Class GLSMultipleLinearRegression
java.lang.Object
org.apache.commons.math.stat.regression.AbstractMultipleLinearRegression
org.apache.commons.math.stat.regression.GLSMultipleLinearRegression
- All Implemented Interfaces:
MultipleLinearRegression
The GLS implementation of the multiple linear regression.
GLS assumes a general covariance matrix Omega of the error
u ~ N(0, Omega)Estimated by GLS,
b=(X' Omega^-1 X)^-1X'Omega^-1 ywhose variance is
Var(b)=(X' Omega^-1 X)^-1
- Since:
- 2.0
-
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionvoid
newSampleData
(double[] y, double[][] x, double[][] covariance) Replace sample data, overriding any previous sample.Methods inherited from class org.apache.commons.math.stat.regression.AbstractMultipleLinearRegression
estimateErrorVariance, estimateRegressandVariance, estimateRegressionParameters, estimateRegressionParametersStandardErrors, estimateRegressionParametersVariance, estimateRegressionStandardError, estimateResiduals, isNoIntercept, newSampleData, setNoIntercept
-
Constructor Details
-
GLSMultipleLinearRegression
public GLSMultipleLinearRegression()
-
-
Method Details
-
newSampleData
public void newSampleData(double[] y, double[][] x, double[][] covariance) Replace sample data, overriding any previous sample.- Parameters:
y
- y values of the samplex
- x values of the samplecovariance
- array representing the covariance matrix
-