@Generated(value="com.amazonaws:aws-java-sdk-code-generator") public class PutAnomalyDetectorRequest extends AmazonWebServiceRequest implements Serializable, Cloneable
NOOP
Constructor and Description |
---|
PutAnomalyDetectorRequest() |
Modifier and Type | Method and Description |
---|---|
PutAnomalyDetectorRequest |
clone() |
boolean |
equals(Object obj) |
AnomalyDetectorConfiguration |
getConfiguration()
The configuration specifies details about how the anomaly detection model is to be trained, including time ranges
to exclude when training and updating the model.
|
List<Dimension> |
getDimensions()
The metric dimensions to create the anomaly detection model for.
|
String |
getMetricName()
The name of the metric to create the anomaly detection model for.
|
String |
getNamespace()
The namespace of the metric to create the anomaly detection model for.
|
String |
getStat()
The statistic to use for the metric and the anomaly detection model.
|
int |
hashCode() |
void |
setConfiguration(AnomalyDetectorConfiguration configuration)
The configuration specifies details about how the anomaly detection model is to be trained, including time ranges
to exclude when training and updating the model.
|
void |
setDimensions(Collection<Dimension> dimensions)
The metric dimensions to create the anomaly detection model for.
|
void |
setMetricName(String metricName)
The name of the metric to create the anomaly detection model for.
|
void |
setNamespace(String namespace)
The namespace of the metric to create the anomaly detection model for.
|
void |
setStat(String stat)
The statistic to use for the metric and the anomaly detection model.
|
String |
toString()
Returns a string representation of this object.
|
PutAnomalyDetectorRequest |
withConfiguration(AnomalyDetectorConfiguration configuration)
The configuration specifies details about how the anomaly detection model is to be trained, including time ranges
to exclude when training and updating the model.
|
PutAnomalyDetectorRequest |
withDimensions(Collection<Dimension> dimensions)
The metric dimensions to create the anomaly detection model for.
|
PutAnomalyDetectorRequest |
withDimensions(Dimension... dimensions)
The metric dimensions to create the anomaly detection model for.
|
PutAnomalyDetectorRequest |
withMetricName(String metricName)
The name of the metric to create the anomaly detection model for.
|
PutAnomalyDetectorRequest |
withNamespace(String namespace)
The namespace of the metric to create the anomaly detection model for.
|
PutAnomalyDetectorRequest |
withStat(String stat)
The statistic to use for the metric and the anomaly detection model.
|
addHandlerContext, copyBaseTo, getCloneRoot, getCloneSource, getCustomQueryParameters, getCustomRequestHeaders, getGeneralProgressListener, getHandlerContext, getReadLimit, getRequestClientOptions, getRequestCredentials, getRequestCredentialsProvider, getRequestMetricCollector, getSdkClientExecutionTimeout, getSdkRequestTimeout, putCustomQueryParameter, putCustomRequestHeader, setGeneralProgressListener, setRequestCredentials, setRequestCredentialsProvider, setRequestMetricCollector, setSdkClientExecutionTimeout, setSdkRequestTimeout, withGeneralProgressListener, withRequestCredentialsProvider, withRequestMetricCollector, withSdkClientExecutionTimeout, withSdkRequestTimeout
public void setNamespace(String namespace)
The namespace of the metric to create the anomaly detection model for.
namespace
- The namespace of the metric to create the anomaly detection model for.public String getNamespace()
The namespace of the metric to create the anomaly detection model for.
public PutAnomalyDetectorRequest withNamespace(String namespace)
The namespace of the metric to create the anomaly detection model for.
namespace
- The namespace of the metric to create the anomaly detection model for.public void setMetricName(String metricName)
The name of the metric to create the anomaly detection model for.
metricName
- The name of the metric to create the anomaly detection model for.public String getMetricName()
The name of the metric to create the anomaly detection model for.
public PutAnomalyDetectorRequest withMetricName(String metricName)
The name of the metric to create the anomaly detection model for.
metricName
- The name of the metric to create the anomaly detection model for.public List<Dimension> getDimensions()
The metric dimensions to create the anomaly detection model for.
public void setDimensions(Collection<Dimension> dimensions)
The metric dimensions to create the anomaly detection model for.
dimensions
- The metric dimensions to create the anomaly detection model for.public PutAnomalyDetectorRequest withDimensions(Dimension... dimensions)
The metric dimensions to create the anomaly detection model for.
NOTE: This method appends the values to the existing list (if any). Use
setDimensions(java.util.Collection)
or withDimensions(java.util.Collection)
if you want to
override the existing values.
dimensions
- The metric dimensions to create the anomaly detection model for.public PutAnomalyDetectorRequest withDimensions(Collection<Dimension> dimensions)
The metric dimensions to create the anomaly detection model for.
dimensions
- The metric dimensions to create the anomaly detection model for.public void setStat(String stat)
The statistic to use for the metric and the anomaly detection model.
stat
- The statistic to use for the metric and the anomaly detection model.public String getStat()
The statistic to use for the metric and the anomaly detection model.
public PutAnomalyDetectorRequest withStat(String stat)
The statistic to use for the metric and the anomaly detection model.
stat
- The statistic to use for the metric and the anomaly detection model.public void setConfiguration(AnomalyDetectorConfiguration configuration)
The configuration specifies details about how the anomaly detection model is to be trained, including time ranges to exclude when training and updating the model. You can specify as many as 10 time ranges.
The configuration can also include the time zone to use for the metric.
You can in
configuration
- The configuration specifies details about how the anomaly detection model is to be trained, including time
ranges to exclude when training and updating the model. You can specify as many as 10 time ranges.
The configuration can also include the time zone to use for the metric.
You can in
public AnomalyDetectorConfiguration getConfiguration()
The configuration specifies details about how the anomaly detection model is to be trained, including time ranges to exclude when training and updating the model. You can specify as many as 10 time ranges.
The configuration can also include the time zone to use for the metric.
You can in
The configuration can also include the time zone to use for the metric.
You can in
public PutAnomalyDetectorRequest withConfiguration(AnomalyDetectorConfiguration configuration)
The configuration specifies details about how the anomaly detection model is to be trained, including time ranges to exclude when training and updating the model. You can specify as many as 10 time ranges.
The configuration can also include the time zone to use for the metric.
You can in
configuration
- The configuration specifies details about how the anomaly detection model is to be trained, including time
ranges to exclude when training and updating the model. You can specify as many as 10 time ranges.
The configuration can also include the time zone to use for the metric.
You can in
public String toString()
toString
in class Object
Object.toString()
public PutAnomalyDetectorRequest clone()
clone
in class AmazonWebServiceRequest
Copyright © 2020. All rights reserved.