Class AbstractMultipleLinearRegression
java.lang.Object
org.apache.commons.math.stat.regression.AbstractMultipleLinearRegression
- All Implemented Interfaces:
MultipleLinearRegression
- Direct Known Subclasses:
GLSMultipleLinearRegression
,OLSMultipleLinearRegression
public abstract class AbstractMultipleLinearRegression
extends Object
implements MultipleLinearRegression
Abstract base class for implementations of MultipleLinearRegression.
- Since:
- 2.0
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiondouble
Estimates the variance of the error.double
Returns the variance of the regressand, ie Var(y).double[]
Estimates the regression parameters b.double[]
Returns the standard errors of the regression parameters.double[][]
Estimates the variance of the regression parameters, ie Var(b).double
Estimates the standard error of the regression.double[]
Estimates the residuals, ie u = y - X*b.boolean
void
newSampleData
(double[] data, int nobs, int nvars) Loads model x and y sample data from a flat input array, overriding any previous sample.void
setNoIntercept
(boolean noIntercept)
-
Constructor Details
-
AbstractMultipleLinearRegression
public AbstractMultipleLinearRegression()
-
-
Method Details
-
isNoIntercept
public boolean isNoIntercept()- Returns:
- true if the model has no intercept term; false otherwise
- Since:
- 2.2
-
setNoIntercept
public void setNoIntercept(boolean noIntercept) - Parameters:
noIntercept
- true means the model is to be estimated without an intercept term- Since:
- 2.2
-
newSampleData
public void newSampleData(double[] data, int nobs, int nvars) Loads model x and y sample data from a flat input array, overriding any previous sample.
Assumes that rows are concatenated with y values first in each row. For example, an input
data
array containing the sequence of values (1, 2, 3, 4, 5, 6, 7, 8, 9) withnobs = 3
andnvars = 2
creates a regression dataset with two independent variables, as below:y x[0] x[1] -------------- 1 2 3 4 5 6 7 8 9
Note that there is no need to add an initial unitary column (column of 1's) when specifying a model including an intercept term. If
isNoIntercept()
istrue
, the X matrix will be created without an initial column of "1"s; otherwise this column will be added.Throws IllegalArgumentException if any of the following preconditions fail:
data
cannot be nulldata.length = nobs * (nvars + 1)
nobs > nvars
- Parameters:
data
- input data arraynobs
- number of observations (rows)nvars
- number of independent variables (columns, not counting y)- Throws:
IllegalArgumentException
- if the preconditions are not met
-
estimateRegressionParameters
public double[] estimateRegressionParameters()Estimates the regression parameters b.- Specified by:
estimateRegressionParameters
in interfaceMultipleLinearRegression
- Returns:
- The [k,1] array representing b
-
estimateResiduals
public double[] estimateResiduals()Estimates the residuals, ie u = y - X*b.- Specified by:
estimateResiduals
in interfaceMultipleLinearRegression
- Returns:
- The [n,1] array representing the residuals
-
estimateRegressionParametersVariance
public double[][] estimateRegressionParametersVariance()Estimates the variance of the regression parameters, ie Var(b).- Specified by:
estimateRegressionParametersVariance
in interfaceMultipleLinearRegression
- Returns:
- The [k,k] array representing the variance of b
-
estimateRegressionParametersStandardErrors
public double[] estimateRegressionParametersStandardErrors()Returns the standard errors of the regression parameters.- Specified by:
estimateRegressionParametersStandardErrors
in interfaceMultipleLinearRegression
- Returns:
- standard errors of estimated regression parameters
-
estimateRegressandVariance
public double estimateRegressandVariance()Returns the variance of the regressand, ie Var(y).- Specified by:
estimateRegressandVariance
in interfaceMultipleLinearRegression
- Returns:
- The double representing the variance of y
-
estimateErrorVariance
public double estimateErrorVariance()Estimates the variance of the error.- Returns:
- estimate of the error variance
- Since:
- 2.2
-
estimateRegressionStandardError
public double estimateRegressionStandardError()Estimates the standard error of the regression.- Returns:
- regression standard error
- Since:
- 2.2
-