Class DataframeRegressionSummary
java.lang.Object
co.elastic.clients.elasticsearch.ml.evaluate_data_frame.DataframeRegressionSummary
- All Implemented Interfaces:
JsonpSerializable
@JsonpDeserializable
public class DataframeRegressionSummary
extends Object
implements JsonpSerializable
- See Also:
-
Nested Class Summary
Nested Classes -
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final JsonpDeserializer<DataframeRegressionSummary>Json deserializer forDataframeRegressionSummary -
Method Summary
Modifier and TypeMethodDescriptionfinal DataframeEvaluationValuehuber()Pseudo Huber loss function.final DataframeEvaluationValuemse()Average squared difference between the predicted values and the actual (ground truth) value.final DataframeEvaluationValuemsle()Average squared difference between the logarithm of the predicted values and the logarithm of the actual (ground truth) value.static DataframeRegressionSummaryfinal DataframeEvaluationValuerSquared()Proportion of the variance in the dependent variable that is predictable from the independent variables.voidserialize(jakarta.json.stream.JsonGenerator generator, JsonpMapper mapper) Serialize this object to JSON.protected voidserializeInternal(jakarta.json.stream.JsonGenerator generator, JsonpMapper mapper) protected static voidsetupDataframeRegressionSummaryDeserializer(ObjectDeserializer<DataframeRegressionSummary.Builder> op) toString()
-
Field Details
-
_DESERIALIZER
Json deserializer forDataframeRegressionSummary
-
-
Method Details
-
of
public static DataframeRegressionSummary of(Function<DataframeRegressionSummary.Builder, ObjectBuilder<DataframeRegressionSummary>> fn) -
huber
Pseudo Huber loss function.API name:
huber -
mse
Average squared difference between the predicted values and the actual (ground truth) value.API name:
mse -
msle
Average squared difference between the logarithm of the predicted values and the logarithm of the actual (ground truth) value.API name:
msle -
rSquared
Proportion of the variance in the dependent variable that is predictable from the independent variables.API name:
r_squared -
serialize
Serialize this object to JSON.- Specified by:
serializein interfaceJsonpSerializable
-
serializeInternal
-
toString
-
setupDataframeRegressionSummaryDeserializer
protected static void setupDataframeRegressionSummaryDeserializer(ObjectDeserializer<DataframeRegressionSummary.Builder> op)
-