Class KMeansPlusPlusClusterer<T extends Clusterable<T>>
java.lang.Object
org.apache.commons.math.stat.clustering.KMeansPlusPlusClusterer<T>
- Type Parameters:
T
- type of the points to cluster
Clustering algorithm based on David Arthur and Sergei Vassilvitski k-means++ algorithm.
- Since:
- 2.0
- See Also:
-
Nested Class Summary
Modifier and TypeClassDescriptionstatic enum
Strategies to use for replacing an empty cluster. -
Constructor Summary
ConstructorDescriptionKMeansPlusPlusClusterer
(Random random) Build a clusterer.KMeansPlusPlusClusterer
(Random random, KMeansPlusPlusClusterer.EmptyClusterStrategy emptyStrategy) Build a clusterer. -
Method Summary
-
Constructor Details
-
KMeansPlusPlusClusterer
Build a clusterer.The default strategy for handling empty clusters that may appear during algorithm iterations is to split the cluster with largest distance variance.
- Parameters:
random
- random generator to use for choosing initial centers
-
KMeansPlusPlusClusterer
public KMeansPlusPlusClusterer(Random random, KMeansPlusPlusClusterer.EmptyClusterStrategy emptyStrategy) Build a clusterer.- Parameters:
random
- random generator to use for choosing initial centersemptyStrategy
- strategy to use for handling empty clusters that may appear during algorithm iterations- Since:
- 2.2
-
-
Method Details
-
cluster
Runs the K-means++ clustering algorithm.- Parameters:
points
- the points to clusterk
- the number of clusters to split the data intomaxIterations
- the maximum number of iterations to run the algorithm for. If negative, no maximum will be used- Returns:
- a list of clusters containing the points
-