDataframeAnalysisRegression -
Constructor Summary
Constructors Constructor Description DataframeAnalysisRegression(DataframeAnalysisRegression.Builder builder)DataframeAnalysisRegression(java.util.function.Function<DataframeAnalysisRegression.Builder,DataframeAnalysisRegression.Builder> fn) -
Method Summary
Modifier and Type Method Description java.lang.String_variantType()DataframeAnalysisvariant typejava.lang.StringlossFunction()The loss function used during regression.java.lang.DoublelossFunctionParameter()A positive number that is used as a parameter to theloss_function.protected voidserializeInternal(jakarta.json.stream.JsonGenerator generator, JsonpMapper mapper)protected static voidsetupDataframeAnalysisRegressionDeserializer(DelegatingDeserializer<DataframeAnalysisRegression.Builder> op)Methods inherited from class co.elastic.clients.elasticsearch.ml.DataframeAnalysisBase
alpha, dependentVariable, downsampleFactor, earlyStoppingEnabled, eta, etaGrowthRatePerTree, featureBagFraction, featureProcessors, gamma, lambda, maxOptimizationRoundsPerHyperparameter, maxTrees, numTopFeatureImportanceValues, predictionFieldName, randomizeSeed, serialize, setupDataframeAnalysisBaseDeserializer, softTreeDepthLimit, softTreeDepthTolerance, trainingPercentMethods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface co.elastic.clients.elasticsearch.ml.DataframeAnalysisVariant
_toDataframeAnalysis
-
Field Details
-
_DESERIALIZER
Json deserializer forDataframeAnalysisRegression
-
-
Constructor Details
-
DataframeAnalysisRegression
-
DataframeAnalysisRegression
public DataframeAnalysisRegression(java.util.function.Function<DataframeAnalysisRegression.Builder,DataframeAnalysisRegression.Builder> fn)
-
-
Method Details
-
_variantType
public java.lang.String _variantType()DataframeAnalysisvariant type- Specified by:
_variantTypein interfaceUnionVariant
-
lossFunction
@Nullable public java.lang.String lossFunction()The loss function used during regression. Available options aremse(mean squared error),msle(mean squared logarithmic error),huber(Pseudo-Huber loss).API name:
loss_function -
lossFunctionParameter
@Nullable public java.lang.Double lossFunctionParameter()A positive number that is used as a parameter to theloss_function.API name:
loss_function_parameter -
serializeInternal
- Overrides:
serializeInternalin classDataframeAnalysisBase
-
setupDataframeAnalysisRegressionDeserializer
protected static void setupDataframeAnalysisRegressionDeserializer(DelegatingDeserializer<DataframeAnalysisRegression.Builder> op)
-